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For the estimation of population mean, there are several ratio and regres-
sion type estimators available in literature. However, they can be misleading
to contain the desired results when data are contaminated by outliers. In
recent past, researchers provided the solution of this issue by utilizing some
robust regression tools and develop a class of ratio type estimators under
simple random sampling scheme. Further they extended the work using ra-
tio technique. In this paper, we proposed a new class of robust regression
type estimators with utilizing LAD, LMS, LTS, Huber-M, Hampel-M, Tukey-
M, Huber-MM as robust regression tools. The desired class is subsequently
extended for two stage sampling, where mean of the study variable is not
available at first stage. Also, we have developed some reviewed and pro-
posed estimators under above mentioned sampling technique. Further, we
have divided our supposition into two cases as: (i)- when drawn a second
stage sample depends upon first stage sample and, (ii)- when drawn a second
stage sample is independent of first stage sample. The mean square expres-
sions of the proposed estimators have been determined through Taylor series
expansion. A real life application and the simulation study are also provided
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to assess existing and proposed estimators. In the light of numerical illus-
tration, we see that our proposed estimators give more efficient results than
the reviewed ones.

keywords: Regression-type estimators, robust regression tools, simple ran-
dom sampling, two stage sampling.

1 Introduction

Now a days, a widely utilized phrase that we are living in the age of information. Utiliz-
ing this phrase, we are not just featuring the volume and speed of existing information
yet in addition underlining the need of its exact stream. The later part of the above
comprehension is legitimately connected with the true intention of the urge of gathering
information. The intention is to empower ourselves of absolutely profiling our environ-
ment and in this way supporting the optimal decision making process. In fulfilling the
need of multidisciplinary request interlocking government issues, business basic leader-
ship, clinical examinations and mental profiling and so on. It is of nothing unexpected if
the sampling theory and method remains at the core of applied research literature. One
of the most significant goal of practices in sampling stays with the estimation of mean
for study variable. To meet this challenge of achieving more precise estimate of popula-
tion mean, ratio method of estimation is the highly praised way utilizing supplementary
information. Laplace in eighteenth century, as an early client/user of supplementary
information in the estimation of total population of France, gave the method of utiliza-
tion of supplementary information in an efficient way. Specifically, he referenced, “The
register of births, which are kept with care in order to assure the condition of the citi-
zens, can serve to determine the population of great empire without resorting a census
of its inhabitants. But for this it is necessary to know the ratio of the population to the
annual birth”, see for example, Lohr (1999).

A vast amount of literature is available on ratio-type and regression-type estimators.
Such as Oral and Oral (2011), Koyuncu (2012), Abid et al. (2016a,b), Shahzad et al.
(2018), Hanif and Shahzad (2019), Bulut and Zaman (2019), Naz et al. (2019) and Irfan
et al. (2019) have suggested several classes of estimators for simple random sampling with
utilizing supplementary information. For more about ratio estimators, we refer Jemain et
al. (2008), Al-Omari et al. (2008), Al-Omari et al. (2009), Al-Omari and Jaber (2010), Al-
Omari (2012), Al-Omari and Bouza (2015), Bouza et al. (2017), Al-Omari and Al-Nasser
(2018). For the estimation of population mean, ratio (product) estimators are better if
correlation is positive (negative) between auxiliary and study variables. The conventional
regression estimators solve the issue related to the sign (positive/negative) of correlation
and provide better results than the traditional ratio or product type estimators. Note
that conventional regression-type estimators are dependent on conventional regression
coefficient, i.e. known as ordinary least square (OLS) regression coefficient. However,
the estimates by OLS become inappropriate when outliers exist in data. For solving this
issue, Kadilar et al. (2007) incorporated Huber-M robust regression technique instead of
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OLS. After that Zaman and Bulut (2019a) extended the idea of Kadilar et al. (2007) and
developed a class of ratio-type-estimators with utilizing some other robust-regression-
tools, such as: least absolute deviations (LAD), least trimmed squares (LTS), least
median of squares (LMS), Hampel-M, Tukey-M and Huber-MM.
The basic purposes of LAD and LMS are to minimize the absolute residuals and me-

