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1 Introduction

The history of insertion of various distribution and transformation techniques is on full
swing from few decades. Many authors and academicians working in the direction of
proposition of new transformation and distribution. Various distributions have success-
fully added to statistical literature and have own merits and demerits. The exponential
distribution has been extensively used in lifetime data analysis, but it is suitable for
those situations where hazard rate is constant. Generally, it is not possible for real phe-
nomena. For monotonic hazard rate, a number of distributions have been proposed and
most widely used among these are Weibull and gamma distributions which are generaliza-
tion of exponential distribution. Both of these distributions have increasing/decreasing
hazard rate depending on their shape parameters. However, gamma distribution’s dis-
tribution function and survival function, in particular, cannot be written in good closed
forms, especially when the shape parameter is not an integer. Several authors did gen-
eralized exponential distribution by power transformation method given by Gupta et al.
(1998) and DUS transformation method by Kumar et al. (15 a), SS transformation by
Kumar et al. (15 b), PCM transformation by Kumar et al. (2021), MORK:i distribution
proposed by Afify et al. (2022) etc. Kumar et al. (2017) have been proposed a new
transformation known as Minimum Guarantee Transformation which is given below

F(z) = exp {1 - G(lx) } (1)

Where, G(x) is baseline cumulative distribution function (CDF), and corresponding
probability density function (PDF) is given below

f(@) = exp {1 - G(lx)}[accw < 9(a) @)

They used baseline distribution as exponential distribution and called it as Minimum
Guarantee exponential symbolically M G ggp(€)-distribution having the PDF as

—€T

fzie) = ee (1 — e *) 2 exp (— c m) ; x>0, €>0 (3)

l1—e
and associated CDF is

e—ex

F(x;e)zexp(—l_em> ; x>0, €>0 (4)

The reliability and hazard rate functions are

Rz;e) = 1— exp (—1_) 5)

and

—ex —€x -1
6 — ce—T(] — p—€T\ 2 __c _ e
h(z;e) = ee”“(1 — e )" “exp ( T eex) (1 exp { e }) (6)
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The shapes presented in Figures 1, 2 and 3 are shapes of PDF, CDF and hazard function
of MG gp(€)-distribution respectively.
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Figure 1: The plot of PDF for the various choices of value of the parameter e of
M G ggp(€)-distribution.
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Figure 2: The plot of CDF for the various choices of value of the parameter e of
M G ggp(€)-distribution.
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Figure 3: The plot of hazard rate function for the various choices of value of the param-
eter € MG gyp(€)-distribution.

Figure 3 explores the nature of hazard function of the MG g,y (€)-distribution is in-
creasing and inverted bathtub hazard rate function while the baseline (exponential dis-
tribution) has constant hazard rate function this is the delineation and parsimony of
proposed distribution in comparison to baseline distribution.

In summary, the novelty of this work lies in its investigation of how parameter es-
timates for the MG gy p(€)-distribution behave when applied to progressively Type-1I
censored samples for long-term use. The study likely involves statistical analysis, mod-
eling, and possibly simulations to gain insights into the behavior of these parameter
estimates in practical scenarios.

2 Statistical Properties

In this section, we discussed some statistical properties of MG ggp(€)-distribution which
have not derived yet. First we discuss about two lemma which are given below

Lemma 1
Let

—2d
(1 _ efex)2

_ii(fl)i —i—2) ol 1
- ! I et (G414 1)+
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Proof:
&1(e,r,0) = / 2"e %1 — e )72 x exp( . . _6w>

0

_ Z (_1)Z Ooxre—e(l—o—z) « (1 e—er) (z+2)d

0 il Jo

:ZZ< ,') ( Zl >/ " exp{—e€(i+ 1+ 1)z} dx
i=01=0 " 0
S —i—2 r! 1

= &lerd) = ZZ ( >X€r+lx(i+l+1)r+1

=0 [=0

The 7" moment about point 0 of MG g, (€)-distribution is
B(XT) = e x €1(e,7,¢) ™)

we obtain the first four moments about 0 on putting » = 1,2, 3, 4 of M G g4y (€)-distribution
are

E(X)=c¢€x&i(e1¢€)
E(X?) = ex&i(e,2,¢)
E(X?)) :€*§1(673>6)
B(X*) = e &1(e,4,0)
Lemma 2
Let
7633 -2 e’
a2(€e,7,0,t) x'e” ) “xexp | ——— |dx
‘ 1 —e<*
oo oo r+1 ‘ (( l ))
= s e COFEDY Lo ] 4 1)8)P
zzozp Op' Z+l+1)]+1
Proof

