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When examining the association between symmetrically associated cate-
gorical variables, correspondence analysis provides a visual means of identify-
ing the structure of this association. An important and sometimes overlooked
feature that can help the analyst determine whether these categories provide
a statistically significant contribution to the association is the confidence re-
gion. When constructing these regions, correspondence analysis traditionally
(but not always) considers Pearson’s chi-squared statistic as the core mea-
sure of association between the variables. Such a statistic is a special case of
the Cressie-Read family of divergence statistics as is the log-likelihood ratio
statistic, Freedman-Tukey statistic, and other such measures. Therefore, this
paper will consider the construction of confidence regions in correspondence
analysis where this family of divergence statistics is used as the measure of
association. Doing so provides a means of simply constructing confidence
regions for each category of a contingency table and allows for such regions
to be constructed when log-ratio analysis (LRA) or the Hellinger distance
decomposition (HDD) method is applied to the contingency table.
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1 Introduction

Correspondence analysis (CA) is a popular technique that can be used for visualising the
association between two or more categorical variables that are cross-classified to form a
contingency table. Such a visualisation assesses the nature of the association by depicting
the position of a category’s profile in a low-dimensional space, typically consisting of two
dimensions. If it is found that a statistically significant association exists between the two
variables, it is also important to understand how each row and column category of the
table contributes to this dependence structure. To determine whether a row or column
plays a statistically significant role in the association between the variables, confidence
regions have been a topic of much discussion in the correspondence analysis literature.
Lebart et al. (1984, pp. 182-186) proposed a simple and direct means of constructing a
100 (1− α)% confidence circle for each category. Beh (2001) showed that the confidence
circles of Lebart et al. (1984) are also applicable for the correspondence analysis involving
ordered categorical variables (Beh, 1997) while Beh and D’Ambra (2009) demonstrated
their use for non-symmetrical correspondence analysis. More computationally intensive
approaches have been described by Ringrose (1992, 1996, 2012), Markus (1994), Linting
et al. (2007), Gower et al. (1975), Greenacre (2017) and Lombardo and Ringrose (2012).
See Beh and Lombardo (2014, Chapter 8) and Beh and Lombardo (2021, Section 2.9)
for further details on the role of confidence regions in correspondence analysis.

While being simple to construct, the confidence circles described by Lebart et al.
(1984), Beh (2001) and Beh and D’Ambra (2009) suffer from two drawbacks. The first
is that the circular nature of the regions implies that the axes of a correspondence
plot are identically weighted (they are not) and that they ignore the information of a
category contained in the third and higher dimensions. An approach that overcame
these drawbacks was proposed by Beh (2010) who developed a simple and direct means
of constructing correspondence ellipses. The elliptical shape of these regions is reflected
by the different weights given to the first two dimensions of a correspondence plot while
the information contained in all dimensions can be incorporated into their construction.

One point that is worth highlighting is that, except for the regions described by Beh
and D’Ambra (2009), the techniques of those described above use Pearson’s chi-squared
statistic (Pearson, 1904) as the core measure of association. However, this chi-squared
statistic is a special case of the Cressie-Read family of divergence statistics (Cressie
and Read, 1984) which depends on the parameter δ ∈ (−∞, ∞). Some of the pop-
ular special cases of this divergence statistic include the log-likelihood ratio statistic
(δ = 0), the Freeman-Tukey statistic (δ = −1/2), the modified log-likelihood ratio statis-
tic (δ = −1) and, of course, Pearson’s statistic (δ = 1). Recently, Beh and Lombardo
(2023) briefly showed how the Cressie-Read divergence statistic can be used to perform a
correspondence analysis on a two-way contingency table, thereby providing a more gen-
eral framework under which the analysis can be performed. A far more comprehensive
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examination of this method and its features is given by Beh and Lombardo (2022). They
demonstrated that two special cases of this framework include log-ratio analysis (LRA)
(Greenacre, 2009, 2010b) and the Hellinger distance decomposition (HDD) (Cuadras
and Cuadras, 2006, 2015; Cuadras et al., 2006) techniques. However, neither of these
variants, or the approach of Beh and Lombardo (2022, 2023), considered the construc-
tion of confidence ellipses. It is therefore the purpose of this paper to demonstrate how
the confidence ellipses of the type described by Beh (2010) can be adapted for a cor-
respondence analysis that uses the Cressie-Read family of divergence statistics as the
core measure of association between the categorical variables of a two-way contingency
table. This shall be achieved in the following sections. Section 2 provides an overview of
correspondence analysis using the family of divergence statistics while the construction
of confidence ellipses is described in Section 3. Section 4 demonstrates the applicability
of these regions by examining the association between the mother’s attachment to her
child, and the child’s response to their mother’s level of attachment. The data that we
consider comes from the extensive study undertaken by van IJzendoorn (1995) and has
been subsequently analysed in the correspondence analysis literature by, for example,
Kroonenberg and Lombardo (1999), Beh (2010) and Ringrose (2012). In doing so, we
describe how changes in δ impact on the various features of the confidence ellipses we
consider for performing a correspondence analysis on a two-way contingency table. Such
features include the eccentricity, semi-axis lengths, and area of the ellipses. Some final
comments are made in Section 5.