dian of squared residuals, respectively. The squared errors are arranged in LTS method
and OLS is run by utilizing observations based on the first (smallest) z errors. The theme
of M estimation is to minimize the q functions that are satisfied under some conditions
Zaman and Bulut (2019a). There are many q functions are available in literature, see
for examples, Huber (1964, 1973), Hample (1971) and Tukey (1977). For more statisti-
cal efficiency and breakdown point, Yohai (1987) presented MM robust regression tool.
For more about these estimation tools, we refer for the interested readers to Zaman
and Bulut (2020) and Ali et al. (2019). Moreover, these techniques have been extended
for stratified random sampling scheme by Zaman and Bulut (2019a) and Zaman (2019)
developed another class of estimators in the same context and achieved the results equiv-
alent to traditional regression estimator. In this work, taking inspiration from Zaman
and Bulut (2020) and Zaman (2019), we introduce a new and improved class of robust-
regression-type estimators for the mean estimation, when study variable contaminated
by outliers. Outliers are the observations in a data set which appear to be inconsistent
with the rest of that data set. Presence of outliers significantly effect mean estimation
which is one of the most important measure of central tendency.
Mean estimators utilizing traditional regression coefficient are being mostly used for

the estimation of population mean, i.e. ‘Y’. However, outliers may have significant
impact on the traditional regression coefficient calculated from OLS tool. Hence the
estimate of population mean i.e. (y), based upon OLS may indicate poor performance.
Kadilar et al. (2007) and Zaman and Bulut (2019a) provided the solution of this issue
by incorporating robust regression coefficients in this context. Robust regression is used
when OLS assumptions are violated. In such circumstances, the robust-regression tools
provide better results because outliers are assigned with lower weight. Zaman and Bulut
(2019a) introduced the following class of estimators utilizing robust regression tools for
the estimation of mean as given in the following form:

ȳzbi =
ȳ + b(i)(X̄ − x̄)

cx̄+ d
(cX̄ + d), i = 1, 2, · · · , 35.

In the above expression, there are x̄ and X̄ are sample and population means of auxiliary
variable, whereas ȳ be the sample mean of study variable. The variances of these unbi-
ased sample means, (x̄, ȳ) are V (x̄) = θS2

x and V (ȳ) = θS2
y . Further, c and d are either

zero or one or some known population measures namely, the coefficient of variation (Cx),
the coefficient of kurtosis (β2(x)) and the robust regression coefficients (b(i)). We have
provided a list of family members of ȳzbi in Table 1.
MSE of Zaman and Bulut (2019a) family of estimators is given below

MSE(ȳzbi) = θ
(
S2
y + g2i S

2
x + 2BigiS

2
x +B2

i S
2
x − 2giSxy − 2BiSxy

)
for i = 1, 2, ..., 35,

(1)
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where, gi =
cȲ

cX̄ + d
and θ = (

1− f

n
) for i=1,2,...,35. Further, S2

y and S2
x are the

unbiased variances of Y and X, respectively. Note that ȳzb16 − ȳzb20 belongs to Kadilar
et al. (2007) in Table 1.
Zaman (2019) introduced the following class of estimators for mean estimation, whose

utilizing robust regression tools as:

ȳzi = k
ȳ + b(i)(X̄ − x̄)

(cx̄+ d)
(cX̄ + d) + (1− k)

ȳ + b(i)(X̄ − x̄)

(cx̄+ d)
(cX̄ + d),

where k is a constant such that it provides the minimum MSE(ȳzi). The MSE of ȳzi is
as follows

MSE(ȳzi) = θ
(
S2
y − 2δSyx + δ2S2

x

)
, (2)

where δ =
(
k(B(i) + g1) + (1− k)(B(i) + gi)

)
.

