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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 17, Issue 03, December 2024, 472-497
DOI: 10.1285/i20705948v17n3p472

Weibull-Exponential Pareto
Distribution: Order Statistics and their
Properties and Application to Nigeria

Covid-19 Active Cases

Adewunmi Olaniran Adeyemi*a, Isamail Adedeji Adelekeb, and Eno
Emmanuella Akarawaka

aDepartment of Statistics, University of Lagos, Akoka-Yaba, Lagos State, Nigeria.,
bDepartment of Actuarial Science and Insurance, University of Lagos, Akoka-Yaba, Lagos

State, Nigeria,

15 December 2024

The Weibull Exponential Pareto (WEP) distribution is a convolution of
the Weibull and Exponential-Pareto distributions using the Weibull-X tech-
nique. The distribution generalizes some existing models in the literature.
This article presents a new dimension to the study of convoluted distribution
by exploring the statistical tools and properties of order statistics from the
WEP distribution. Distribution of sample median, extreme order statistics,
joint density of two order statistics X(r:n) and X(s:n) for 0 < r < s < n
and the sample range statistics Rn = X(n:n) − X(1:n) and the explicit ex-
pressions for the distributions of rth order statistics was derived and their
respective moments. The study demonstrated the use of the beta-G proce-
dure for deriving distributions of the extreme order statistics. The mean and
variance of X(r:n), and X(1:n) and the mean value of the sample range Rn

were derived, and the recurrence relation for the moment of order statistics
was investigated. Result from the application of the WEP distribution to
Nigeria COVID-19 data was used to predict the expected occurrences for the
maximum and minimum number of COVID-19 active cases of patients on
admission for any sample of size n. Some numerical computations for the
mean of order statistics of WEP distribution were tabulated for a random
sample of size n = 4 and numerical results for the variance, skewness, and
kurtosis of order statistics were obtained by the Monte Carlo simulation.
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1 Introduction

Order statistics and its associated functions from the generalized distributions is an
emerging area of study that is yet to gain desirable studies among researchers. Many
convoluted distributions have been developed and applied to real-life datasets as re-
vealed in Famoye et al. (2005); Cordeiro et al. (2010); Al-Kadim and Boshi (2013);
Alzaatreh et al. (2013) among several authors. Nevertheless, interests and motivations
of researchers continue to grow unabated as seen in the works of Khaleel et al. (2020);
Rashwan and Kamel (2020) and recently in new distributions developed by Al-khazaleh
(2021); Adeyemi et al. (2021); Benchiha and Al-Omari (2021) and Sindhu et al. (2021).
Despite commendable efforts of researchers in generalizing new distributions, the study
of order statistics and its associated functions from most of the new distributions have
not been considered making this study one of the important areas open for research.
Although some properties of order statistics have been employed by some notable au-
thors to characterize the classical distributions such as Weibull, Pareto, Logistics, and
exponential as revealed Balakrishnan and Malik (1986); Khan and Abu-Salih (1988);
David and Nagaraja (2004); Balakrishnan and Cohen (2014). Convoluted distributions
by the tools of order statistics are yet to be explored.
Order statistics has immense potential that makes it a useful tool for the characteriza-
tion of probability distributions (Khan and Abu-Salih, 1988; Kumar and Kumar, 2023)
and it is an important area of study in probability and statistics with applications in
many fields of studies such as actuarial and insurance, climatology, hydrology, sports,
medicine, and reliability analysis. Some existing works on order statistics include the
recurrence relations obtained for moments of order statistics of some basic probability
distributions including Joshi (1978) for exponential and truncated exponential distri-
butions, Balakrishnan and Malik (1986) established some form of recurrence relations
based on order statistics from the linear-exponential distribution, Kamps (1991) derived
a general recurrence relation for moments of order statistics for some distributions in-
cluding exponential, power function, Pareto, Lomax, and logistic distributions. Khan
et al. (1983) derived some recurrence relations between moments of order statistics for
some basic distributions including Weibull and exponential. See also Joshi and Balakr-
ishnan (1982); Kumar et al. (2018) and recently from Gul and Mohsin (2021). Tippett
(1925) estimated the difference between the maximum and minimum order statistics in
a given sample. Greenberg and Sarhan (1958) applied the tools of order statistics to the
study of health data.
David and Nagaraja (1981) investigated properties of order statistics and its applications
on the estimation of parameters of the exponential distribution, Khan and Khan (1987)
investigated the moments of order statistics and some characterization from the Burr
distribution. Khan and Abu-Salih (1988) employed the properties of order statistics to
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characterize the complimentary Weibull and Weibull distributions. Detail studies of or-
der statistics and estimation methods are contained in the book of Arnold et al. (1992),
Arnold et al. (2008) and Balakrishnan and Cohen (2014).
The extreme order statistics of two-parameter Lomax distribution was investigated by
Dar and Al-Hossain (2015), Abdul-Moniem (2017) studied Power Lomax distribution
based on order statistics. Kumar and Dey (2017) and Kumar et al. (2018) studied order
statistics from the power Lindley and power Lomax distributions respectively and one
of the most recent studies is published by Kumar and Kumar (2023)

This paper focused on the application of useful theories of order statistics to charac-
terize the convolution of Weibull (W) and exponential Pareto (EP) distributions. The
remaining parts of the study are outlined as follows; section 2 contains some relevant
materials including the WeIbull-Exponential Pareto distribution. In section 3, some
distributional properties of order statistics of the WEP distribution are derived. The
beta-G procedure was employed to generate the distributions of extreme order statistics
in section 4. The recurrence relations, the moments of order statistics, the moment of
extreme order statistics, and the moment of the sample range were investigated in section
5. Some real-life application to Nigerian COVID-19 cases of patients on admission was
carried out in section 6, simulation studies of the statistical properties of order statistics
was conducted in section 7 and the study was concluded in section 8.