2 The Cressie-Read Divergence Statistic

2.1 Correspondence Analysis and the Divergence Statistic

Consider an r × c two-way contingency table, N, where the (i, j)’th cell entry is given
by nij for i = 1, 2, . . . , r and j = 1, 2, . . . , c. Denote the grand total of N by n and
the (i, j)’th relative frequency by pij = nij/n. Define the i’th row relative marginal
frequency by pi• =

∑c
j=1 pij and the j’th column relative marginal frequency by p•j =∑r

i=1 pij . To quantify whether there is a statistically significant association between
the row and column variables, any number of chi-squared measures can be computed.
Five such measures include Pearson’s chi-squared statistic, X2 (Pearson, 1904), the log-
likelihood ratio statistic, G2 (Wilks, 1938), the Freeman-Tukey statistic, T 2 (Freeman
and Tukey, 1950), the modified chi-squared statistic, N2 (Neyman, 1940, 1949) and the
modified log-likelihood ratio statistic, M2 (Kullback, 1959). All these statistics can be
represented in terms of pij/ (pi•p•j) which is the Pearson ratio of the (i, j)’th cell of the
contingency table. Each of these five statistics is a chi-squared random variables with
(r − 1) (c− 1) degrees of freedom. Moreover, these measures of association are special
cases of the Cressie-Read family of divergence statistics (Cressie and Read, 1984) which
is defined as
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CR∗ (δ) =
2n

δ (δ + 1)

r∑
i=1

c∑
j=1

pij

[(
pij

pi•p•j

)δ

− 1

]
(1)

for δ ∈ (−∞, ∞) such that X2 = CR∗ (1), G2 = CR∗ (0), T 2 = CR∗ (−1/2), N2 =
CR∗ (−2) and M2 = CR∗ (−1). For all values of δ, (1) is a chi-squared random variable
with (r − 1) (c− 1) degrees of freedom. One may also consider Cressie and Read (1989)
and Cressie and Pardo (2002) for more details on (1) and its properties.

Despite the extensive family of chi-squared statistics that are members of (1), corre-
spondence analysis largely considersX2 = CR∗ (1) as the measure of association between
the variables of N. There are exceptions including the variants LRA (Greenacre, 2009,
2010b) and the HDD technique of Cuadras and Cuadras (2006). While neither technique
ties a chi-squared statistic to their method, Beh and Lombardo (2023) showed that LRA
uses M2 while HDD uses T 2. Beh et al. (2018) also demonstrate the link between the
Freeman-Tukey statistic and the correspondence analysis of a two-way contingency table
and so is a special case of the framework explored in detail by Beh and Lombardo (2023).

To perform a correspondence analysis onN using the Cressie-Read family of divergence
statistics, Beh and Lombardo (2023) consider the second order Taylor series approxima-
tion of (1) around (pij/ (pi•p•j))

δ = 1 which they define as

CR∗ (δ) ≈ CR(δ) = n

r∑
i=1

c∑
j=1

pi•p•j

[
1

δ

((
pij

pi•p•j

)δ

− 1

)]2
(2)

where exact measures of some of the above chi-squared statistics can be obtained; for ex-
ample, X2 = CR∗ (1) = CR (1), T 2 = CR∗ (−1/2)) = CR (1/2) and M2 = CR∗ (−1) =
CR (0). Read and Cressie (1988, Section 6.6) show how (2) approximates (1). Another
measure of association that we shall describe in Section 4 is the second order approx-
imation to the Cressie-Read statistic which is obtained by substituting δ = 2/3 into
(2).

Beh and Lombardo (2023) show that the correspondence analysis of a two-way contin-
gency table can be performed using (2) by first defining the (i, j)’th divergence residual
such that

rij (δ) =
1

δ

((
pij

pi•p•j

)δ

− 1

)
. (3)

Interestingly, this residual is not new. Bishop et al. (1975, Example 14.6.3) showed that
(3) is a standard normal random variable. When δ → 0 the Box-Cox transformation can
be applied leading to the residual

rij (0) = ln

(
pij

pi•p•j

)
.

Additionally, Anscombe (1953, pp. 229-230) and McCullagh and Nelder (1984, p. 38)
considered (3) when δ = 2/3 for “better” normalising a random variable by minimising
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the skewness of the data at the expense of a non-constant variance which can be achieved
when δ = 1/2 (Freeman and Tukey, 1950).

In the correspondence analysis literature, the association between the variables of N
are quantified using Pearson’s phi-squared statistic and is commonly referred to as the
total inertia of the contingency table. When using (2), this is defined as

ϕ (δ) =
CR (δ)

n
=

r∑
i=1

c∑
j=1

pi•p•jr
2
ij (δ) .

The components necessary to obtain a visual display of the association can then be de-
termined by applying a generalised singular value decomposition (GSVD) to the matrix
of rij (δ) values such that

rij (δ) =

M∗∑
m=1

aim (δ)λm (δ) bjm (δ)

where

λm (δ) =

r∑
i=1

c∑
j=1

pijaim (δ) bjm (δ)

is the m’th singular value of the matrix of rij (δ) values which are arranged in descend-
ing order such that 1 > λ1 (δ) > λ2 (δ) > · · · > λM∗ (δ) > 0. The square of these
singular values gives the principal inertia associated with the m’th dimension of the
correspondence plot. The optimal correspondence plot consists of M∗ dimensions; here
M∗ = min (r, c)− 1 for all δ except δ = 0, 1/2 where M∗ = min (r, c). From the GSVD
of (3), the components aim (δ) and bjm (δ) have the property

r∑
i=1

pi•aim (δ) aim′ (δ) =

{
1 m = m′

0 m ̸= m′ (4)

c∑
j=1

p•jbjm (δ) bjm′ (δ) =

{
1 m = m′

0 m ̸= m′ . (5)

A visual summary of the association between the rows and columns of N can then be
obtained by jointly depicting along the m’th dimension

fim (δ) = aim (δ)λm (δ) gjm (δ) = bjm (δ)λm (δ)

which is the principal coordinate for the i’th row and j’th column, respectively. From (4)
and (5), the total inertia of N can be expressed in terms of the weighted sum-of-squares
of these coordinates such that

r∑
i=1

pi•fim (δ) fim′ (δ) =

{
λ2
m (δ) m = m′

0 m ̸= m′

c∑
j=1

p•jbjm (δ) bjm′ (δ) =

{
λ2
m (δ) m = m′

0 m ̸= m′ .
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Therefore, the total inertia can be expressed in terms of the squared λm (δ) values or in
terms of the principal coordinates such that

ϕ (δ) =

M∗∑
m=1

λ2
m (δ) =

r∑
i=1

pi•f
2
im (δ) =

c∑
j=1

p•jg
2
jm (δ) .

