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Generalized fuzzy entropy is more comprehensive than standard fuzzy en-
tropy, as it enhances the performance in theory and application.
New generalized fuzzy entropies are proposed and analyzed. The two pro-
posed measures satisfied the axiomatic requirements of De Luca and Termini
(1972), and hence the validation of the measures is established.
Real life example is studied and the performance of the new measures is
noted and compared to other measures.
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1 Introduction

Shannon (1948) introduced the cornerstone entropy in information theory given by

H(P ) = −
n∑
i=1

p(xi) log(p(xi))

Later on, many generalizations had been introduced and studied; to mention the most
familiar ones, Rènyi’s entropy Rényi (1961) of order α

HR
α (P ) =

1

1− α
log

[ n∑
i=1

(p(xi))
α

]
; α 6= 1, α > 0.

∗raedokour1996@gmail.com
†Corresponding author: m.altalib@yu.edu.jo, maltalib@pmu.edu.sa.

c©Università del Salento
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and, Tsallis entropy of order α, Tsallis (1988)

HT
α (P ) =

1

1− α

[
1−

n∑
i=1

(p(xi))
α

]
; α 6= 1, α > 0.

These entropies have their continuous versions presented by the integrals instead of
summation symbol. Both are directly related to the Shannon entropy through the limits,
as α goes to 1, these entropies will end up with Shannon entropy itself.
Varma (1966) generalized Shannon entropy to order α and β as

HV
α,β(X) =

1

β − α

[ ∫ ∞
0

fα+β−1(x)

]
; β 6= α, β ≥ 1, β − 1 < α < β.

where X is a non-negative continuous random variable with a probability density func-
tion (pdf)f(x). This entropy reduces to Shannon entropy when β = 1 and α→ 1.

Broadly speaking, one-parameter and two-parameter generalizations provides a better
entropy measure, Kumar and Singh (2018) stated that Varma’s entropy measure is much
more flexible due to more parameters; enabling several measurements of uncertainty
within a given distribution and increase the scope of application. Amigó et al. (2018)
emphasizes that the parametric weighting of the probabilities grants data analysis with
additional flexibility. More on generalized entropy measures and applications we refer
the reader to Cover and Thomas (2006), Amigó et al. (2018), Furuichi et al. (2012),
Ciavolino and Calcagǹı (2016); Ciavolino et al. (2014).

Zadeh (1965) introduced the concepts of fuzzy sets, in which fuzziness is considered
as a measure of uncertainty. In which an object is not definitely a member of the set or
not . The following definition presents the fuzzy set.
Definition A fuzzy set A on a universe X = (x1, x2, ..., xn) is given by

A = {〈xi, µA(xi)〉|xi ∈ X,∀i = 1, ..., n},

where 0 ≤ µA(xi) ≤ 1 is the membership degree of xi to belong to the set A.
The complement of a fuzzy set is defined by changing the membership function µA(xi)
by 1− µA(xi), i.e.,

Ac = {〈xi, 1− µA(xi)〉|xi ∈ X,∀i = 1, ..., n},

Afterwards, Zadeh (1968) proposed an entropy measure based on fuzzy set

H(P ) = −
n∑
i=1

µA(xi)p(xi) log(p(xi)),

which is the Shannon entropy of the fuzzy sets and often referred to as (weighed) fuzzy
entropy. Later on, De Luca and Termini (1972) sat up four axioms to a measure in
order to be considered as entropy of a fuzzy set based on Shannons function. Generally,
fuzzy entropy expresses the amount of average uncertainty or the difficulty in making
sure that an element should belong to a set or not. A measure of fuzziness in a fuzzy
set should have at least the following axioms:
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• P1 (Sharpness): H(A) is minimum if and only if A is a crisp set; i.e. µA(xi) = 0
or 1, ∀i.

• P2 (Maximality): H(A) is maximum if and only if A is the fuzziest set; i.e.
µA(xi) = 0.5 ∀i.

• P3 (Resolution): H(A∗) ≤ H(A), where A∗ is a crispier set in comparison with
A (or the set A is fuzzier).

• P4 (Symmetry): H(A) = H(Ac), i.e., µA(xi) = 1− µA(xi).

De Luca and Termini (1972) presented a dynamic fuzzy entropy given by

H(A) = − 1

n

n∑
i=1

[
µA(xi) logµA(xi) +

(
1− µA(xi)

)
log
(
1− µA(xi)

)
,

]
.

Bhandari and Pal (1993) extended the idea of Renyi entropy and introduced the following
measure;

HFR
α (A) =

1

1− α

n∑
i=1

log

[
µA(xi)

α +
(
1− µA(xi)

)α]
; α 6= 1, α > 0.