2 Materials and Methods

Relevant materials associated with the conception of the research are defined and pre-
sented in this section

2.1 Weibull-Exponential Pareto Distribution

The cumulative distribution function (cdf) of exponential Pareto (EP) distribution by
Al-Kadim and Boshi (2013) is

G(x) = 1− e−λ(x
k
)θ ;λ, θ, k > 0;x > 0 (1)

The Weibull-X approach for generating new flexible distributions by Alzaatreh et al.
(2013) has the cdf defined for continuous distributions as follows;

F (x) = αβ

∫ −log(1−G(x))

0
tα−1e−βtαdt.

= 1− e−β(log(1−G(x))α ;x > 0;α, β > 0

(2)

The corresponding pdf is the derivative given by

f(x) = αβ
g(x)

1−G(x)
e−β(log(1−G(x))α [−log(1−G(x))]α−1;x > 0;α, β > 0 (3)
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By taking X to be a random variable from the EP model combined with the Weibull-
X families of distribution for T Weibull random variable having the cdf of the form
1− e−(tα), β = 1, α > 0; a four parameter WEP distribution (Adeyemi et al., 2023), has
cumulative distribution function (cdf) obtained by substituting (1) into (2) to get

F (x) = 1− exp

(
−
(
λ

(
x

k

)θ)α)
(4)

The derivative yields the pdf of the WEP distribution obtained as,

f(x) =
αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

exp

(
−
(
λ

(
x

k

)θ)α)
(5)

α, θ are shape parameters and λ, k are scale parameters. α, λ, θ, k > 0;x > 0

2.2 Order Statistics and their Functions

Let X1, X2, ..., Xn be a random sample of size n from the WEP distribution and let
the corresponding order statistics realized from the random samples be represented by
X(1:n), X(2:n), ..., X(n:n) . Then the density function of X(r:n) which has been defined by
many authors including (David and Nagaraja, 1981; Arnold et al., 1992) is presented as
follows;

f(r:n)(x) = Cr:n

([
F (x)

]r−1[
1− F (x)

]n−r

f(x)

)
; 0 < x < ∞ (6)

Cr:n =
n!

(r − 1)!(n− r)!

The distribution of minimum and maximum order statistics at r = 1 and r = n is given
respectively as follows;

f(1:n)(x) = n

([
1− F (x)

]n−1

f(x)

)
; 0 < x < ∞ (7)

f(n:n)(x) = n

([
F (x)

]n−1

f(x)

)
; 0 < x < ∞ (8)

The cumulative distribution function of X(r:n) has been defined by several authors . See
David and Nagaraja (1981);

F(r:n)(x) = P (X(r) < x) =
n∑

j=i

(
n

i

)
[F (x)]i[1− F (x)]n−i (9)

The joint density of order statistics X(r) and X(s) for r < s; 0 < xr < xs; r = 1, 2, ..., n
, is defined by;

fx(r),x(s)
(xr, xs) =

n!

(r − 1)!(s− r − 1)!(n− s)!
[F (xr)]

r−1f(xr)f(xs)

[1− F (xs)]
n−s[F (xs)− F (xr)]

s−r−1 (10)
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3 Distributional Properties of Order Statistics from the
WEP Distribution

This sub-section is used to derive expressions for some functions of order statistics no-
tably; for the cdf, pdf, and joint distribution of order statistics.

3.1 The Density Function of X(r:n) from WEP Distribution

Theorem 3.1: Let X1, X2, ..., Xn be a random sample of size n from the WEP distribution
with cdf F (x), and pdf f(x), and let X(1:n), X(2:n), ..., X(n:n) be the corresponding order

statistics from the sample. Then the density function of the rth order statistics fr:n(x)
is given by

Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1[
exp

(
−
(
λ

(
x

k

)θ)α)]m
(11)

Proof: The pdf of order statistics of WEP distribution is obtained by inserting the cdf
and pdf in equations (4) and (5) into equation (6) and is given by;

f(r:n)(x) = Cr:n

[
1− exp

(
−
(
λ

(
x

k

)θ)α)]r−1[
exp

(
−
(
λ

(
x

k

)θ)α)]n−r

× αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

exp

(
−
(
λ

(
x

k

)θ)α)
= Cr:n

[
1− exp

(
−
(
λ

(
x

k

)θ)α)]r−1[
exp

(
−
(
λ

(
x

k

)θ)α)]n−r+1

× αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

(12)

By applying binomial expansion, we obtain

Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1[
exp

(
−
(
λ

(
x

k

)θ)α)]m
□ (13)

where m = n− r + i+ 1 and Cr:n = n!
(r−1)!(n−r)! ; α, λ, θ, k > 0;x > 0

The graphical structures are investigated for the Weibull Exponential Pareto order statis-
tics (left), maximum order statistics (middle), and the minimum order statistics (right)
for sample size n = 20 and r = 1, 2, 5, 10, 20. The plots for PDFs are shown in Figure 1
The plots of pdf preserved the uni-modal property of the WEP distribution in Adeyemi
et al. (2023). It shows the distribution of order statistics is skewed to the right and
the kurtosis decreases as the sample size increases from the minimum X(1:20) to the
maximum X(20:20).
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Figure 1: pdf of WEP order statistics for some value of the parameters

3.2 The CDF of Order Statistics from WEP Distribution

Lemma 3.1: Let F(x) and f(x) be the cdf and pdf of a random variable from the WEP
distribution respectively, the cdf of the order statistics rth is given by;

F(r:n)(x) =
n∑

j=i

i∑
l=0

(−1)i
(
n

i

)(
i

l

)
[1− F (x)]n−i+l (14)

Proof: The cdf Fr(x) of the rth order statistics can be derived as a sum of binomial
random variables Y with n independent trials and probability p

F (y) = P (Y = x) =

(
n

x

)
px(1− p)n−x (15)

Fr(x) =

n∑
r=x

F (y) =

n∑
r=x

(
n

x

)
px(1− p)n−x (16)

Then using F (x) as the probability of success in the cumulative function which also
satisfies the condition that 0 ≤ F (x) ≤ 1, equation (16) becomes;

Fr(x) = P (X(r) ≤ x) =
n∑

r=x

F (y) =
n∑

r=x

(
n

x

)
[F (x)]x[1− F (x)]n−x,−∞ ≤ x ≤ ∞ (17)

by applying binomial expansion on equation (17), the result is obtained.