2.2 100 (1− α)% Confidence Regions and X2

In situations where there is a statistically significant association between the variables of
a contingency table, correspondence analysis provides a visual means of summarising this
association; either a biplot (Greenacre, 2010a; Gower et al., 1975; Beh and Lombardo,
2014) or the more traditional correspondence (aka “symmetric” or “French”) plot can
be constructed, but we shall confine our attention to the latter of the two. Confidence
regions provide additional insight into the structure of the association by allowing the
analyst to identify those categories that contribute to this association and those that
do not. We provide here an overview of 100 (1− α)% confidence circles and confidence
ellipses of the type described by Lebart et al. (1984) and Beh (2010) who use Pear-
son’s statistic as the measure of association. We shall then discuss the construction of
100 (1− α)% confidence ellipses using (2).

For the two-way contingency table, N, Lebart et al. (1984, p. 183) showed that the
radii length of the 100(1−α)% confidence circle for the i’th category in a two-dimensional
correspondence plot is

ri(α) =

√
χ2
α

npi•

where χ2
α is the 1−α percentile of a chi-squared distribution with 2 degrees of freedom.

Note that such lengths are generated where Pearson’s chi-squared statistic is used as the
measure of association between the variables such that the total inertia is equivalent to
ϕ(1) = CR(1)/n = X2/n.

The confidence circles of Lebart et al. (1984) have the disadvantage that they do not
consider the unequal weighting of the axes of a correspondence plot; this is apparent
since the first singular value is larger than the second singular value. The 100(1− α)%
confidence circles generated from these radii lengths also do not take into account the
information reflected in the higher dimensions of a correspondence plot. To overcome
these features, Beh (2010) proposed a simple method of constructing confidence ellipses
and, like the circles of Lebart et al. (1984), considered Pearson’s chi-squared statistic as
the core measure of association between the variables. Using the notation adopted above,
Beh (2010) showed that the semi-major and semi-minor axis lengths of the 100(1−α)%
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confidence ellipse for the i’th row category is

xi(α) = λ1(1)

√√√√ χ2
α

X2

(
1

pi•
−

M∗∑
m=3

a2im (1)

)
(6)

yi(α) = λ2(1)

√√√√ χ2
α

X2

(
1

pi•
−

M∗∑
m=3

a2im (1)

)
(7)

respectively, so that xi(α) > yi(α) since λ1(1) > λ2(1). Therefore, Beh’s (2010) confidence
ellipses are structured so that the semi-major axis is parallel with the first principal axis
and the semi-minor axis is parallel with the second principal axis. They are equivalent to
Lebart et. al’s (1984) circular regions only when the information in the first two axes is
taken into consideration and λ1(1) = λ2(1). More computationally intensive procedures
for generating confidence ellipses/hulls have been proposed in the past and Ringrose
(2012, Section 5.2) compares his approach with Beh’s (2010) indicating “the two sets of
ellipses are based on quite different assumptions and objectives, so too much should not
be read into any similarities or differences in a particular case” (page 1412).

Since the construction of confidence regions with a semi-axis length given by (6) and
(7) is undertaken when Pearson’s chi-squared statistic is used to assess the statistical
significance between the categorical variables of a two-way contingency table, this sug-
gests that a more general framework can be developed where (2) is used instead. We
shall now turn our attention to how this can be achieved.

3 On the Construction of Elliptical Regions

3.1 The Semi- Axis Lengths

Suppose we consider performing a correspondence analysis on a two-way contingency
table where the second order approximation of the Cressie-Read family of divergence
statistics given by (2) is used as the measure of association between the categorical
variables. Then the semi-major axis length of the 100(1− α)% confidence ellipse is

xi(α) (δ) = λ1(δ)

√√√√ χ2
α

CR(δ)

(
1

pi•
−

M∗∑
m=3

a2im (δ)

)
(8)

while its semi-minor axis length is

yi(α) (δ) = λ2(δ)

√√√√ χ2
α

CR(δ)

(
1

pi•
−

M∗∑
m=3

a2im (δ)

)
. (9)

The derivation of these lengths is given in the Appendix and follows the same lines as
the derivation that Beh (2010) gave for (6) and (7).
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The semi- axis lengths of (8) and (9) are constructed to reflect not just the information
contained in the first two dimensions of the correspondence plot, but to reflect the
information in all optimal (M∗) dimensions. They can be alternatively expressed in
terms of the row profile coordinates and principal inertia values, λ2

m(δ), of the third and
higher dimensions by

xi(α) = λ1(δ)

√√√√ χ2
α

CR(δ)

(
1

pi•
−

M∗∑
m=3

f2
im (δ)

λ2
m (δ)

)

yi(α) = λ2(δ)

√√√√ χ2
α

CR(δ)

(
1

pi•
−

M∗∑
m=3

f2
im (δ)

λ2
m (δ)

)
.

3.2 Special Cases

Suppose we consider the case where δ = 1. Then, since CR(1) = X2 is Pearson’s
chi-squared statistic, (8) and (9) simplify to (6) and (7), respectively. Therefore, the
confidence ellipses presented in Beh (2010) are a special case of the confidence ellipses
constructed using (8) and (9) as the semi axis lengths.