&a(e,r0,t) = / :1;7"67‘”(1 — e )2 xexp (—e_>dw
‘ 1—ec®
00 0 (_1q % . .
_ Z/ ( : ) xre—ezme—ex(l _ e—em)—(z—f—?)dx
x t

-3y (—.1)Z —i—2 /OO o (i) g
; 7! l ‘

oo oo r+1 _11' —i—92 rl . )
:ZZ (“)( l )p!(e(i+l+1))r+1*6((+l+1 {e(i +1+ 1)t}
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2.1 Conditional Moment

Conditional moment of 7" order is denoted by F(X"|X > r) and obtained by using

lemma, 2,
E(X"|X >x)=ex&(er€,1) (8)

2.2 Median
Let M be the median of X and is obtained by solving the followings

/OM f(z)dx = /MOO f(z)dx = %

then by equation (3), we get
M
1
| sz =
0 2

e~ M 1
ol (<2
o—€M
1—e M
(1 —In2)e”“ =In2
Cex In2
T 1-In2

1 In2
M=—=1
€ n{1+ln2}

!

=In2

il

2.3 Mean deviation about mean and median

The mean deviation about mean is defined as,

m@) = [ o= uls @)z
where p is mean of the random variable of X of MG gap(€)-distribution.
o o0
= [ w=a@ie+ [C@-wi@a
“w
=2ux* F(p) — 2u+2/ xf(z)dx

I

where F(.) be the CDF of MG gy (e€)-distribution, then from lemma 2

/ T ef(@)de = e e, 1,6 1)
o
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Thus,
Ul(IE):Qu*F(H)*2M+2€*€2(€,1,6,M) (9)

And mean deviation about median is defined as,

na() = /0 e — M (2)de

= /()M(M—x)f(x)da:-l- /Oo(l’ — M) f(x)dx

M

= —,u—i-Q/OOxf(x)d:c

M

using lemma 2,

/ooxf(x)dx =ex&(e, 1,e, M)

M
Thus,
na(x) = —p+ 2e % &a(e, 1, e, M) (10)

2.4 Moment generating function and Characteristic function

The MG gyp(€)-distribution’s moment generating function (MGF) is
Mx(s) = E(e*)
then by lemma 1, we get
Mx(s) =e*&1(6,0,e — s) ;8 <€
and characteristic function of MG gy (€)-distribution can be obtained in a similar way

dx(s) =ex&(e,0,€ —is)

3 Order Statistics

Let us choose random sample of size n from the MG gy (€)-distribution and correspond-
ing order statistics is X (1) < X(9) < ... < X(;), then PDF of rt" order statistics is

n!

fri@) = r—1)l(n — 1)

« Fr\ (@) [L = F()]" "  f(x)

N (r— 1)?(!71 —r)! : Z(_l)i <n Z T) P @ ()

Now using (3) & (4) in (11) we have,

8—651)

w0 = i S0 () e (5} e
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— 1@) = = Z ("_r)*exp{_(;tii;e;_w} (12)

and corresponding CDF of r** order statistics is

R =3 (e - rer =35 () cwrre o

i=r i=r j=0

Using (4) in (13), we get CDF of 7" order statistic

i§< )(n_z)(—l)je{(Hj)li_;C} (14)

i=r j=0

4 Entropy count

Entropy is a count of average amount of information vested in r.v. X also it is the count
of uncertainty of the distribution. Proposition of Renyi entropy by Rényi (1961) having

the form,
— In </ f“’(a:)dx) iy # 1 (15)

00 00 —€ex Y
/ f(x)dx :/ |:6€_€x(1 — e )2 % exp (—e_)] dx
0 0 L —eme
—7 Z (_1') v % / e(fe('eri)m) % (1 _ efe:r)f(Q'erl)dx
< 2y - Z) / o(—e(rHitDz) 70
i=0 1=0 0

e I

1=0 [=0

Ry =+

Now

using (15), we get required expression of Renyi entropy is

R, = (1—77> Ine + <1_17) In {:OO looo (_Z,'!V)i (_i__f”) x M} (16)

5 Progressive Type-II Censoring

In survival analysis, estimation of the unknown characteristics of any underlying phe-
nomenon using complete observations is required. It is, however, very tedious to ob-
tain the complete information associated with any life testing experiments due to time
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and cost constraints. Therefore, the problem of censored observations might be highly
thought of which results to saving time and cost of the experiments. In statistical liter-
ature, variety of censoring schemes has been introduced for getting the inferences from
the ongoing life testing experiments to specific probability models. The famous censor-
ing are Type-I and Type-II censoring for more detailed about these see Balakrishnan
(2007), Kumar et al. (2022). Here we are discussing progressive Type-II censoring for
the considered lifetime distribution.