Corollary 3.1: Let F(x) and f(x) be the cdf and pdf of a random variable from the
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WEP distribution respectively, the explicit expression for cdf of the order statistics rth

is given by;

F(r:n)(x) =
n∑

j=i

i∑
l=0

(−1)i
(
n

i

)(
i

l

)
[exp

(
−
(
λ

(
x

k

)θ)α)
]n−i+l (18)

α, λ, θ, k > 0;x > 0

3.3 The Joint PDF of two Order Statistics from WEP Distribution

The joint density of order statistics X(r:n) and X(s:n) for r < s < n is derived by
substituting (4) and (5) into (10) as follows;

fx(r),x(s)
(x, y) =

n!

(r − 1)!(s− r − 1)!(n− s)!

[
1− exp

(
−
(
λ

(
x

k

)θ)α)]r−1

[
exp

(
−
(
λ

(
x

k

)θ)α)
− exp

(
−
(
λ

(
y

k

)θ)α)]s−r−1

[
exp

(
−
(
λ

(
y

k

)θ)α)]n−sαλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

exp

(
−
(
λ

(
y

k

)θ)α)
exp

(
−
(
λ

(
x

k

)θ)α)αλθ

k

(
y

k

)θ−1(
λ

(
y

k

)θ)α−1

=
n!

(r − 1)!(m1)!(n− s)!

[
1− exp

(
−
(
λ

(
x

k

)θ)α)]r−1

[
exp

(
−
(
λ

(
x

k

)θ)α)
− exp

(
−
(
λ

(
y

k

)θ)α)]m1

exp

(
−
(
λ

(
x

k

)θ)α)
[
exp

(
−
(
λ

(
y

k

)θ)α)]m2
[
αλθ

k

]2(xy

k

)θ−1(
λ

(
xy

k

)θ)α−1

(19)

m1 = s− r − 1, m2 = n− s+ 1 and α, λ, θ, k > 0;x > 0
Corollary 3.2: The joint density of the (smallest) X(1:n) and (largest) X(n:n) order statis-
tics is given by

fx(1),x(n)
(x, y) =

n!

(n− 2)!
[exp

(
−
(
λ

(
x

k

)θ)α)
− exp

(
−
(
λ

(
y

k

)θ)α)
]n−2

[
αλθ

k

]2(xy

k

)θ−1(
λ

(
xy

k

)θ)α−1

exp

(
−
(
λ

(
x+ y

k

)θ)α) (20)

α, λ, θ, k > 0;x > 0

3.4 Order Statistics of Extreme Random Variables from WEP
Distribution

The order statistics of extreme random observations from WEP distribution can be
obtained as special cases of the X(r:n) in equation (12) as follows;
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The minimum order statistics X(1:n) of WEP distribution has the pdf derived from
equation (12) when r = 1 as a special case given by;

f(1:n)(x) =
nαλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1[
exp

(
−
(
λ

(
x

k

)θ)α)]n
(21)

The maximum order statistics X(n:n) of WEP distribution has the pdf obtained as a sub
model of equation (12) when r = n and is given by;

f(n:n)(x) =

n−1∑
i=0

(−1)i
(
n− 1

i

)
nαλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1[
exp

(
−
(
λ

(
x

k

)θ)α)]i+1

(22)

3.5 The Distribution of the Sample Median Statistic Xmed

The pdf of the median statistics (Med) in Arnold et al (1992) is derivable using, Med=
X(m+1) if n = 2m+ 1 for odd integers given by

fMed:n(x) =
n![

((n− 1)/2)!

]2[F (x)

](n−1)/2[
1− F (x)

](n−1)/2

f(x);−∞ < x < ∞ (23)

The pdf follows for even integers using Med= X(m) if n = 2m.

Theorem 3.2 Let X(1:n), X(2:n), ..., X(n:n) be the order statistics from a random sam-
ple of size n from the WEP distribution, the pdf of the median for odd sample size n is
given by;

fX
(n+1

2 :n)
(x) =


n![

((n−1)/2)!

]2

n−1
2∑

i=0
(−1)i

(n−1
2
i

)[
exp

(
−λ

(
x
k

)θ)](n+1)/2+i

X αλθ
k

(
x
k

)θ−1(
λ

(
x
k

)θ)α−1

;α, λ, θ, k > 0;x > 0

(24)

Proof

fX
(n+1

2 :n)
(x) =

n![
((n− 1)/2)!

]2[1− exp

(
−λ

(
x

k

)θ)](n−1)/2[
exp

(
−λ

(
x

k

)θ)](n−1)/2

X
αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

exp

(
−
(
λ

(
x

k

)θ)α)
(25)

The proof is obtained after some mathematical operations.
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3.6 Distribution of the Range of a Random Sample

Riffi (2015) had obtained the distributional property of the sample range for the expo-
nential distribution with parameter λ as follows;

fi,j(r) =
(n− i)!

(n− j)!(j − i− 1)!
λexp(−λ(n− j + 1)r)

[
1− exp(−λr)

]j−i−1

, r > 0 (26)

By carrying out some modification on Theorem 3.2 Riffi (2015); the density function of
the statistics X(s:n)−Xr:n of WEP after some algebraic operation can be obtained using;

fXs:n−Xr:n(xs:n, xr:n) =
(n− r)!

(n− s)!(s− r − 1)!

[
F (x)

]s−r−1[
1− F (x)

]n−s

f(x) (27)

Theorem 3.3: Let X(1:n), X(2:n), ..., X(n:n) be the order statistics from a random sample

of size n from the class of distribution with cdf of the form F (x) = 1 − e−(bx). If the
relation f(x) = h(x)[1 − F (x)] exist where h(x) is the hazard rate function; then the
distribution of the sample range R = X(n:n) −X(1:n) is given by

f̄R,n(x) = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
h(x)[1− F (x)]i+1 (28)

Proof:
Substitute f(x) = h(x)[1− F (x)] into equation (28) to get

fXs:n−Xr:n(xs:n, xr:n) =
(n− r)!

(n− s)!(s− r − 1)!