Zaman (2019) replaced (δ = B) in above MSE expression, and get minimum MSE of ȳzi
as follows

MSE(ȳzi) = θS2
y(1− ρ2), (3)

which is the MSE of traditional regression estimator, i.e. ȳreg = ȳ + b(i)(X̄ − x̄).
The rest of the manuscript is constructed as follows: In Section 2.1, we have proposed

a new class of robust-regression-type estimators. The theoretical mean squared error
(MSE) of proposed class is also derived. Section 2.2 has been dedicated to two stage
sampling scheme. We also introduced the reviewed and proposed estimators under two
stage sampling scheme with their theoretical MSE expressions in Section 2.2. Results
and discussion are provided in Section 3. The manuscript is ended with some concluding
remarks in Section 4.

2 The proposed estimators

2.1 The robust-regression-type-estimators

Taking motivation from Zaman and Bulut (2019a) and Zaman (2019), we propose the
following class of estimators as given below:

ȳNi = k1

(
ȳ + b(i)(X̄ − x̄)

)
+ k2

(
X̄ − x̄

)
for i = 1, 2, ..., 7 (4)

where, k1 and k2 are real constants. Further x̄, ȳ and b(i) have there usual meanings as
defined in Sect. 2. A complete list of family members of proposed techniques is available
in Table 2. To obtain the MSE of (3.1), let us define ȳ = (1 + ηo)Ȳ and x̄ = (1 + η1)X̄.
Utilizing these notations ηi (i = 0, 1), we can write E(ηo) = E(η1) = 0, E(η2o) = θC2

y ,
E(η21) = θC2

x and E(ηoη1) = θCyx. Now expending ȳNi in terms of ηo and η1 as

ȳNi = k1Ȳ

(
1 + ηo −R′b(i)η1

)
− k2X̄η1.
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ȳNi − Ȳ = k1Ȳ

(
1 + ηo −R′b(i)η1

)
− k2X̄η1 − Ȳ . (5)

By taking square of (5), ignoring higher order terms and applying expectation, the MSE
of ȳNi is given below

MSE(ȳNi) = Ȳ 2 + k21ΦAN
+ k22ΦBN

+ 2k1k2ΦCN
− 2k1ΦDN

, (6)

where

ΦAN
= Ȳ 2

(
1 + θ

(
C2
y +R

′
b(i)

(
R

′
b(i)C

2
x − 2Cyx

)))
,

ΦBN
= θX̄2C2

x,

ΦCN
= θX̄Ȳ [R

′
b(i)C

2
x − 2Cyx],

ΦDN
= Ȳ 2,

R
′
=
X̄

Ȳ
.

The MSE is minimized when

kopt1 =

[
ΦBN

ΦDN

ΦAN
ΦBN

− Φ2
CN

]
,

and

kopt2 =

[
− ΦCN

ΦDN

ΦAN
ΦBN

− Φ2
CN

]
.

By substituting kopt1 and kopt2 in (6), we get minimum MSE of ȳNi as given below

MSEmin(ȳNi) =

[
Ȳ 2 −

ΦBN
Φ2
DN

ΦAN
ΦBN

− Φ2
CN

]
. (7)

Remarks 3.1

� By replacing (k1 = 1, b(i) = 0, k2 = 0), ȳNi becomes unbiased mean estimator.

� By replacing (k1 = 1, b(i) = b(i), k2 = 0), ȳNi becomes regression estimator, and
will be equally important as ȳzi or ȳreg.

� In light of above two points, we can say that ȳ, ȳreg, and ȳzi , are the special cases
of ȳNi .
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2.2 Two stage sampling scheme

Whenever, if the desired information about of supplementary variable does not available,
a two-stage sampling plan is utilized for acquiring the improved estimator because of
its financially savvy and simplicity. Neyman (1983) was the first who gave the idea
of two-stage sampling in evaluating the population parameters. This sampling plan is
utilized to get the information about supplementary variable efficiently by selecting a
greater sample from the initial or first stage and moderate size sample (comparatively
small sample as compare to first stage) at the second stage. Sukhatme (1962) utilized
two-stage inspecting plan to develop a family of ratio-type-estimators. For more details
about two-stage sampling, interested readers may refer to Cochran (1977).
Under two-stage sampling plan, we select a first stage sample of size n1 units from the

population of size N using SRSWOR plan. After that we select a second stage sample
of size n2. It is worth mentioning that we are considering two cases for second stage
sample as follows:
Case I: The second stage sample, n2 is a sub-sample of the first stage sample, n1.
Case II: The second stage sample, n2 is independent of the first stage sample i.e. n1.
For more details about these cases, interested readers may refer to Zaman and Kadilar
(2021).