Let n identical items placed on a life testing experiments at time 0 with corresponding
lifetimes X1, X, ..., X, being independently and identically distributed with PDF (3).
Further, suppose that m (non-negative integer) such that m < n is fixed at the beginning
of the experiment (where m is the number of units to be observed completely until
failure) with R;(> 0) removal(s) and Y ;" R; +m = n. This implies that progressive
censoring will occur in m failure stage as failures. When the first failure occurred,
At the time of the first failure X;, Ry surviving units are randomly removed from
n — 1 units; at the time of the second failure X3, Ro surviving units are randomly
removed from n —2 — Ry units; similarly, (m — 1) failure units are randomly removed
from n — 2 — R; units. monetary failure X,,_1, R,,—1 units are removed at random
fromn—(m—1) — Z;i_f X; and finally m!* unit fails X,,, followed by all remaining
(Rm=n—m—R; —Re—...— Rp,—1) units. The set of an observed lifetime data X =
(X1, Xo,..., X)) is a progressive Type-II censored sample. According to Balakrishnan
and Aggarwala (2000) a progressive Type-II censoring scheme consists of m failure stages
and Ry, Ry, ..., Ry, random samples such that n—m = " | R; with R;s fixed before the
study, where R; denotes the i** censored sample. Progressive type-II censoring reduces
to complete sample if Ry = Ry =...,R,;, =0 and m = n.

The likelihood function based on the progressive Type-II censored sample
X = (X1, Xo,..., X)) is given as
m
L(X,e) =C[[ flxiye) = [1 — Flay,e)]™ (17)
i=1
where C =n(n—1-R))(n—2—Ry)...(n—m+1—-""Ry).

Using (4) and (3) in (17), we get the likelihood function under progressive Type-II

censored sample of MG ggp(€)-distribution is

L(X,¢e) =

m €T e €T R
=CLeem e Fe <‘1_> ' [1 o (‘ T-een ﬂ
1=
m e*ﬁ(ti T efemi R;
= Ce™ xexp [— Z <6£Cz' =+ W)] H (1—e ™) 2% [1 —exp <_1_e—€$i>:|
i=1 =1
(18)

Different methods of parametric inferences using progressive Type-1I censoring are
available in statistical literature. Lin et al. (2006) introduced the inferential procedure
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for log-gamma distribution using progressive Type-II censored observations. Balakr-
ishnan and Hossain (2007) proposed the inference for the Type-II generalized logistic
distribution under progressive Type-II censoring. The two parameters bathtub shaped
lifetime distribution has been discussed using progressive Type-II censored data by Wu
(2008). Kundu and Pradhan (2009) have been described the inferences for generalized
exponential distribution using progressive Type-II censoring scheme. Krishna and Malik
(2012) investigated the reliability estimation for Maxwell distributions with progressively
Type-II censored data. Reliability estimation for Lindley and generalized exponential
distributions has been discussed by Krishna and Kumar (2013). Rastogi et al. (2012)
described the classical and Bayesian inference for a bathtub shaped distribution under
progressive Type-II censoring. Recently, Sen et al. (2018) proposed the estimation pro-
cedures for xgamma distribution based on progressive Type-II censoring scheme. Also,
Bayesian reliability estimation for Topp-Leone distribution under progressively Type-II
censored data discussed by Feroze et al. (2021), Statistical analysis of Gompertz dis-
tribution based on progressively type-II censored competing risk model with binomial
removals by Boulkeroua et al. (2022) and many more.

6 Bayesian Estimation

Here, we have considered estimation of the parameter € of MG gy (€)-distribution in
Bayesian paradigm only. In Bayesian paradigm, posterior probability is an effect of
two components with a prior probability and n likelihood function, calculated from the
statistical model for the observed data. The prior distribution of the parameters is
assumed before the data observed. There is different kind of the prior distribution of
parameters defined as proper and improper prior. Another way to define the priors are
based on available advanced information and known as informative and non-informative
prior. Here, we use an informative prior as a G(a,b) prior for € of the parameter e of
MG gp(€)-distribution is

ba
m(e,a,b) = F—ea_le_b6 ;a,b>0,e >0 (19)
a

where, a, b representing hyper-parameters.

These can be obtained, if any two separate not associated information on € are avail-
able, say prior mean & prior variance are known for more details see Singh et al. (2013).

The mean & variance of the prior distribution (19) are M = § & V = 5 respectively.