[
F (x)

]s−r−1[
1− F (x)

]n−s+1

h(x) (29)

setting s = n, r = 1 in (29) followed by binomial expansion,

f̄R,n(x) = fXn:n−X1:n(xn:n, x1:n) =
(n− 1)!

(n− n)!(n− 2)!

[
F (x)

]n−2[
1− F (x)

]
h(x)

= (n−1)
n−2∑
i=0

(−1)i(n−2
i )h(x)[1−F (x)][1−F (x)]i

= (n− 1)
n−2∑
i=0

(−1)i
(
n− 2

i

)
h(x)[1− F (x)]i+1 □

(30)

Remark 3.1: The novelty in Theorem 3.3 is that the result represents a distributional
function of the range order statistics from the general class of probability distributions
with cdf of the form F (x) = 1− e−(bx) and the existence of a relation between PDF and
CDF given by f(x) = h(x)[1− F (x)]; where h(x) is the hazard rate function.

Corollary 3.3: Let X1, X2, ..., Xn be a random sample of size n from the WEP distribu-
tion with pdf f(x) and cdf F (x) and order statistics from the random sample denoted
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by X(1:n), X(2:n), ..., X(n:n). Then the distribution of the sample range X(n:n)−X(1:n) for
order statistics from the Weibull exponential Pareto distribution is given by

f̄R,n(x) = (n−1)
n−2∑
i=0

(−1)i(n−2
i )αλθ

k

(
x
k

)θ−1(
λ

(
x
k

)θ)α−1[
exp

(
−λ

(
x
k

)θ)]i+1

(31)

Proof: The proof follows from application of Theorem (3.3).

4 Extreme Order Statistics using the beta-G Framework

The minimum X(1) and the maximum ordered variable X(n) from a set order statistic
represented by X(1), X(2), ..., X(n) is classified as extreme order statistics which often
generates a lot of interest in many fields of studies due to its properties and application
in real life situation.
Extreme order statistics can be derived using the old traditional principle of transfor-
mation of variables or by directly using the density function of the rth order statistics
in equation (12) making r = 1 and r = n to get the minimum and maximum order
statistics as derived in equations (21) and (22) respectively.
However, Eugene et al. (2002) first introduced the beta distribution as a generator for
generalizing flexible probability distributions. Let F (x) be the cumulative distribution
function of a random variable X. Then the cdf of the class of beta-G families of distri-
bution is defined by;

F (x) = IF (x)(a, b) =
1

B(a, b)

∫ F (x)

0
ta−1(1− t)b−1dt (32)

Where a > 0 and b > 0 are shape parameters;
B(a, b) = Γ(a)Γ(b)

Γ(a,b) is the beta function and Γ(.) is the gamma function.
The pdf of the beta-G distribution has the form;

f(a, b;x) =
1

B(a, b)

[
F (x)

]a−1[
1− F (x)

]b−1

f(x) (33)

(Eugene et al., 2002; Jones, 2009) has stated that the rth order statistics is a distribution
belonging to the special case of the beta-G family of distribution. This study however
demonstrates in this section the application of the beta-G framework for constructing
the distributions of the minimum X(1:n) and maximum X(n:n) order statistics.

4.1 The Distribution of Minimum Order Statistics

The cdf of X(1:n) is derived by substituting B(a, b) with B(1, n) into the cdf of the class
of beta-G families of distribution in equation (32) and is given by;

F(1:n)(x) =
1

B(1, n)

∫ F (x)

0
(1− t)n−1dt (34)
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F(1:n)(x) = n

∫ F (x)

0
(1− t)n−1dt (35)

The solution to the integral in (35) will yield the cdf of Minimum order statistics and is
given by;

F(1:n)(x) = 1−
(
1− F (x)

)n

(36)

The pdf can be obtained by finding the first derivative of F(1:n)(x) in (36).
Application of the beta-G for deriving the density function of X(1:n) required replacing
B(a, b) with B(1, n) in equation (33) and is given by;

f(1:n)(x) =
1

B(1, n)

[
1− F (x)

]n−1

f(x) (37)

f(1:n)(x) = n

[
1− F (x)

]n−1

f(x) (38)

Results in equations (36) and (38) strengthen existing results in the literature for the
cdf and density function of the minimum order statistics by using other approaches and
as previously obtained for f(1:n)(x) in equation (21).

4.2 The distribution of Maximum Order Statistics

We derived the cdf of X(n:n) by substituting B(a, b) for B(n, 1) into the cdf of the class
of beta-G families of distribution equation (32) and is given by;

F(n:n)(x) = IF (x)(n, 1) =
1

B(n, 1)

∫ F (x)

0
tn−1dt (39)

After some mathematical operations, the cdf of X(n:n) from the integral is given as;

F(n:n)(x) =

(
F (x)

)n

(40)

The pdf of X(n:n) which is simply the derivative of quantity in equation (40) is derived
from the beta-G by substituting B(a, b) for B(n, 1) in equation (33) and is given by;

f(n:n)(x) =
1

B(n, 1)

[
F (x)

]n−1

f(x) (41)

f(n:n)(x) = n

[
F (x)

]n−1

f(x) (42)

Results in equations (40) and (42) strengthen existing results in the literature for deriving
the cdf and density function of the maximum order statistics X(n:n) through some other
approach and as previously obtained in equation (22).
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By inserting the cdf of WEP distributions in equation (5) into equation (40); the cdf of
WEP Maximum Order statistics is derived as;

F(n:n)(x) =

[
1− exp

(
−
(
λ

(
x

k

)θ)α)]n
(43)

Theorem 4.1 Let X1, X2, ..., Xn be a random sample of size n from the WEP distribution
with cdf and pdf denoted by F (x) and f(x) respectively. Then the density function of the
maximum order statistics X(n:n), of WEP distribution corresponding to cdf in equation
(43) is given by;
f(n:n)(x) =

n−1∑
i=0

(−1)i
(
n− 1

i

)
nαλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1[
exp

(
−
(
λ

(
x

k

)θ)α)]i+1

(44)

Proof: The density function corresponding to the cdf of WEP Maximum Order statistics
is derived as;

f(n:n)(x) = n

[
1− exp

(
−
(
λ

(
x

k

)θ)α)]n−1

αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

exp

(
−
(
λ

(
x

k

)θ)α) (45)

Applying binomial expansion;[
1− exp

(
−
(
λ

(
x
k

)θ)α)]n−1

=
∑n−1

i=0 (−1)i
(
n−1
i

)
exp

(
−i

(
λ

(
x
k

)θ)α)
= A

Substitute A into equation (45) to obtain the final proof.
Theorem 4.2 Let X1, X2, ..., Xn be a random sample of size n from the WEP distribution
with cdf and pdf denoted by F (x) and f(x) respectively. Then the density function of the
minimum order statistics X(1:n), from the WEP distribution is given by;

f(1:n)(x) =
αλθ

k

∞∑
i=0

(−1)i(n)i+1

i!