2.2.1 Two stage sampling scheme: adapted estimators

In this sub-section, we are adapting Kadilar et al. (2007) and Zaman and Bulut (2019a)
family of estimators under two-stage sampling scheme as given by

ȳ
′
zbi

=
ȳ2 + b(i)(x̄1 − x̄2)

(cx̄2 + d)
(cx̄1 + d) for i = 1, 2, ..., 35.

In the above expression, (x̄2, ȳ2) representing sample means at second stage and x̄1 be
the sample mean at first stage. Further, c and d have the same meanings as described
in previous section. The family members of ȳ

′
zbi

are same as ȳzbi , available in Table 1.
Zaman and Bulut (2019a) have used Taylor series method for h(ȳ, x̄) = ȳzbi , and
obtained theoretical MSE. In current section, we are adapting their methodology for
h(ȳ2, x̄1, x̄2) = ȳ

′
zbi
, and obtaining MSE for case-I as follows:

MSE(ȳ
′
zbi

)I = dΣd
′
, (8)

where

d =

[
δh(ȳ2, x̄1, x̄2)

δȳ2
|Ȳ ,X̄

δh(ȳ2, x̄1, x̄2)

δx̄1
|Ȳ ,X̄

δh(ȳ2, x̄1, x̄2)

δx̄2
|Ȳ ,X̄

]
,

d = [1 (gi +Bi) − (gi +Bi)] .

∑
=

 V (ȳ2) Cov(ȳ2, x̄1) Cov(ȳ2, x̄2)

Cov(x̄1, ȳ2) V (x̄1) Cov(x̄1, x̄2)

Cov(x̄2, ȳ2) Cov(x̄2, x̄1) V (x̄2)


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where

V (ȳ2) = γ2S
2
y ,

V (x̄1) = γ1S
2
x,

V (x̄2) = γ2S
2
y ,

Cov(ȳ2, x̄1) = Cov(x̄1, ȳ2) = γ1Syx,

Cov(ȳ2, x̄2) = Cov(x̄2, ȳ2) = γ2Syx,

Cov(x̄1, x̄2) = Cov(x̄2, x̄1) = γ1S
2
x.

Utilizing these defined notations of variances and co-variances, and hence substituting
the values of d and Σ in (8), MSE expressions of ȳ

′
zbi

for case-I as follows:

MSE(ȳ
′
zbi

)I = γ2S
2
y + (γ2 − γ1)

(
(gi +Bi)

2S2
x − 2(gi +Bi)Syx

)
.

To obtain MSE for case-II, all the notations will remain same except, Cov(ȳ2, x̄1) =
Cov(x̄1, ȳ2) = 0 and Cov(x̄1, x̄2) = Cov(x̄2, x̄1) = 0. Hence the MSE of ȳ

′
zbi

for case-II
is given by

MSE(ȳ
′
zbi

)II = γ2(S
2
y − 2(gi +Bi)Syx) + (gi +Bi)

2(γ1 + γ2)S
2
x.

As the minimum MSE of Zaman (2019) class of estimators is equal to traditional regres-
sion estimator. So we are considering here traditional regression estimator for two phase
sampling as follows

ȳ
′
reg = ȳ2 + b(i)(x̄1 − x̄2).

Note that, Pradhan (2005) only provide MSE expressions for ȳ
′
reg case-II. So, we incor-

porated their MSE expressions for case-II. We also find the MSE expressions for ȳ
′
reg

case-I.
The MSE of ȳ

′
reg for case-I and case-II respectively, as given below

MSE(ȳ
′
reg)I = S2

y [γ2 − (γ2 − γ1)ρ
2],

MSE(ȳ
′
reg)II = S2

y [γ2 + (γ2 − γ1)ρ
2],

where γ1 =

(
1

n1
− 1

N

)
and γ2 =

(
1

n2
− 1

N

)
.