Thus, we take M = ¢ and V = %5 giving b = % and a = M72 The informative gamma

prior behaves like non-informative prior if the hyper-parameters are changes i.e. we fixed
prior mean M and large prior variance V then gamma prior works as non-informative
prior. For more applications for the use of gamma prior see Singh et al. (2013), Kumar
et al. (15 a), Kumar et al. (15 b), Kumar et al. (2019), Kumar et al. (2020) and Kumar
et al. (2021)



Electronic Journal of Applied Statistical Analysis 529

Observing the progressively Type-II censored sample data and using the likelihood
function(18) and prior distribution (19) then the posterior distribution is given by

L(X,e)m(e,a,b)

h(elX) = Jo L(X, €)m(e, a,b)de

€T R;
l—e 1-e %
a1 -4, me” S (755 )
m+a— — X )E =1 _ €T, m
€ e i=1"1)Ce 2 l1—e i le]_ (1,6—6931‘)2

T €T R;
(1 e l—e %
Z —€x;
oo +a—1 b+ € i= lfex m
fo Em a e ( Zz 1 z) l—e 7 lel (1_67€Zi)2 df

Ale)p(e, X)é(e, X, R)
IS A(e) (e, X)E(e, X, R)de

h(e|X) = (20)

where A(e) = emta—!
e €%

Qﬁ(ﬁ,&) = e*(b‘i’zgl :Bi)eef Z?;l To—<a;

e—Eﬁi

l—e 1—e i

5(6 X R) H,L 1 ( > ;R: (Rl,RQ,...,Rm>.

(1—ec%i)2

7 Bayes Estimators and Posterior Risks under different
Loss Functions

In decision theory, the loss criterion is specified in order to obtain the best estimator for
which Bayes risk is minimum or minimum posterior risks corresponding to respective
loss functions. Several authors have been used this criterion to know the best Bayes
estimator of the parameters corresponding to the loss function which have minimum
posterior risks see Rahman et al. (2013), Ali Kazmi et al. (2012), Ali et al. (2013) and
Kumar et al. (2020). The simplest form of loss function is squared error loss function
(SELF), which is suitable when over estimation and under estimation are of same mag-
nitudes has equal importance. However, in most of the real situations, this assumption
is not possible. Sometimes, over estimation is more serious than under estimation and
vice-versa. Here, we have consider six loss functions weighted square error loss func-
tion (WSELF), square error loss function (SELF), precautionary loss function (PLF),
modified (quadratic) squared error loss function (M/Q SELF), logarithmic loss function
(LLF) and exponentiated square error loss function (ESELF). The first five loss func-
tions have been considered by Ali et al. (2013) and they have checked the performance of
Bayes estimators (having smallest posterior risks of Bayes estimators of respective loss
functions) of € of Lindley distribution and ESELF introduced by Kumar et al. (2020)
which is asymmetric loss function (over estimation is more serious than under estima-
tion).
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e Square error loss function (SELF):

The SELF was proposed by Legendre (1805) in the development of least-square the-
ory and is defined as

Ls(é.e) = (6 — ) (21)
corresponding Bayes estimator is posterior mean and is
és = E(e|X)
Jo €A(e)¢(e, X)&(e, X, R)de (22)

a f()oo A(6)¢(67 X)g(ea Xy R)dE
Posterior risk of €g is
Rs(és;€) = B(e*|X) — [B(|X))?

[
:fo°°e2A<e>¢<e,X>§<e,X,R)de_<fo°°62A )9 (e, X)¢ (e,X,R)de>2 (23)
fOOOA €)¢(e, X)E(e, X, R)de fo (e)p(e, X)E(e, X, R)de

e Weighted SELF:

The weighted loss function is defined as

Lu(e,e) = = o’ (24)

€

Bayes estimator of parameter € is harmonic mean of the posterior density and is

(25)

I _IA (e, X)&(e, X, R)de] !

A 3 1
éw = (Be(e7'X)) [ oA G,K)f(6757 R)de

Posterior risk of €y of the parameter € is the difference of mean and harmonic mean of
the posterior density and is

RW(€W7 6) = Ee(d&) - (Ee(€_1|z))
_ JoCeA©)d(e, X)(e, X, R)de [f‘” e—lA (e, X)E(e, X, R)de}l (26)
Jo~ A(e)p(e, X)é(e, X, R)de JA e,g)g(e,g, R)de

-1

e Modified/Quadratic square error loss function (M/Q SELF):

The M/Q SELF is defined as

Ly (é,€) = (é - 1)2 (27)

Bayes estimator of € is

M BN T e Ao D6 X
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posterior risk of the Bayes estimator of € is

1 2
Ry(énrse) =1~ [E((_2||)§())]
(f e LA(e)g(e X)§(6 X, R de) f e 2A(e)p(e, X)€(e, X, R)de

=1-

fo (e, X)€(e, X R)
(29)

e Precautionary loss function (PLF):