(
x

k

)θ−1(
λ

(
x

k

)θ)α(i+1)−1

(46)

Proof: The density function corresponding to the cdf of WEP Minimum Order statistics
is derived as;
f(1:n)(x) =

n

[
1−

{
1− exp

(
−
(
λ

(
x

k

)θ)α)}]n−1αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

exp

(
−
(
λ

(
x

k

)θ)α)
(47)

f(1:n)(x) =

n

[
exp

(
−
(
λ

(
x

k

)θ)α)]n−1αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

exp

(
−
(
λ

(
x

k

)θ)α)
(48)
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f(1:n)(x) =

[
exp

(
−
(
λ

(
x

k

)θ)α)]nnαλθ
k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

(49)

Remark 4.1: The results posted in (21) and (22) using the density function of the
kth order statistics which happens to be the popular and familiar approach is further
strengthened by the results obtained for the densities of extreme order statistics from
WEP distribution in (44) and (46) using the beta generalized approach

5 Moments of Order Statistics and Recurrence Relation
from WEP

In this section, we extend the study of WEP distribution by deriving an explicit expres-
sion for the single moment of order statistics from the WEP distribution.
Lemma 5.1: Let X(1:n), X(2:n), ..., X(n:n) be order statistics of the random sample from
WEP distribution having cdf and pdf F (x) and f(x) respectively, for a > 0, b > 0 if

I(a, b) =

∫ ∞

0

xa

(
1− F (x)

)b+1

h(x)dx (50)

then

I(a, b) = ka

(
1

λ

)a
θ
(

1

b+ 1

)( a
αθ

+1)

Γ

(
a

αθ
+ 1

)
(51)

Proof: substituting the hazard rate, h(x) and survival function of WEP distribution into
equation (50) and obtain

I(a, b) =

∫ ∞

0

xa

(
exp

(
−
(
λ

(
x

k

)θ)α))b+1

h(x)dx (52)

Let y = (b+ 1)

(
λ

(
x
k

)θ)α

by transformation of variable we have the following quanti-

ties;

x = ky
1
αθ

λ
1
θ (b+1)

1
αθ

; dy
dx = (b+1)αλθ

k

(
x
k

)θ−1(
λ

(
x
k

)θ)α−1

=(b+ 1)h(x)

after appropriate substitution the mean becomes;∫ ∞

0

1

(b+ 1)

(
ky

1
αθ

λ
1
θ (b+ 1)

1
αθ

)a

e−ydy =
1

b+ 1

(
k

λ
1
θ (b+ 1)

1
αθ

)a ∫ ∞

0
y

a
αθ e−ydy (53)

Using the gamma function
∫∞
0 yre−ydy = Γ

(
r + 1

)
completes the proof of the lemma.

Remark 5.1 The result from Lemma 5.1 is very important as it will be extremely useful
in subsequent investigations.
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5.1 Moments of Order Statistics from WEP Distribution

Theorem 5.1: Let X1, X2, ..., Xn be a random sample of size n from the WEP distribu-
tion with cdf and pdf denoted by F (x) and f(x) respectively and let X(1) ≤ X(2) ≤ ... ≤
X(n) be corresponding order statistics. Then the expected value of X(r:n); which is the

tth moments of the rth order statistics for t = 1, 2, .... denoted by µ
(t)
r:n is given by;

µ(t)
r:n = Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
kt
(
1

λ

) t
θ
(

1

m

)( t
αθ

+1)

Γ

(
t

αθ
+ 1

)
(54)

where Γ is the gamma function and m = n− r + i+ 1
Proof

µ(t)
r:n =

∫ ∞

0
xtfr:n(x)dx (55)

The WEP distribution (pdf) has a functional relationship with the cdf given by

f(x) =
αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1(
1− F (x)

)
;α, λ, θ > 0;x > 0 (56)

Then using equation (56) in equation(55), we have ;

µ(t)
r:n = Cr:n

∫ ∞

0
xt

αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1(
F (x)

)r−1(
1− F (x)

)n−r+1

dx (57)

using binomial expansion of the form

(
1− Z

)b

=
∑b

i=0(−1)i
(
b
i

)
zi

µ(t)
r:n =

r−1∑
i=0

(−1)i
(
r − 1

i

)
αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

Cr:n

∫ ∞

0
xt
(
1− F (x)

)m

dx (58)

where m = n− r + i+ 1

µ(t)
r:n =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

∫ ∞

0
xt
(
1− F (x)

)m

h(x)dx (59)

By application of Lemma (5.1); we obtain

µ(t)
r:n = Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
I(t,m) (60)

I(t,m) = kt

(
1

λ

) t
θ
(

1

m

)( t
αθ

+1)

Γ

(
t

αθ
+ 1

)
; □ (61)

The mean order statistics and the variance of order statistics are derived and given
respectively as;
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µr:n = Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
k

(
1

λ

) 1
θ
(

1

m

)( 1
αθ

+1)

Γ

(
1

αθ
+ 1

)
(62)

and

σ
(2)
r:n = µ

(2)
r:n −

(
µr:n

)2

σ(2)
r:n = Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
k2
(
1

λ

) 2
θ
(

1

m

)( 2
αθ

+1)

Γ

(
2

αθ
+ 1

)
−
(
µr:n

)2

(63)