2.2.2 Two stage sampling scheme: proposed estimators

In current sub-section, we are presenting proposed class of estimators under two-stage
sampling scheme as given bellow

ȳ
′
Ni

= k1
{
ȳ2 + b(i)(x̄1 − x̄2)

}
+ k2 (x̄1 − x̄2) for i = 1, 2, ..., 7
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The family members of ȳ
′
Ni

are same as ȳNi , available in Table 2. To obtain MSE for

case-I, lets us define ηy2 =
ȳ2 − Ȳ

Ȳ
, ηx1 =

x̄1 − X̄

X̄
and ηx2 =

x̄2 − X̄

X̄
.

Utilizing these notations, we can write E(ηy2) = E(ηx1) = E(ηx2) = 0, E(η2y2) = γ2C
2
y ,

E(η2x1
) = γ1C

2
x, E(η2x2

) = γ2C
2
x, E(ηy2ηx1) = γ1Cyx, and E(ηy2ηx2) = γ2Cyx, and

E(ηx1ηx2) = γ1C
2
x. Now, expending ȳ

′
Ni

in terms of η′s as given below:

ȳ
′
Ni

= k1{Ȳ (1 + ηy2) + b(i)X̄(ηx1 − ηx2)}+ k2X̄(ηx1 − ηx2).

ȳ
′
Ni

− Ȳ = k1{Ȳ (1 + ηy2) + b(i)X̄(ηx1 − ηx2)}+ k2X̄(ηx1 − ηx2)− Ȳ . (9)

Squaring (9), applying expectation, we get MSE of the estimator ȳ
′
Ni

upto the order
n−1, as

MSE(ȳ
′
Ni
)I = Ȳ 2 + k21τAN

+ k22τBN
+ 2k1k2τCN

− 2k1τDN
, (10)

where

τAN
=

[
Ȳ 2(1 + γ2C

2
y ) + (γ2 − γ1)b(i)X̄

{
b(i)X̄C

2
x − 2Ȳ Cyx

}]
,

τBN
= X̄2(γ2 − γ1)C

2
x,

τCN
= (γ1 − γ2)X̄[Ȳ Cyx − b(i)X̄C

2
x],

τDN
= Ȳ 2.

Which is minimum for

kopt1 =

[
τBN

τDN

τAN
τBN

− τ2CN

]
,

and

kopt2 =

[
− τCN

τDN

τAN
τBN

− τ2CN

]
.

MSE(ȳ
′
Ni
)I =

[
Ȳ 2 −

τBN
τ2DN

τAN
τBN

− τ2CN

]
. (11)

To obtain MSE for case-II, all the notations will remain same except, E(ηy2ηx1) = 0 =
E(ηx1ηx2). Hence the MSE of ȳ

′
Ni

for case-II as given below

MSE(ȳ
′
Ni
)II = Ȳ 2 + k21ψAN

+ k22ψBN
+ 2k1k2ψCN

− 2k1ψDN
, (12)

where

ψAN
=

[
Ȳ 2(1 + γ2C

2
y ) + b2(i)X̄

2(γ1 + γ2)C
2
x − 2b(i)X̄Ȳ γ2Cyx

]
,

ψBN
= X̄2(γ2 + γ1)C

2
x,

ψCN
= X̄[b(i)X̄(γ1 + γ2)C

2
x − Ȳ γ2Cyx],

ψDN
= Ȳ 2.
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Which is minimum for

kopt1 =

[
ψBN

ψDN

ψAN
ψBN

− ψ2
CN

]
,

and

kopt2 =

[
− ψCN

ψDN

ψAN
ψBN

− ψ2
CN

]
.

MSE(ȳ
′
Ni
)II =

[
Ȳ 2 −

ψBN
ψ2
DN

ψAN
ψBN

− ψ2
CN

]
. (13)

3 Results and Discussion

3.1 Numerical illustration

For the assessment of the proposed and competitor estimators, we consider a real life
application in the form of Population-1 and an artificial population as Population-2.