Suppose we now consider the case where δ = 1/2. Then the semi-major and semi-
minor axis lengths are

xi(α)

(
1

2

)
= λ1

(
1

2

)√√√√χ2
α

T 2

(
1

pi•
−

M∗∑
m=3

a2im

(
1

2

))
(10)

yi(α)

(
1

2

)
= λ2

(
1

2

)√√√√χ2
α

T 2

(
1

pi•
−

M∗∑
m=3

a2im

(
1

2

))
(11)

respectively. These axis lengths are for a correspondence analysis where the Freeman-
Tukey statistic is used to assess the statistical significance of the two variables. They are
therefore appropriate to use with the HDD variant described by Cuadras and Cuadras
(2006, 2015) and Cuadras et al. (2006) and the approach of Beh et al. (2018).

Confidence ellipses can also be constructed for Greenacre’s (2009, 2010b) LRA variant
of correspondence analysis. Since Beh and Lombardo (2023) showed that this variant
uses the modified log-likelihood ratio statistic, M2 = CR(0), then 100(1−α)% confidence
ellipses can be constructed for LRA where the semi-axis lengths are

xi(α) (0) = λ1 (0)

√√√√ χ2
α

M2

(
1

pi•
−

M∗∑
m=3

a2im (0)

)
(12)

yi(α) (0) = λ2 (0)

√√√√ χ2
α

M2

(
1

pi•
−

M∗∑
m=3

a2im (0)

)
. (13)



Electronic Journal of Applied Statistical Analysis 431

Confidence ellipses can also be constructed for other variants of correspondence analysis
where (2) is the measure used to assess the association structure of the variables although
we shall confine our attention to the special cases described above.

3.3 Eccentricity of the Ellipses

Eccentricity is an important feature of any ellipse. It takes on a value that is bounded by
0 and 1 where a perfect circle has an eccentricity of zero while an ellipse with λ1(δ) >>
λ2(δ) will be increasingly dominated by the first principal axis and have an eccentricity
approaching 1. Suppose we consider the i’th row category of N. Then the eccentricity of
its 100(1−α)% confidence ellipse with a semi-major and semi-minor axis length defined
by (8) and (9) is

Ei(α) (δ) =

√
1− λ2

2 (δ)

λ2
1 (δ)

(14)

where the ratio under the square root sign is just the ratio of the principal inertia values
for the first two dimensions of the correspondence plot. Since the principal inertia values
are arranged in descending order (a feature evident by knowing the singular values are
arranged in the same way) this confirms that the eccentricity calculated from (14) will
range between 0 and 1. Note that a perfectly elliptical confidence region will only ever
be observed when the second principal inertia value, λ2

2(δ), is equal to zero; this very
rarely happens. Also, since it very rarely occurs that the first two principal inertia values
will be identical when analysing a two-way contingency table the confidence region will
rarely be perfectly circular either.
It can also be shown that (14) can be assessed in terms of the semi- axis lengths such

that

Ei(α) (δ) =

√
1−

(
xi(α) (δ)

yi(α) (δ)

)2

so that the semi-major and semi-minor axis lengths are related to each other through
the eccentricity of the ellipse.
This measure, and that of (14), is also the eccentricity of the 100(1− α)% confidence

ellipse for the j’th column category of the two-way contingency table, Ej(α) (δ). When
δ = 1, we obtain the same eccentricity measure of Beh (2010, eq (8)) who showed the
eccentricity of his ellipses in terms of Pearson’s chi-squared statistic. Like the ellipses of
Beh (2010), the eccentricity of the ellipses is the same for all row and column categories.
However, in the case of (14), the eccentricity changes only for changes in the value of
δ that is adopted to define the chi-squared statistic used to numerically, and visually,
assess the association structure in the correspondence analysis of N.

3.4 Area of the Ellipses

Another important feature of the confidence ellipse is its area. Suppose we again consider
the i’th row category. Then, given the semi- axis lengths of (8) and (9), the area of its
100(1− α)% confidence ellipse is
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Ai(α) (δ) = πxi(α) (δ) yi(α) (δ)

= πχ2
α

λ1 (δ)λ2 (δ)

CR (δ)

(
1

pi•
−

M∗∑
m=3

a2im (δ)

)
. (15)

3.5 Link with Confidence Circles

Suppose we now consider the case where the first two dimensions of a correspondence
plot provide a near comprehensive visual summary of the association so that the third
and higher dimensions contribute very little to the association structure. In this case,
the eccentricity of the row and column categories is still calculated using (14) since this
measure considers the principal inertia values associated with the first two dimensions
of the optimal correspondence plot. However, if it is assumed, or known (in rare cases),
that λ2

1 (δ) = λ2
2 (δ) then (14) simplifies to zero showing that equality of the first two

principal inertia values will coincide with confidence regions that are circular in shape.
When only the first two principal axes are used to construct the confidence regions

then the semi-major and semi-minor axis lengths are

xi(α) = λ1 (δ)

√
χ2
α

pi•CR(δ)
= λ1 (δ)

√
χ2
α

npi•ϕ (δ)

yi(α) = λ2 (δ)

√
χ2
α

pi•CR(δ)
= λ2 (δ)

√
χ2
α

npi•ϕ (δ)

respectively. These results can be obtained from (8) and (9) when M∗ = 2. Therefore,
the sum-of-squares of these lengths gives

x2i(α) (δ) + y2i(α) (δ) =

(
λ2
1 (δ) + λ2

2 (δ)
)

ϕ (δ)

(
χ2
α

npi•

)
where 100×

(
λ2
1 (δ) + λ2

2 (δ)
)
/ϕ (δ) is the percentage of the total inertia that is reflected

in the first two dimensions of the optimal correspondence plot. When the optimal
correspondence plot consists of only two dimensions so that