Remark 5.2: The result in equation (62) generalizes the moments of the WEP distribu-
tion and moments of some lifetime distributions existing in the literature.
In addition, some of the statistical properties of classical distributions like Weibull,
Rayleigh, and Exponential distributions can be obtained from the result. The results
are useful in various fields of application where there is a need to predict the expected
maximum duration, expected maximum remission times, expected mean revenue due to
additional input of factors of labor, and expected maximum output due to aging/death.
The following results can be obtained by setting r=1=n in Theorem 5.1
Corollary 5.1: For WEP distribution, the tth moment and the mean is deduced and
respectively given as ;

kt

(λ)
t
θ

Γ

(
t

αθ
+ 1

)
(64)

k

(λ)
1
θ

Γ

(
1

αθ
+ 1

)
(65)

Corollary 5.2: The result in Theorem 5.1 reduces to the explicit expression of the tth

moment and the mean of exponential Pareto (EP) distribution studied by Al-Kadim and
Boshi (2013), if α = 1 as deduced and respectively given by;

kt

(λ)
t
θ

Γ

(
t

θ
+ 1

)
(66)

k

(λ)
1
θ

Γ

(
1

θ
+ 1

)
(67)

see Al-Kadim and Boshi (2013) equation (9), page.137.

5.2 Moment of Extreme Order Statistics from WEP Distribution

This section presents some moments of the minimum and maximum order statistics of
the WEP distribution
Corollary 5.3: The tth moments of the minimum order statistics X(1:n) of a random
variable from the WEP distribution is given by;

µ
(t)
1:n =

nkt

λ
t
θ (n)

t
αθ

+1
Γ

(
t

αθ
+ 1

)
(68)
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Corollary 5.4: The tth moments of the maximum order statistics X(n:n) of a random
variable from the WEP distribution is given by;

µ(t)
n:n = n

n−1∑
i=0

(−1)i
(
n− 1

i

)
kt

λ
t
θ (i+ 1)

t
αθ

+1
Γ

(
t

αθ
+ 1

)
(69)

Proposition 5.1: The expected value of the minimum order statistics X(1:n) of a random
variable from the WEP distribution is given by;

µ1:n =
k

λ
1
θ (n)

1
αθ

Γ

(
1

αθ
+ 1

)
(70)

The second moment of minimum order statistics X(1:n) is obtained as;

µ
(2)
1:n =

k2

λ
2
θ (n)

2
αθ

Γ

(
2

αθ
+ 1

)
(71)

The variance can be obtained using ;

V ar = E

(
X2

(1:n)

)
− E

(
X(1:n)

)2

Hence the variance of minimum order statistics X(1:n) for the WEP distribution is ob-
tained as;

σ
(2)
1:n = µ

(2)
1:n −

(
µ1:n

)2

σ
(2)
1:n =

k2

λ
2
θ (n)

2
αθ

[
Γ

(
2

αθ
+ 1

)
− Γ2

(
2

αθ
+ 1

)]
(72)

The mean, second moment and variance of the WEP maximum order statistics can be
derived in a similar fashion.

5.3 Moment and Mean Value of the Sample Range Statistics

Theorem 5.2 Let X(1:n), X(2:n), ..., X(n:n) be the order statistics from WEP random sample
X1, X2, ..., Xn of size n, the mean value of the sample range X(n:n) −X(1:n) is obtained
and given by;

µR = (n− 1)
n−2∑
i=0

(−1)i
(
n− 2

i

)
k

(
1

λ

) 1
θ
(

1

i+ 1

)( t
αθ

+1)

Γ

(
1

αθ
+ 1

)
(73)

Proof: The tth moments is defined by

µ
(t)
R =

∫ ∞

0
xtf̄R,n(x)dx (74)
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Substitute the pdf of range statistics from WEP distribution in (74) to obtain

µ
(t)
R = (n−1)

n−2∑
i=0

(−1)i(n−2
i )αλθ

k

∫∞
0 xt

(
x
k

)θ−1(
λ

(
x
k

)θ)α−1[
exp

(
−λ

(
x
k

)θ)]i+1

dx (75)

µ
(t)
R = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)∫ ∞

0
xt
[
exp

(
−λ

(
x

k

)θ)]i+1

h(x)dx (76)

By application of Lemma 5.1, we have.

µ
(t)
R = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
I(t, i+ 1) (77)

I(t, i+ 1) = kt
(
1

λ

) t
θ
(

1

i+ 1

)( t
αθ

+1)

Γ

(
t

αθ
+ 1

)
(78)

∴ µ
(t)
R = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
kt
(
1

λ

) t
θ
(

1

i+ 1

)( t
αθ

+1)

Γ

(
t

αθ
+ 1

)
(79)

The mean value of the sample range is obtained and given by;

µR = (n− 1)
n−2∑
i=0

(−1)i
(
n− 2

i

)
k

(
1

λ

) 1
θ
(

1

i+ 1

)( t
αθ

+1)

Γ

(
1

αθ
+ 1

)
□ (80)

5.4 Recurrence Relations for Moment of Order Statistics from the
WEP Distribution

This section is used to derive an explicit expression for the recurrence relation for the
moment of order statistics of WEP distribution through the following theorem;

Theorem 5.3: Let X1, X2, ..., Xn be random sample of size n from the WEP distri-
bution whose corresponding order statistics is denoted by X(1:n), X(2:n), ..., X(n:n); then
for 1 ≤ r ≤ n and t = 0, 1, 2... we have the following result for moment relation

µ(t)
r:n =

αθλα(n− r + 1)µ
(t+αθ)
r:n − αθλα(r − 1)µ

(t+αθ)
r−1:n

kαθ(t+ αθ)
(81)

Proof: The tth moment of WEP distribution order statistics is defined by;

µ(t)
r:n = Cr:n

∫ ∞

0
xt
(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx (82)

f(x) =
αλθ

k

αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1(
1− F (x)

)
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substituting f(x) into (82) and doing some arithmetic operations we have

µ(t)
r:n =

αλθ

k

(
x

k

)θ−1(
λ

(
x

k

)θ)α−1

Cr:n

∫ ∞

0
xt
(
F (x)

)r−1(
1− F (x)

)n−r+1

dx (83)