3.1.1 Real life application

In this sub-section, we utilized the data set available in Singh (2003). This data set is
recently utilized by Ali et al. (2019) for sensitivity issue by adding scramble response
in it. Here, we are considering this data in absence of sensitivity. As there is a non-
negative correlation exist between the study and auxiliary variates, also figures 1 and 2
show non-normality and presence of outliers, respectively, hence suitable for utilization
of robust-regression tools. Results of percentage relative efficiency (PRE) are provided
in Table 3. Some major characteristics of the population are as given below
X = Amount of non-real estate farm loans during 1977 and
Y = Amount of real estate farm loans during 1977.

N = 50 Ȳ = 555.4345 X̄ = 878.1624 b(lts) = 0.3484253

n = 20 Sy = 584.826 Sx = 1084.678 b(hbm) = 0.4123359

ρ = 0.804 β2(x) = 4.617048 b(OLS) = 0.4334034 b(hpm) = 0.4267937

n1 = 16 Cx = 1.235168 b(lad) = 0.3937749 b(tkz) = 0.4187815

n2 = 20 Cy = 1.052916 b(lms) = 0.3396594 b(hmm) = 0.3480814

3.1.2 Simulation study

In this subsection, there is an assessment of proposed and existing estimators performed
with the assumption that all the population parameters are known. But in numerous
genuine circumstances, these parameters are mostly obscure and can’t be speculated
based on past information. Subsequently they should be evaluated. In such circum-
stances, an additional variability is presented in the evaluations that could invalid the
hypothetical examinations. So in this sub-section, we are paying our attention regarding
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Figure 1: The graphical behavior of Population-1 through: (a) Historigram, (b) Scatter
Plot

the PRE examinations at the point when obscure population parameters are assessed
from the selected sample. For this purpose we are performing Monte Carlo simulation.

The simulation design is organized as follows: a random variable Xi ∼ G(2.6, 3.8)
and random variable Yi, which is presented as: Yi = h + RXi + εXp

i . Here we choose,
p = 1.6, h = 5, R = 2 and ε ∼ N(0, 1) with N = 1000 (population size). Here, the
simple random sampling (SRS) is considered for n = 200 and replicated 1000 times. We

examine empirical MSEs’ of ȳzbi , ȳreg and ȳNi as MSE =

∑K′

i=1(zi − Z̄)2

K ′ . Using the

results of empirical MSE we calculated PRE of each estimator, available in Table 4.

We consider same simulation design for two stage sampling. A sample size, n1 = 200
is selected from (Xi, Yi) at first stage and sample of size n2 = 160 is selected at second
stage. The Second stage sample is selected differently for case-I and case-II as per
requirement of no-independence and independence with respect to initial stage sample
i.e. n1, respectively. The pattern of Figures 3 and 4 clearly show for the applicability of
robust-regression tools. The results of PRE for case-I and case-II are provided in Table
4, where PRE is computed with respect to V (ȳ) as:

PRE(θ̂) =
Var(ȳ)

MSE(θ̂)
× 100.

3.2 Discussion

Our findings which are based on the results of numerical illustration (Table 3 and 4) are
highlighted as given below:

� ȳzb9 is given maximum PRE as compared to all the competitors ratio-type-estimators,
under SRS and two stage sampling schemes.
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Figure 2: The graphical behavior of Population-2 through: (a) Historigram, (b) Scatter
Plot

� ȳreg is given maximum PRE as compared to all the competitors ratio-type-estimators,
under SRS and first case of two stage sampling schemes. However, ȳzb9 is perform-
ing better than the usual regression estimator in case-II of two stage sampling
scheme.

� By ignoring fractional values in proposed class, we observe that all the members
of proposed class are equally important under SRS and first case of two stage
sampling schemes. However for case-II, ȳ

′
N2

is performing outclass among all other
proposed estimators.

� All the proposed estimators have maximum PRE over sample mean estimator, ȳzbi ,
ȳzi and ȳreg under SRS and two stage sampling schemes.

According to the real life application and simulated results, we observed that, the
proposed techniques outperform over existing and adapting ones.