(
λ2
1 (δ) + λ2

2 (δ)
)
/ϕ (δ) = 1

then
x2i(α) (δ) + y2i(α) (δ) = r2i(α) (δ)

where ri(α) (δ) ≡ ri(α) is just the radii length of the confidence circles described by Lebart
et al. (1984). Interestingly, in this case, the value of δ has no impact on the radii length
of confidence circles when a correspondence analysis is performed using the Cressie-Read
family of divergence statistics.
If 0 <

(
λ2
1 (δ) + λ2

2 (δ)
)
/ϕ (δ) < 1 (as will be the case in most situations) ignoring

the association that is depicted in the third and higher dimensions will increase the
magnitude of the semi- axis lengths and the area of an ellipse, however the eccentricity
will remain unchanged. In this case, there is the possibility that an ellipse that does not
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overlap the origin will do so leading to a spurious conclusion about the contribution of
that category to the association structure between the variables.

4 Application

4.1 A Numerical Inspection of the Association

Consider the 4×4 contingency table of Table 1 that summarises the cross-classification of
548 mothers by their attachment with their parents and their child’s attachment to them.
The data are based on an extensive study of mother–child attachment conducted by van
IJzendoorn (1995). The four column categories are a result of the adult attachment
interview (George et al., 1985), while the four row categories are observed from the
Ainsworth strange situation (Ainsworth et al., 1978). Table 1 was analysed using non-
symmetrical correspondence analysis by Kroonenberg and Lombardo (1999). It was also
considered by Beh (2010) and Ringrose (2012) in their derivation of elliptical confidence
regions where a symmetric association between the two variables was assumed.

Table 1: Cross-classification of the attachment classification of a mother and her infant
Mother’s Attachment Classification

Infant Mother’s Attachment Classification

Response Dismissing Autonomous Preoccupied Unresolved Total

Avoidant 62 29 14 11 116

Secure 24 210 14 39 287

Resistant 3 9 10 6 28

Disorganised 19 26 10 62 117

Total 108 274 48 118 548

Pearson’s chi-squared test of independence of Table 1 shows that there exists a statis-
tically significant association between the two variables (X2 = 252.40, p-value < 0.0001);
the statistical significance of this association can also be verified using, for example, the
log-likelihood ratio statistic, its modified version, the Freeman-Tukey statistic or the
Cressie-Read statistic.
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                                    a)                                                               b) 
 

 
                                    c)                                                               d) 

 

Figure 1: 95% confidence ellipses for correspondence analysis of Table 1 using the Cressie-
Read divergence statistic with a) δ = 0, b) δ = 1/2 c) δ = 2/3 and d) δ = 1
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4.2 A Visual Inspection of the Association

The nature of this association can be investigated further by applying a correspondence
analysis on Table 1. Typically, such an analysis can be performed by using the technique
described above for δ = 1. However, a more general framework can be performed by
applying a GSVD to the matrix of divergence residuals of Table 1 for a given δ. Figure 1
shows the two-dimensional correspondence plot when the modified log-likelihood statistic
(δ = 0), Freeman–Tukey statistic (δ = 1/2), a second order approximation of the Cressie-
Read statistic (δ = 2/3) and Pearson’s statistic (δ = 1) are used to assess the nature of
the association. Identifying those categories that play a statistically significant role in
the structure of this association can be achieved by constructing a 95% confidence ellipse
for each category of Table 1 and these are superimposed upon each of the plots in Figure
1; more will be said on the interpretation of these ellipses shortly but we point out the
scale of each axis in the four plots is identical, ranging from −0.8 to +0.8. When δ = 0
these regions are applicable for Greenacre’s (2009, 2010b) LRA while confidence ellipses
for the HDD method of Cuadras and Cuadras (2006) is generated when δ = 1/2. As we
have described above, the confidence ellipses for the classical approach to correspondence
analysis is obtained when δ = 1. In all four cases, the semi- axis lengths of (8) and (9) are
used so that information in the third dimension of the correspondence plot is reflected
in the two-dimensional correspondence plot.

Figure 1 shows that all four analyses provide a very effective and informative visual
display of the association, depicting at least 89% of the total inertia calculated for each
δ considered. When the modified log-likelihood ratio statistic is used, Figure 1a) dis-
plays 89.4% of the association while Figure 1b), which uses the Freeman-Tukey statistic,
accounts for 94.1% of the association. The Pearson and second-order approximation
to the Cressie-Read statistic visualise 89.89% and 92.94% of the association using the
first two dimensions, respectively. Thus, the Freeman-Tukey statistics provides the best
quality visualisation of the association between the two variables of Table 1 by max-
imising the percentage of the inertia explained by the first two dimensions. Using this
statistic also has the advantage of being able to stabilise any over-dispersion that exists
in the contingency table (Beh et al., 2018) and has long been advocated in the correspon-
dence analysis literature (Domenges and Volle, 1979; Rao, 1995; Cuadras and Cuadras,
2006). Another reason for their preference is that distances of row points, say, in the
correspondence plot are not influenced by the column marginal information.

4.3 Interpretation of the Ellipses

To help identify the important contributors to this association, consider the 95% con-
fidence ellipses are superimposed upon each of the four plots of Figure 1. A region is
interpreted such that if it overlaps the origin, then its category does not have a sta-
tistically significant impact on the association between the two variables. For ellipses
that do not overlap the origin, their category does have an impact. Figure 1a), which is
produced using δ = 0 and is an analysis that is equivalent to Greenacre’s (2009, 2010b)
LRA, shows that all row and column categories, except “Preoccupied” and “Resistant”
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contribute to the association structure between the variables. For the remaining three
values of δ, all confidence regions do not overlap the origin and so play a statistically
significant role in defining the association between the variables of Table 1. On the
other hand, when δ = 1/2, 2/3 and 1, all categories play a statistically significant role in
defining how the association is structured since all of the ellipses do not overlap with the
origin. The four plots in Figure 1 take into consideration all of the information contained
in the optimal number of dimensions, not just the first two as displayed.