Precautionary loss function (PLF) introduced by Norstrom (1996) and is given by

Lo(e,e) = ©= o° (30)

€

Bayes estimator of € is

_ T A()g(e, X)é(e, X, R)de
— VE(PE) = \/ o 6le gle X, (31)

posterior risk of the Bayes estimator ép of the parameter € is

Rp(ép,e) =2 [ E(e?X) — Eﬁ(di)}

[ Jg~ @Ad(e, X)E(e, X, Ryde  [* eA (©)p(e, X)E(e, X, R)de | (32)
JoT Ale)p(e, X)é(e, X, R)de [ Ale)d(e, X)&(e, X, R)de

e Logarithmic loss function (LLF):
Logarithmic loss function (LLF) is defined as

Li(é€) = (Iné —Ine)? (33)
The Bayes estimator of € is the geometric mean of posterior density and is

¢, = BndX) _ o (fo In eA(e )cb(e,X)f(e,X,R)de)
Jo7 Ale)d(e, X)é(e, X, R)de

posterior risk of the Bayes estimator é;, of the parameter € is

Rp(ép,e) = Var(lne)
Ine

f ( ) A(e)p(e, X)&(e, X, R)de B (fooo IneA(e)p(e, X)E(e, X, R)de>2
Jo” Ale)p(e, X)&(e, X, R)de fo ¢, X)&(e, X, R)de
(35)
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e Exponentiated Square error loss function (ESELF):

The ESELF proposed by Kumar et al. (2020) and is defined as

Lot = (e —e)’ (36)

Bayes estimator of parameter € is given as

Js* e Ao (e, X)e(e, X, RWG) (37)

ép=—In(E(e X)) =—In < o2 A(e)d(e, X)&(e, X, R)de

and corresponding posterior risk is

Rp(ég,e) = Var (e*6|X)

_ Jo e A)g(e, X)E(e, X, R)de (fo°° e A()p(e, X)&(e, X, R)de>2
Jo~ Ale)g(e, X)&(e, X, R)de 1 A(e)d(e, X)&(e, X, R)de

(38)

8 Simulation Study

In this section, we have compared the considered Bayes estimators 53, 5W, ) M, B P, ) L,
5p of the parameter € of MG ggp(€)-distribution in terms of posterior risks. It is clear
that, the posterior risks are the function of m, the effective sample size, number of re-
movals R;, hyper-parameters a and b of the gamma prior. We have generated 10,000
sample from M G gy (€)-distribution for convergence of the results. The simulations were
carried out for sample sizes n = 15, 20, 30, 50 for different choices of the effective sample
size m with m = 5n = 60% of n, m = S9n = 80% of n.

We consider the removals with following five different schemes.

Scheme 1:

Ri=n—-—m, R =0; fori# 1.

Scheme 2:

R =n—m, Rizo;i;émTH,ifmisoddandR% =n-—m, Ry =0;i# % if mis
even.

Scheme 3:

R; =0; for i #m, Ry, =mn — m this reduces to Type-1I censoring.

Scheme 4:
R1:"_Tmﬂ,Rm:"_Tm'HandRizofori;él,mifn—misodd
and Ry = "5 Ry, = *5™ and R; = 0 for i # 1,m if n — m is even.

Scheme 5:
R1:1,RL+1:n—m—2,RmzlandRi:()fori;él,mT‘H,mifmisodd

2
and Ry =1, R%:n—m—Z, Ry, =1and R; =0 for i # 1, %, m if m is even.

The choice of hyper-parameters a and b is obtained by the relation a = M2 and b=

M
vV Vv
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where M and V are the mean and variance of the prior distribution of €. For detailed
discussion see Singh et al. (2013), Kumar et al. (15 a), Kumar et al. (2019), Kumar
et al. (2021). Here, we have considered the prior mean M (M = 1.5,2), prior variance
V(V =0.1,0.5,2,5) and the true values of the parameter € are taken as 0.5, 1.5, 2, 5.

Table 1 represents the posterior risks of the Bayes estimators under considered loss
functions for prior mean M = 1.5 and prior variance V' = 0.5 with true value ¢ = 0.5
for different sample sizes n and effective sample sizes m. We found that, the Bayes
estimator € having the posterior risk Rg(ég, €) minimum in all other Bayes estimators of
considered loss functions. It is also noted that, as sample information increases posterior
risks decreases. Similar patterns are also found in Table 2 and 3 for the true values of
parameter e = 1.5 and 5 respectively.

Table 4 represents the posterior risks of the Bayes estimators under considered loss
functions for n = 20 and effective sample size m = 12 for varying confidence level. We
observed that as confidence level decreases posterior risks increases. And the Bayes
estimator ég under ESELF performs better than other Bayes estimators €g, éw, €,
ép, €, under considered loss functions (SELF, WSELF, MSELF, PLF and LLF) in the
sense of having smallest posterior risks. Similar patterns are also obtained for m = 16
and reported in Table 5.