µ(t)
r:n =

αθλα

kαθ
Cr:n

∫ ∞

0
xt+αθ−1

(
F (x)

)r−1(
1− F (x)

)n−r+1

dx (84)

Using integration by parts we shall obtain;

µ(t)
r:n =

αθλα

kαθ
Cr:n

∫ ∞

0

[
xt+αθ (n− r + 1)

t+ αθ

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

− xt+αθ (r − 1)

t+ αθ

(
F (x)

)r−2(
1− F (x)

)n−r+1

f(x)dx

]
=

αθλα

kαθ

∫ ∞

0

[
xt+αθ (n− r + 1)

t+ αθ
Cr:n

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

− xt+αθ (r − 1)

t+ αθ
Cr:n

(
F (x)

)r−2(
1− F (x)

)n−r+1

f(x)dx

]
=

αθλα

kαθ

[
(n− r + 1)

t+ αθ
µ(t+αθ)
r:n − (r − 1)Cr:n

t+ αθCr−1:n
µ
(t+αθ)
r−1:n

]
=

αθλα

kαθ
(n− r + 1)

t+ αθ

[
µ(t+αθ)
r:n − µ

(t+αθ)
r−1:n

]
□

(85)

A special case is when r = 1 and the recurrence relation is obtained as;

µ
(t)
1:n =

nαθλαµ
(t+αθ)
1:n

kαθ(t+ αθ)
(86)

Remark 5.3: Recurrence relation for the mean of order statistics when t = 1 from WEP
distribution is given by;

µr:n =
αθλα

kαθ
(n− r + 1)

1 + αθ

[
µ(1+αθ)
r:n − µ

(1+αθ)
r−1:n

]
(87)

α, λ, θ, k > 0 and 0 < r < n

Order statistics from the WEP distribution provide useful characterizations for some
lifetime distributions existing in the literature that are yet to be investigated based on
order statistics.
The explicit expression for mean order statistics of some lifetime distributions is pre-
sented in Table 1.
Where

ωi = Cr:n
∑r−1

i=0 (−1)i
(
r−1
i

)
, and m = n− r + i+ 1
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Table 1: Mean of Order Statistics of WEP sub-models

Distributions α, λ, θ, k Mean (µr:n) = Authors

exponential Pareto 1,−,−,− ωi
kt

λ
t
θ m

t
θ
+1

Γ

(
t
θ + 1

)
Al-Kadim and Boshi (2013)

Weibull-Rayleigh −, 1/p, 2, 1 ωi
pt/2

m
t
2α+1

Γ

(
t
2α + 1

)
Akarawak et al. (2017)

exponential Rayleigh 1,−, 1, − ωi
k

λ
1
θ m

1
αθ

+1
Γ

(
1
αθ + 1

)
-

Rayleigh Rayleigh 2, 1
81/2σ

, 2, β ωi
8t/4σt/2βt

m
t
4+1

Γ

(
t
4 + 1

)
Ateeq et al. (2019)

Weibull Rayleigh −, 1
2γ , 2,− ωi

k

λ
1
θ m

1
αθ

+1
Γ

(
1
αθ + 1

)
Ahmad et al. (2017)

Weibull 1, 1,−, − ωi
k

m
1
θ
+1

Γ

(
1
θ + 1

)
Weibull (1951)

6 Application to Nigeria Covid-19 data

6.1 Nigeria Covid-19 Data Analysis

On the 16th of March 2022, 91 new confirmed cases were recorded in Nigeria as reported
by https://covid19.ncdc.gov.ng/
The total confirmed active cases as at that date reported on Friday 3:49 pm 18 Mar 2022
is 2493 representing the sum of the datasets:
(197,125,41,8,1,77,11,88,315,3,27, 344,83,37,13,46,335,22,2,340 ,28,51,8,5,62,5,68,130,9,2,10)
The data is applied to WEP distribution and compared with Sindhu et al (2021) Expo-
nentiated transformation of Gumbel type-II (ETGTT) distribution for modeling covid-19
data. The goodness-of-fit estimates of parameters and model selection statistics with
the p-values obtained from analysis using the R-software are presented in Table 2.

Table 2: MLEs and Goodness-of-fit statistics for the Nigeria Covid-19 active cases.

Models α λ θ k LL AIC K-S PV

WEP 0.7553 0.0794 0.9362 4.0135 163.1919 334.3837 0.0998 0.9170

ETGTT 0.7058 − 0.6849 4.6307 164.8987 335.7975 0.1132 0.8211

Table 2 shows the p-value is close to one, which is an indication of the suitability of
the distribution for fitting the data. Figure 2 is the plots for the fitted model which
supports the result in Table 2 that the WEP model can be used to fit the data.
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Figure 2: The pdf and cdf of WEP Distribution Fitted to the Nigeria Covid-19 Active
Cases on Admission

6.2 Estimation of the Maximum and Minimum Patients on Admission
from every n states

The estimated minimum and maximum number of active cases of patients on admission
can be determined using the maximum likelihood estimates of the parameters of the
WEP distribution in Table 2.
The Monte Carlo estimated values for N = 10, 000 and sample sizes n = 5, 10, 20, 30, 40
for the maximum X(n:n) and the minimum X(1:n) active cases is computed with the
corresponding variances and confidence interval (CI) of the estimates presented in Table
3.

The result shows that the computed values of the maximum with the corresponding
variances increase as the sample sizes n increase. On the other hand, the predicted
minimum and the corresponding variances decrease as the sample size n increases. The
CI of predicted estimates shows a high coverage probability for the population at a
confidence level of Z − value of 95 percent.
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Table 3: Estimated maximum X(n:n) and the minimum X(1:n) active cases of patients on
admission by the number of states

expected maximum µ(n:n) expected minimum µ(1:n)

n MLE Variance CI MLE Variance CI

5 205 25609 (137, 273) 8 123 (3, 13)

10 286 33284 (231, 340) 3 17 (2, 4)

20 378 38687 (336, 420) 1 3 (0.6, 1.3)

30 437 41855 (402, 473) 1 0.7 (0.8, 1.1)

40 481 43510 (450, 513) 0 0.3 (−0.1, 0.1)

7 Numerical computations of the mean order statistics for
arbitrary parameters

Computations for mean of order statistics from WEP distribution for some arbitrary
values of parameters are tabulated and presented in Table 4.