While the 95% confidence ellipses appear quite similar for the four plots of Figure 1,
there are some key differences in the semi-major axis lengths and areas which we shall
discuss. First though, we shall comment on their eccentricity and how they change as δ
changes value.

4.4 On the Inertia and Eccentricity

The shape and size of the ellipses between the four plots does differ in places indicating
that changes in δ have impacted on the semi-axis lengths and, therefore, the eccentricity
and area of the ellipses. For example, consider Table 2. It summarises the CR(δ) value,
given by (2). It also summarises the first two principal inertia values, λ2

1(δ) and λ2
2(δ),

and their percentage contribution to CR(δ), for δ = 0, 1/2, 2/3 and 1. When δ = 0,
Table 2 shows that the first principal inertia is the largest of the four δ while the second
principal inertia value is the smallest. This suggests that the confidence ellipses for δ = 0
is more elliptical than for any of the three other values considered; hence the LRA of
Table 1 produces a more elliptical confidence region for each of the categories of Table 1
than the HDD method (δ = 1/2) or the traditional approach to correspondence analysis
(δ = 1). This concurs with the finding that the smallest difference between these two
inertia values occurs when δ = 1. Such a result suggests that, of the four variants of
correspondence analysis considered here, the traditional approach yields a more circular
confidence ellipse than the three other variants considered. Figure 2 summarises the
eccentricity of the ellipses for δ ∈ [0, 2] and shows that it decreases steadily from 0.7764
at δ = 0 to 0.4892 at δ = 1.57 and then slowly increases to 0.5298 at δ = 2. When one

Table 2: First two principal inertia values, their percentage contribution to the total
inertia values and CR(δ) for δ = 0, 1/2, 2/3 and δ = 1 of Table 1

Summary δ = 0 δ = 1/2 δ = 2/3 δ = 1

λ2
1(δ) 0.2518 0.2361 0.2368 0.2490

λ2
1(δ) 0.1000 0.1216 0.1332 0.1651

% Cont. 89.41 94.10 92.94 89.89

CR(δ) 215.59 208.94 218.16 252.40
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considers larger values of δ (not shown here), the eccentricity of the regions is almost
perfectly elliptical (with an eccentricity of nearly 1) for δ > 6 since λ2

2(δ) → 0 as δ
increases beyond 1.5.

 

Figure 2: The eccentricity of the 95% confidence ellipses for δ ∈ [0, 2]

 

Figure 3: Percentage contribution of the first (dashed line) and second (dotted line) to
the total inertia and the quality of the two-dimensional plot (solid line) for
δ ∈ [0, 2]

We can also view the impact of the first two principal inertia values on the eccentricity
of the ellipses by observing Figure 3. It shows the percentage contribution of both
dimensions to the total inertia and the quality of the two-dimensional correspondence
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plot for δ ∈ [0, 2]. Figure 3 reveals that for the δ values that lie in this interval, λ2
1(δ)

is at its largest compared to λ2
2(δ) when δ = 0 highlighting that the eccentricity of the

ellipses at this value of δ is at its maximum. For values of δ that lie between 0 and 2,
these two principal inertia values are closest when δ = 1.57 highlighting that this is the
value of δ where the regions are the most circular.

These shifts in the principal inertia values of Table 1 account for the shifts in the
semi-major and semi-minor axis lengths for the row and column confidence ellipses and
their eccentricity. They also impact upon the area of each of these ellipses and so we
shall now turn our attention this feature.

4.5 On the Semi- Axis Lengths

The shift in the principal inertia values not only impacts on the eccentricity of the
confidence ellipses but also on their semi-major and semi-minor axis lengths. Table 3
summarises these lengths for each row category of Table 1 for our four values of δ while
Table 4 summarises these lengths for the column categories. Suppose we consider first
the values summarised in Table 3. They show that the semi-major axis lengths for each
of the row categories, while different between the categories, remains quite stable as δ
increases from 0 to 1; although there is one exception. The semi-major axis length for
“Resistant” is 0.5897 when δ = 0 but then stabilises to around 0.13 for the remaining
three values of δ. The row categories “Avoidant”, “Secure” and “Disorganised” are
relatively stable with a semi-major axis length centred at about 0.28, 0.18 and 0.28
respectively. There are similar disparities in magnitude of the semi-minor axis lengths.
Again, the greatest variation in length is for the row category “Resistant”; when δ = 0
its length is 0.3716 but then stabilises to around 0.10 for the other values of δ.

A more comprehensive overview of the changes in semi-axis lengths can be seen by
examining Figure 4 and Figure 5. Figure 4a) visualises the semi-major axis length of the
row categories of Table 1 for δ ∈ [0, 2] while the semi-minor axis lengths are depicted by
Figure 4b). It shows that, across this range of δ values, the semi- axis lengths of the rows
are quite stable except for “Resistant” which is relatively unstable for δ values ranging
from 0 to about 0.6. Interestingly, while Figure 4 shows a big drop in semi-major and
semi-minor axis lengths for this category around δ ∈ (0.2, 0.4), these lengths for the
remaining row categories experience a moderate jump and then plateau in the region
δ ∈ (0.4, 2). A similar behaviour of the semi- axis lengths for the column categories can
be seen from Figure 5.