9 Conclusion

In this chapter, we have considered a lifetime distribution and naming as minimum guar-
antee exponential distribution. We have derived some important statistical properties
of this distribution which are not obtained by the host authors and any other authors
yet like 7** moments about origin, first four raw moments, * conditional moments, me-
dian, mean deviation about mean and median, order statistics and Renyi entropy. We
have given the procedure for estimation of parameter of M Ggx p(€)-distribution under
Bayesian setup for progressive Type-II censored sample. We have also done simulation
study to experience the nature of the estimators at long run. The works of the Bayes
estimators for respective loss functions of the parameter € in terms of minimum posterior
risks of the Bayes estimators of e. We found that, as prior variance increases posterior
risks also increases. In over all considered situations, scheme 1 is better than other
considered schemes and the Bayes estimator under ESELF performs better than other
Bayes estimators under considered loss functions (SELF, WSELF, MSELF, PLF and
LLF) in terms of having smallest posterior risks. Also, as effective sample information
increases posterior risks decreases.

Lastly, this present work supports the theoretical approaches and is a good contribution
in research in the hope of strengthening the considered distribution by the insertion of
various useful properties.
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Table 1: Posterior risks of the Bayes estimators under different loss functions for M =
1.5, V =0.5 and ¢ = 0.5 with varying n and m.

n | m | Scheme | Rg(és,€) | Rw(éw,€) | Rym(énrs€) | Rp(ép,e) | Rp(ér,e) | Re(ép,€)
I 0.01814 0.02765 0.04593 0.02841 0.04677 0.00478
I 0.01825 0.02635 0.04117 0.02705 0.04178 0.00449
9 II1 0.01803 0.02541 0.03845 0.02603 | 0.03904 | 0.00430
v 0.01804 0.02593 0.04095 0.02662 0.04155 0.00443

A% 0.01808 0.02600 0.04075 0.02669 0.04135 0.00444
15 I 0.01328 0.02139 0.03721 0.02187 0.03768 0.00375
II 0.01334 0.02081 0.03502 0.02130 0.03538 0.00363

12 III 0.01305 0.02004 0.03314 0.02057 0.03358 0.00349
v 0.01308 0.02074 0.03569 0.02118 0.03603 0.00363

\% 0.01308 0.02054 0.03480 0.02104 0.03521 0.00359
I 0.00758 0.01267 0.02367 0.01277 0.02349 0.00224
II 0.00757 0.01178 0.01907 0.01226 0.01957 0.00209

18 111 0.00732 0.01103 0.01820 0.01160 0.01907 0.00213
v 0.00733 0.01145 0.01895 0.01185 0.01930 0.00203

\Y% 0.00749 0.01153 0.01875 0.01201 0.01924 0.00205
30 I 0.00502 0.00920 0.01802 0.00913 0.01762 0.00162
II 0.00505 0.00844 0.01508 0.00864 0.01510 0.00150

24 II1 0.00490 0.00810 0.01395 0.00837 0.01414 0.00144
v 0.00509 0.00841 0.01557 0.00851 0.01545 0.00149

v 0.00491 0.00832 0.01509 0.00847 0.01503 0.00148
I 0.00316 0.00630 0.01319 0.00603 0.01254 0.00120
II 0.00334 0.00502 0.00787 0.00546 0.00843 0.00119

30 II1 0.00314 0.00591 0.00709 0.00532 0.00843 0.00110
v 0.00320 0.00501 0.00828 0.00535 0.00858 0.00120

A% 0.00332 0.00504 0.00801 0.00541 0.00846 0.00121
50 I 0.00202 0.00429 0.00939 0.00397 0.00870 0.00074
II 0.00163 0.00284 0.00537 0.00285 0.00519 0.00050

40 IT1 0.00157 0.00270 0.00470 0.00283 0.00477 0.00048
v 0.00163 0.00311 0.00634 0.00298 0.00594 0.00054
\Y% 0.00158 0.00283 0.00549 0.00286 0.00525 0.00050
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Table 2: Posterior risks of the Bayes estimators under different loss functions for M =
1.5, V =0.5 and ¢ = 1.5 with varying n and m.

n m Scheme Rs(és,G) Rw(éw,e) RM(é]y[,E) Rp(ép,(?) RL(gL,E) RE(éE,G)
I 0.10333 0.06197 0.03981 0.06375 0.04062 0.00424