Table 4: Mean of order statistics of WEP distribution for some parameters

α = λ = 2 α = λ = 2 α = λ = 2 α = 3, λ = 2 α = 3, λ = 2

r n θ = 5, k = 0.5 θ = 5, k = 1 θ = 5, k = 3.5 θ = 5, k = 3.5 θ = 7, k = 3.5

1 1 0.4141 0.8282 2.8987 2.9423 3.0897

1 2 0.3864 0.7727 2.7046 2.8094 2.9894

2 2 0.4418 0.8837 3.0928 3.0752 3.1900

1 3 0.3710 0.7420 2.5971 2.7345 2.9322

2 3 0.4171 0.8341 2.9195 2.9593 3.1037

3 3 0.4542 0.9084 3.1795 3.1331 3.2332

1 4 0.3605 0.7209 2.5235 2.6826 2.8923

2 4 0.4026 0.8052 2.8181 2.8903 3.0519

3 4 0.4316 0.8631 3.0209 3.0282 3.1555

4 4 0.4618 0.9235 3.2323 3.1681 3.2591

Note : David and Nagaraja (1981) established an important property of order statistics
defined by

∑n
i=1 µi:n = nµ1:1

This property was also corroborated by Kumar et al. (2018), the computed results dis-
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played in Table 4 are investigated to be consistent with the property.

Analysis of impact of various parameters and the samples size on the mean of order
statistics from WEP distribution revealed the following.

� The mean increases with the order statistics for any sample of size n

� The mean increases with increase in parameter k for all order statistics

� The mean increases with increase in parameter α except for X(n:n)

� The mean increases with increase in parameter θ for all order statistics

� The mean decreases with increase in the sample size n

7.1 Simulation results for some properties of order statistics of the
WEP distribution

The Monte Carlo simulations with N= 20, 000 replications for small and large sample
sizes (4, 20, 100, 300, 500) were used to estimate values for statistical properties of the
maximum and minimum order statistics from the WEP distribution. Two sets of arbi-
trary parameters I=(α = 2, λ = 2, θ = 1, k = 0.5) and II=(α = 2, λ = 2, θ = 5, k = 0.5)
were used for the simulation.
Computations for mean, variance, skewness, and kurtosis of order statistics are tabulated
and presented in Table 5.

Table 5: Simulation results for statistical properties of order statistics for some parameter
values and various sample sizes

Maximum(X(n:n)) Minimum(X(1:n))

n mean variance skewness kurtosis mean variance skewness kurtosis Set

4 0.3456 0.0098 0.4805 0.3816 0.1108 0.0034 0.6294 0.2508

20 0.4672 0.0063 0.5848 0.4832 0.0496 0.0007 0.6390 0.2497

100 0.5652 0.0045 0.7139 0.9556 0.0222 0.0001 0.6275 0.2616 I

300 0.6245 0.0038 0.7565 1.0284 0.0128 0.0000 0.6438 0.2195

500 0.6496 0.0035 0.7715 0.9271 0.0099 0.0000 0.6413 0.1942

4 0.4613 0.0007 -0.2114 0.1998 0.3605 0.0019 -0.6200 0.5098

20 0.4921 0.0003 0.1659 -0.0127 0.3069 0.0014 -0.6379 0.5898

100 0.5120 0.0002 0.4047 0.1981 0.2612 0.0010 -0.6338 0.6169 II

300 0.5223 0.0001 0.5031 0.4139 0.2340 0.0008 -0.6118 0.5793

500 0.5265 0.0000 0.5277 0.3857 0.2224 0.0007 -0.6382 0.5070

Remark 5.4:
The parameters set II=(α = 2, λ = 2, θ = 5, k = 0.5) was used in Table 4 and Table 5.
It can be seen that the mean of maximum order statistics µ(4:4) for X(4:4) = 0.4613 in
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Table 5 and µ(4:4) for X(4:4) = 0.4618 in Table 4.
The mean of minimum order statistics X(1:4) = 0.3605 in both Table 5 and Table 4.
The Monte Carlo procedure established and strengthened the previous result obtained
in Table 4 for the sample size n = 4.
The mean increases with the sample size in X(n:n) and decreases with the sample size in
X(1:n)

The distributions of X(1:n) and X(n:n) exhibits both positive and negative skewness; and
their variances consistently decreases as the sample size increases

8 Discussion and Conclusion

Order statistics of many convoluted distributions remain open for some research. This
article defined and studied some distributional properties of order statistics from the
Weibull-Exponential Pareto distribution. The research provides a new dimension to
the study of convoluted distributions based on the useful properties of order statistics
from their random samples. The beta-generator was explored for deriving the distri-
butions of extreme order statistics and the results strengthened existing concepts and
theorem in the literature. Moment of order statistics from WEP was derived and the
results generalizes the moments of Weibull and some recently developed lifetime dis-
tributions in literature. The mean and variance of the minimum order statistics as a
special case were derived. The study established a recurrence relation for the moment
of order statistics from WEP distribution which can be used as a veritable mechanism
for investigating several statistical measures for lifetime distributions including Weibull
Rayleigh, Exponential Rayleigh, Rayleigh Rayleigh, and Exponential Pareto distribu-
tions. The distribution of the range statistics of a random sample of size n for some
class of probability distributions was derived. New concepts and theorems introduced
represent new knowledge and important frameworks for more research in this area. The
study was applied to Nigeria’s Covid-19 active cases of patients on admission and the
WEP distribution has the capacity to model the datasets. The MLEs of the parameters
were used to estimate the mean values for the maximum and minimum order statistics.
From the predicted values, we can conclude that the minimum number of expected pa-
tients on admission is 0 and the maximum number of expected patients on admission
is 481 for n = 40. The tabulated results from the Monte Carlo simulation show consis-
tency for the properties of order statistics and agree with the computation for the mean
of order statistics in Table 4.
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Statistics, Series B, pages 362–371.

Joshi, P. and Balakrishnan, N. (1982). Recurrence relations and identities for the product
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