Suppose we now consider Table 4. It shows that the semi-major axis lengths remain
quite stable for each of the column categories except for “Preoccupied”. When δ = 0
its length is 0.4687 and decreases to 0.1661 when δ = 1. A similar observation is also
made for this category’s semi-minor axis length which is 0.2953 when δ = 0 and drops
to 0.1352 when δ = 1.
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a) 

 
b) 

 Figure 4: The a) semi-major and b) semi-minor axis lengths for each of the row categories
of Table 1 for δ ∈ [0, 2]
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a) 

 
b) 

 Figure 5: The a) semi-major and b) semi-minor axis lengths for each of the column
categories of Table 1 for δ ∈ [0, 2]
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Table 3: Semi-major (xi(0.05)(δ)) and a semi minor (yi(0.05)(δ)) axis lengths for the 95%
confidence ellipse of the row categories of Table 1; δ = 0, 1/2, 2/3 and δ = 1

Row xi(0.5)(δ) yi(0.05)(δ)

Categories δ = 0 δ = 1/2 δ = 2/3 δ = 1 δ = 0 δ = 1/2 δ = 2/3 δ = 1

Avoidant 0.2651 0.3008 0.2933 0.2784 0.1670 0.2159 0.2200 0.2267

Secure 0.1454 0.1913 0.1871 0.1780 0.0917 0.1373 0.1403 0.1449

Resistant 0.5897 0.1007 0.1357 0.1537 0.3716 0.0723 0.1018 0.1252

Disorganised 0.2699 0.2958 0.2871 0.2726 0.1701 0.2123 0.2154 0.2219

Table 4: Semi-major (xj(0.05)(δ)) and a semi minor (yj(0.05)(δ)) axis lengths for the 95%
confidence ellipse of the column categories of Table 1; δ = 0, 1/2, 2/3 and δ = 1

Column xj(0.05)(δ) yj(0.05)(δ)

Categories δ = 0 δ = 1/2 δ = 2/3 δ = 1 δ = 0 δ = 1/2 δ = 2/3 δ = 1

Dismissing 0.2573 0.2866 0.2861 0.2764 0.1621 0.2057 0.2146 0.2251

Autonomous 0.1552 0.1945 0.1912 0.1824 0.0978 0.1396 0.1434 0.1485

Preoccupied 0.4687 0.2249 0.1906 0.1661 0.2953 0.1614 0.1430 0.1352

Unresolved 0.2635 0.2889 0.2850 0.2722 0.1661 0.2074 0.2138 0.2216

4.6 On the Area of the Confidence Ellipses

We now turn our attention to investigating the changes in the area of the 95% confidence
ellipses for δ ∈ [0, 2]. The area for the row ellipses is defined using (15) while the column
ellipse areas can be calculated in a similar manner. Table 5 summarises these values for
the row categories while the area of the ellipses for the column categories appears in Table
6. Tables 5 and 6 show that the area of the ellipse for the row category “Resistant” and
column category “Preoccupied”, respectively, is very large for δ = 0 than for any of the
three other values. This is not surprising given the large size of their ellipse in Figure 1
and their relatively large semi-axis lengths described in Section 4.5.

Figure 6 provides a visual inspection of the area of the 95% confidence ellipses for
the row categories while a similar inspection can be made of the area of the ellipses
for the column categories (see Figure 7); for both figures, values of δ that lie in the
interval [0, 2] are considered. They show that the area of the ellipse for the row category
“Resistant” and the column category “Preoccupied” are very large in comparison to
the other categories for δ values that fall within the interval [0, 0.3] and then drop
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Table 5: Area of the 95% confidence ellipse for each of the row categories of Table 1
the 95% confidence ellipse of the row categories of Table 1; δ = 0, 1/2, 2/3 and
δ = 1

Row Area

Categories δ = 0 δ = 1/2 δ = 2/3 δ = 1

Avoidant 0.1391 0.2040 0.2028 0.1983

Secure 0.0419 0.0825 0.0825 0.0810

Resistant 0.6884 0.0229 0.0434 0.0604

Disorganised 0.1443 0.1973 0.1943 0.1900

Table 6: Area of the 95% confidence ellipse for each of the column categories of Table 1
the 95% confidence ellipse of the row categories of Table 1; δ = 0, 1/2, 2/3 and
δ = 1

Column Area

Categories δ = 0 δ = 1/2 δ = 2/3 δ = 1

Dismissing 0.1311 0.1853 0.1930 0.1954

Autonomous 0.0477 0.0853 0.0862 0.0851

Preoccupied 0.4349 0.1141 0.0856 0.0706

Unresolved 0.1375 0.1883 0.1914 0.1895

quickly for δ between 0.4 and 0.6 and remain the smallest ellipse for all δ values up
to 2. This suggests that while LRA, and similar analyses where δ is small (but not
necessarily tiny) in size lead to “Resistant” and “Preoccupied” not being statistically
significant contributors to the association that exists between the variables of Table 1.
Other analyses, including those ranging from HDD (δ = 0.5) to the classical approach
to correspondence analysis (δ = 1) say otherwise.

5 Discussion

Correspondence analysis is commonly applied using Pearson’s chi-squared statistic as
the foundation on which all numerical and visual summaries of association depend.
However, Pearson’s statistic is a special case of the Cressie-Read family of divergence
statistics as are many other chi-squared random variables including, but not confined
to, the modified log-likelihood ratio statistic, Freeman-Tukey statistic and the Cressie-
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Figure 6: The area of the 95% confidence ellipses for each of the row categories of Table
1 for δ ∈ [0, 2]

 

Figure 7: The area of the 95% confidence ellipses for each of the column categories of
Table 1 for δ ∈ [0, 2]
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Read statistic. With the recent work of Beh and Lombardo (2023) it is now possible to
include Greenacre’s (2009) LRA and the HDD method of Cuadras and Cuadras (2006),
and the related technique described by Beh et al. (2018), under a single framework where
the family divergence statistics is used as the measure of association. The contribution
outlined in this paper has been to demonstrate that the simple to calculate confidence el-
lipses of Beh (2010) can be extended so that they can be included within this framework.
Doing so allows for one to identify those row and column categories that contribute to
the association structured defined by (2).