II 0.10671 0.06034 0.03627 0.06189 0.03693 0.00361

9 III 0.10223 0.05886 0.03425 0.06026 0.03482 0.00328

v 0.10447 0.05951 0.03609 0.06103 0.03674 0.00362

A% 0.10512 0.05959 0.03591 0.06111 0.03656 0.00358

15 I 0.08298 0.05080 0.03300 0.05210 0.03361 0.00356
II 0.08454 0.05018 0.03151 0.05139 0.03206 0.00329

12 III 0.08235 0.04887 0.03023 0.04999 0.03072 0.00311

v 0.08248 0.04974 0.03180 0.05097 0.03236 0.00338

\% 0.08300 0.04954 0.03131 0.05074 0.03185 0.00329

I 0.05713 0.03454 0.02254 0.03517 0.02284 0.00245

II 0.05781 0.03350 0.02014 0.03405 0.02037 0.00201

18 111 0.05565 0.03266 0.01881 0.03314 0.01901 0.00178

v 0.05656 0.03305 0.02005 0.03358 0.02027 0.00202

\Y% 0.05708 0.03315 0.01997 0.03368 0.02020 0.00199

30 I 0.04341 0.02751 0.01803 0.02791 0.01822 0.00197
II 0.04470 0.02715 0.01703 0.02754 0.01720 0.00178

24 II1 0.04304 0.02633 0.01626 0.02669 0.01640 0.00167

v 0.04328 0.02665 0.01696 0.02701 0.01711 0.00180

v 0.04388 0.02682 0.01694 0.02720 0.01710 0.00178

I 0.03341 0.02153 0.01428 0.02177 0.01438 0.00158

II 0.03611 0.02111 0.01260 0.02139 0.01275 0.00125

30 II1 0.03304 0.02067 0.01189 0.02082 0.01197 0.00112

v 0.03499 0.02073 0.01256 0.02099 0.01269 0.00127

A% 0.03575 0.02096 0.01255 0.02123 0.01269 0.00125

50 I 0.02564 0.01654 0.01096 0.01672 0.01102 0.00121
II 0.02711 0.01652 0.01028 0.01680 0.01042 0.00108

40 IT1 0.02551 0.01626 0.00992 0.01653 0.01008 0.00102

v 0.02597 0.01631 0.01023 0.01636 0.01035 0.00109

\Y% 0.02665 0.01631 0.01020 0.01658 0.01033 0.00107
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Table 3: Posterior risks of the Bayes estimators under different loss functions for M =
1.5, V = 0.5 and ¢ = 5 with varying n and m.

n | m | Scheme | Rg(és,€) | Rw(éw,€) | Rym(énrs€) | Rp(ép,e) | Rp(ér,e) | Re(ép,€)
I 0.42824 0.10929 0.02929 0.11180 0.02978 0.00038
I 0.45414 0.10811 0.02689 0.11037 | 0.02730 0.00024
9 II1 0.42607 0.10686 0.02557 0.10896 | 0.02593 0.00019
v 0.44830 0.10729 0.02686 0.10953 | 0.02726 0.00025

A% 0.45130 0.10738 0.02670 0.10960 0.02709 0.00024
15 I 0.39920 0.09701 0.02500 0.09900 0.02537 0.00026
II 0.40501 0.09657 0.02398 0.09845 0.02432 0.00021

12 III 0.39577 0.09525 0.02316 0.09704 0.02347 0.00018
v 0.39643 0.09594 0.02421 0.09784 0.02456 0.00023

\% 0.40057 0.09581 0.02388 0.09767 0.02421 0.00021
I 0.32639 0.07603 0.01829 0.07721 0.01850 0.00012
II 0.35014 0.07496 0.01650 0.07599 0.01667 0.00006

18 111 0.32035 0.07375 0.01550 0.07468 0.01564 0.00005
v 0.34381 0.07412 0.01645 0.07513 0.01661 0.00007

\Y% 0.34731 0.07437 0.01638 0.07538 0.01654 0.00006
30 I 0.28948 0.06482 0.01507 0.06568 0.01522 0.00008
II 0.29772 0.06445 0.01431 0.06524 0.01444 0.00006

24 111 0.28781 0.06322 0.01376 0.06396 0.01388 0.00004
v 0.29046 0.06357 0.01428 0.06435 0.01441 0.00006

v 0.29401 0.06390 0.01425 0.06469 0.01438 0.00006
I 0.25585 0.05446 0.01234 0.05506 0.01244 0.00005
II 0.26513 0.05344 0.01098 0.05394 0.01105 0.00002

30 II1 0.25279 0.05249 0.01029 0.05294 0.01035 0.00002
v 0.25893 0.05279 0.01098 0.05328 0.01105 0.00003

A% 0.26308 0.05307 0.01091 0.05356 0.01099 0.00002
50 I 0.21846 0.04518 0.00998 0.04559 0.01004 0.00003
II 0.21726 0.04486 0.00942 0.04524 0.00948 0.00002

40 IT1 0.21604 0.04379 0.00903 0.04413 0.00908 0.00002
v 0.21716 0.04404 0.00939 0.04441 0.00945 0.00003
\Y% 0.21484 0.04453 0.00939 0.04490 0.00945 0.00002
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Table 4: Posterior risks of the Bayes estimators under different loss functions for n = 20,
effective sample size m = 12 and M = ¢ = 2 with varying V.