4 Conclusion

In this study, we proposed a new family of robust-regression type estimators for mean
estimation, under simple and two-stage random sampling schemes with quantitative
supplementary information is available. We also derived the expressions of MSE and
minimum MSE for the proposed family of estimators. A comparative study is conduced
between new and some existing ones based on theoretical and empirical PRE results.
The findings are clearly showed that the proposed class performs better as compared
to the traditional regressions estimators, such as Zaman and Bulut (2019a) and Zaman
(2019) estimators. Hence, it can be recommended by based on its performance to utilize
them in real life applications. In future studies, we hope to extend this work for handling
the sensitive issue, in light of Ali et al. (2019) article.
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Table 1: Reviewed robust ratio type estimators

Estimators b(i) a b

ȳzb1 b(lad) 1 0

ȳzb2 b(lad) 1 Cx

ȳzb3 b(lad) 1 β2(x)

ȳzb4 b(lad) β2(x) Cx

ȳzb5 b(lad) Cx β2(x)

ȳzb6 b(lms) 1 0

ȳzb7 b(lms) 1 Cx

ȳzb8 b(lms) 1 β2(x)

ȳzb9 b(lms) β2(x) Cx

ȳzb10 b(lms) Cx β2(x)

ȳzb11 b(lts) 1 0

ȳzb12 b(lts) 1 Cx

ȳzb13 b(lts) 1 β2(x)

ȳzb14 b(lts) β2(x) Cx

ȳzb15 b(lts) Cx β2(x)

ȳzb16 b(hbm) 1 0

ȳzb17 b(hbm) 1 Cx

ȳzb18 b(hbm) 1 β2(x)

ȳzb19 b(hbm) β2(x) Cx

ȳzb20 b(hbm) Cx β2(x)

ȳzb21 b(hpm) 1 0

ȳzb22 b(hpm) 1 Cx

ȳzb23 b(hpm) 1 β2(x)

ȳzb24 b(hpm) β2(x) Cx

ȳzb25 b(hpm) Cx β2(x)

ȳzb26 b(tkz) 1 0

ȳzb27 b(tkz) 1 Cx

ȳzb28 b(tkz) 1 β2(x)

ȳzb29 b(tkz) β2(x) Cx

ȳzb30 b(tkz) Cx β2(x)

ȳzb31 b(hmm) 1 0

ȳzb32 b(hmm) 1 Cx

ȳzb33 b(hmm) 1 β2(x)

ȳzb34 b(hmm) β2(x) Cx

ȳzb35 b(hmm) Cx β2(x)
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Table 2: Family members of proposed class

SRS Two stage sampling

Estimators b(i) Estimators

ȳN1 b(lad) ȳ
′
N1

ȳN2 b(lms) ȳ
′
N2

ȳN3 b(lts) ȳ
′
N3

ȳN4 b(hbm) ȳ
′
N4

ȳN5 b(hpm) ȳ
′
N5

ȳN6 b(tky) ȳ
′
N6

ȳN7 b(hmm) ȳ
′
N7
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ȳ
′z
b1

2018.69
ȳ
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ȳ
z
b2

2
1
37.66

ȳ
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ȳ
′z
b3

575.22
ȳ
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ȳ
′z
b2
6

1967.01
ȳ
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ȳ
′z
b3
2

634.05

ȳ
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ȳ
′z
b1
3

2120.53
ȳ
′z
b3
5

2119.93
ȳ
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ȳ
z
b1
5

2
4
24.27

ȳ
N
1

95
3
1.63

ȳ
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ȳ
′N
1

3015.69
ȳ
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ȳ
N
2

95
3
1.26

ȳ
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ȳ
′z
b1
7

549.44
ȳ
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ȳ
′N
6

15215.86

ȳ
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ȳ
′ z
b2
4

18
90

4.
15

ȳ
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ȳ
′ z
b2
6

10
28

.3
3
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ȳ
′ z
b2
9

18
87

2.
06

ȳ
′ z
b7

32
82

.4
6

ȳ
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ȳ z
b3
5

3
67

02
.2
3

ȳ
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