Our aim here has been to derive the semi-major and semi-minor axis lengths of these
ellipses (derived in the Appendix) and gain an understanding of several of their key fea-
tures so that it provides a clear interpretation on the nature of the association structure
between the variables of a contingency table. We have highlighted in our application of
van IJzendoorn’s (1995) data that the structure of these ellipses depends on the special
case of the Cressie-Read divergence statistic considered. When using the modified log-
likelihood ratio statistic (δ = 0), so that a LRA is being performed on the contingency
table, the confidence ellipses identified that all categories, except for one row and one
column category, contributed to the association. This appears to be a unique feature of
the data since, for larger values of δ that exceed about 0.4, all of the categories contribute
to the association structure. It is unclear precisely why “Resistant” and “Preoccupied”
behave in this manner for small values of δ and the other categories do not. However, it
may be a result of the role played by the natural logarithm function (when δ = 0) and
the impact of small values of δ. These two categories also have relatively small cell and
marginal frequencies which introduces some uncertainty as to the contribution of these
categories to the association between the two variables. Irrespective of the possible cause
of this feature, the application shows that methods of correspondence analysis ranging
from HDD (δ = 1/2) to the classical approach to correspondence analysis (δ = 1) yield
confidence ellipses with similar features. This does not mean that all features of the con-
fidence ellipses will be similar for all contingency tables that are analysed, or for different
values of δ. The structure of the ellipses depends entirely on the elements obtained from
the GSVD of the matrix of divergence residuals with a generic element defined by (3).

More work still needs to be undertaken to explore the statistical significance of a
category to the association structured measured using the Cressie-Read family of diver-
gence statistics, or its second order series expansion. Such work has been dominated
by computationally intensive procedures that use Pearson’s chi-squared statistic as the
measure of association although such procedures could be amended to incorporate any
member of the family of the Cressie-Read divergence statistic. Confidence ellipses for
alternative visualisation strategies, such as the biplot, are another natural extension of
the work considered here but we shall leave this, and other avenues of research, for future
consideration.
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Appendix

Here we derive the semi-major and semi-minor axis lengths defined by (8) and (9). The
following derivation is analogous to the derivation of the lengths outlined in Beh (2010)
when performing a correspondence analysis using Pearson’s chi-squared statistic. The
derivation of (8) and (9) is therefore given for the sake of completeness.
Suppose we consider (4) which is the property of the elements of the i’th row singular

vector. Then when M∗ is of optimal dimension

M∗∑
m=1

a2im (δ) =
1

pi•
.

Therefore, if we confine our attention to the first two dimensions this property may be
alternatively expressed as

a2i1 (δ) + a2i2 (δ) =
1

pi•
−

M∗∑
m=3

a2im (δ) . (A.1)

Since the i’th row principal coordinates is defined as

fim (δ) = aim (δ)λm (δ)

then

aim (δ) =
fim (δ)

λm (δ)
. (A.2)

Thus, substituting (A.2) into (A.1) yields

f2
i1 (δ)

λ2
1 (δ)

+
f2
i2 (δ)

λ2
2 (δ)

=
1

pi•
−

M∗∑
m=3

a2im (δ)
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so that

f2
i1 (δ)

λ2
1 (δ)

(
1
pi•

−
∑M∗

m=3 a
2
im (δ)

) +
f2
i2 (δ)

λ2
2 (δ)

(
1
pi•

−
∑M∗

m=3 a
2
im (δ)

) = 1 .

This is the equation for an ellipse centred at the point (fi1 (δ) , fi2 (δ)) in a two-dimensional
correspondence plot with a semi-major and semi-minor axis length of

xi (δ) = λ1(δ)

√√√√ 1

pi•
−

M∗∑
m=3

a2im (δ) (A.3)

yi (δ) = λ2(δ)

√√√√ 1

pi•
−

M∗∑
m=3

a2im (δ) (A.4)

respectively. Semi- major and minor lengths for the j’th column coordinate in a two-
dimensional space can be obtained in a similar manner.
To construct a 100(1−α)% confidence ellipse, recall that λ2

1(δ) > λ2
2(δ) and that each

of these quantities contributes towards the total inertia, ϕ(δ) = CR(δ)/n. If the 1 − α
percentile of the chi-squared statistic with (r − 1)(c − 1) degrees of freedom is denoted
by χ2

α and nλ̃2
m(α) is a percentage of χ2

α such that

λ2
m(δ)

CR(δ)/n
=

λ̃2
m(α)

χ2
α/n

then

λ̃m(α) = λm(δ)

√
χ2
α

CR(δ)
. (A.5)

Thus, by substituting (A.5) when m = 1, 2 for λ1(δ) λ2(δ) in (A.3) and (A.4), the semi-
major and semi-minor axis lengths of the 100(1−α)% confidence ellipse for the ith row
category is

xi(α) (δ) = λ1(δ)

√√√√ χ2
α

CR(δ)

(
1

pi•
−

M∗∑
m=3

a2im (δ)

)

yi(α) (δ) = λ2(δ)

√√√√ χ2
α

CR(δ)

(
1

pi•
−

M∗∑
m=3

a2im (δ)

)
which is (8) and (9), respectively, and completes the derivation.