V' | Scheme | Rg(és,€) | Rw(éw,€) | Ra(énr,€) | Rp(ép,€) | Rr(ér,€) | Re(ég,¢)
I 0.06189 0.02987 0.01494 0.03005 0.01497 0.00110
IT 0.06176 0.02922 0.01407 0.02939 | 0.01412 0.00097

0.1 II1 0.06106 0.02866 0.01352 0.02878 | 0.01356 0.00089
v 0.06118 0.02902 0.01402 0.02918 | 0.01406 0.00097
A% 0.06138 0.02906 0.01400 0.02923 0.01405 0.00096
I 0.12594 0.05838 0.02862 0.05949 | 0.02898 0.00211
I 0.12861 0.05662 0.02603 0.05758 | 0.02632 0.00169

0.5 I1I 0.12556 0.05507 0.02439 0.05594 0.02465 0.00146
v 0.12624 0.05585 0.02582 0.05679 | 0.02610 0.00169
\% 0.12721 0.05604 0.02578 0.05700 | 0.02607 | 0.00167
I 0.16324 0.07187 0.03438 0.07400 0.03515 0.00249
II 0.16563 0.06979 0.03113 0.07159 | 0.03172 0.00195

2 III 0.16201 0.06808 0.02907 0.06966 | 0.02956 0.00165
v 0.16295 0.06884 0.03082 0.07059 | 0.03140 0.00195
\% 0.16401 0.06906 0.03078 0.07083 0.03136 0.00193
I 0.17110 0.07572 0.03590 0.07821 0.03680 0.00258
II 0.17840 0.07390 0.03251 0.07599 | 0.03320 0.00200

) 11 0.17024 0.07182 0.03028 0.07364 0.03085 0.00169
I\Y 0.17405 0.07254 0.03214 0.07456 0.03281 0.00201
A% 0.17577 0.07291 0.03210 0.07496 | 0.03278 0.00198
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Table 5: Posterior risks of the Bayes estimators under different loss functions for n = 20,
effective sample size m = 12 and M = ¢ = 2 with varying V.

V' | Scheme | Rg(és,€) | Rw(éw,€) | Ra(énr,€) | Rp(ép,€) | Rr(ér,€) | Re(ég,¢)

I 0.05498 0.02696 0.01349 0.02716 0.01353 0.00100

II 0.05550 0.02665 0.01303 0.02686 0.01309 0.00093

0.1 I1I 0.05403 0.02622 0.01271 0.02640 0.01277 0.00089

v 0.05467 0.02643 0.01302 0.02662 0.01307 0.00094

A% 0.05498 0.02650 0.01301 0.02671 0.01307 0.00093
I 0.10182 0.04809 0.02369 0.04891 0.02397 0.00175
IT 0.10364 0.04740 0.02255 0.04816 0.02280 0.00156

0.5 I1I 0.10121 0.04622 0.02164 0.04693 0.02187 0.00145
v 0.10155 0.04680 0.02246 0.04756 0.02271 0.00158

A% 0.10208 0.04691 0.02244 0.04767 0.02268 0.00157
I 0.12428 0.05698 0.02754 0.05838 0.02804 0.00201
IT 0.12810 0.05650 0.02619 0.05779 0.02664 0.00176

2 III 0.12345 0.05494 0.02506 0.05612 0.02545 0.00163
v 0.12413 0.05542 0.02602 0.05668 0.02646 0.00179

\% 0.12567 | 0.05578 | 0.02603 | 0.05705 | 0.02647 | 0.00177

I 0.13010 | 0.05920 | 0.02850 | 0.06078 | 0.02007 | 0.00207

11 0.13389 | 0.05867 | 0.02709 | 0.06012 | 0.02759 | 0.00182

5 I | 0.13001 | 0.05697 | 0.02587 | 0.05829 | 0.02632 | 0.00167

IV | 013283 | 0.05753 | 0.02689 | 0.05895 | 0.02739 | 0.00185

\% 0.13108 | 0.05782 | 0.02689 | 0.05925 | 0.02739 | 0.00183
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