Al-Talib and Al-Nasser (2018) proposed a fuzzy entropy measure outperform the existing
generalized measures in terms of the informative degree, the measure is as follows;

HNT
α (A) =

n∑
i=1

[
µA(xi)

α/2
(
1− µA(xi)

)α/2
µA(xi)e

−α
(
1−µA(xi)

)
+
(
1− µA(xi)

)
e−αµA(xi)

]1/α
; α > 0,

the importance of the above measure is especially used in multi criteria decision making
problems, and the performance in fuzzy setting. In this article, we are interested in
generalizing Al-Talib and Al-Nasser (2018) to a two-parameter fuzzy measure.

2 Generalized entropy of order α and β

As pointed out earlier, generalizing a measure guaranties flexible and more applicable
measures. We propose the following measures as generalizations to Al-Talib and Al-
Nasser (2018).

Nβ
α (A) = eβ−α ·

n∑
i=1

[
µA(xi)

α−β
2

(
1− µA(xi)

)α−β
2

µA(xi)e
(β−α)

(
1−µA(xi)

)
+
(
1− µA(xi)

)
e(β−α)µA(xi)

] −1
β−α

, (1)

where, α > 0, and 0 < β < 1, α 6= β.

Qβα(A) = e
1

α−β ·
n∑
i=1

[
µA(xi)

α−β
2

(
1− µA(xi)

)α−β
2

µA(xi)e
(β−α)

(
1−µA(xi)

)
+
(
1− µA(xi)

)
e(β−α)µA(xi)

] −1
β−α

, (2)
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where, α > 0, and 0 < β < 1, α 6= β.

The resemblance between the proposed measures and Al-Talib and Al-Nasser (2018) is
beneficial as we have a certain degree of confident that the axioms of De Luca and Termini
(1972) are satisfied. Nevertheless, the following theorems shows that both proposed
measures are valid fuzzy entropy measures.

Theorem 2.1 The measure given in equation (1) satisfies all axiomatic requirements
of being a fuzzy entropy measure.

Proof: we will prove the pre-stated axioms P1–P4
• P1 (Sharpness):
substituting the value of µA(xi) by 0 or 1, the numerator of equation (1) becomes 0 and

hence Nβ
α (A) is 0, for all α > 0, and 0 < β < 1. Conversely, setting Nβ

α (A) to zero,
follows that

µA(xi)
α−β
2
(
1− µA(xi)

)α−β
2 = 0,

then, µA(xi) = 0 or 1.
• P2 (Maximality):

The first derivative of Nβ
α (A) with respect to µA(xi) is given in APPENDIX A1, and we

observe the following:
setting 0 ≤ µA(xi) < 0.5, the first derivative is positive, and when 0.5 < µA(xi) ≤ 1,
the derivative is negative, ∀α > 0 and 0 < β < 1. When µA(xi) = 0.5, we end up with
∂Nβ

α (µA(xi))
∂µA(xi)

= 0.
The following figure presents these findings.

Figure 1: First derivative of Nβ
α (A) at different values of α and β (blue line (0.2,0.3),black

line(0.8,0.4),red line(2,0.6),green line(4,0.1), yellow line(16,0.6))
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Its clear that, Nβ
α (µA(xi)) has its maximum at µA(xi) = 0.5, i.e., when the entropy

measure is at it fuzziest phase. For more investigation, we evaluate the second derivative
(see Appendix A2).

The figure below shows the second derivative, we note that the its always negative for
different values of α and β. It reaches its maximum at µA(xi) = 0.5.

Figure 2: Second derivative of Nβ
α (A) at different values of α and β (blue line

(0.2,0.3),black line(0.8,0.4),red line(2,0.6),green line(4,0.1), yellow line(16,0.6))

• P3 (Resolution):
Table(APPENDIX A3) presents numerical values of the proposed entropy measure for
different values of α and β alongside Figure 1, that the most fuzzy values appears when
the membership function have a value of 0.5. Also the concavity is clear; as the values of
the entropy measure are increasing when µA(xi) is between 0 and 0.5, and are decreasing
between 0.5 and 1. which proves Axiom P3; that the crispier the set (less membership
function value) the lower the value of the entropy measure. It is notable that the value
of the entropy measure is 0 when µA(xi) equals 0 or 1, which goes along with Axiom
P1.
• P4 (Symmetry):

Substituting µA(xi) by 1− µA(xi) in measure 1, we end up with Nβ
α (µA(xi)) = Nβ

α (1−
µA(xi)),∀i. this conclusion can be obtained by noticing symmetry from Figure 2 and
the results from Table APPENDIX A3.

And hence, the proof is done.

Theorem 2.2 The measure given in equation (2) satisfies all axiomatic requirements
of being a fuzzy entropy measure.
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Proof: we will prove the pre-stated axioms P1–P4
• P1 (Sharpness):
substituting the value of by 0 or 1, the numerator of equation (2) becomes 0 and hence

Qβα(A) is 0, for all α > 0, and 0 < β < 1. Conversely, setting Qβα(A) to zero, follows
that the numerator equals to zero, i.e.,

µA(xi)
α−β
2
(
1− µA(xi)

)α−β
2 = 0,

then, µA(xi) = 0 or 1.
• P2 (Maximality):

Appendix B1. presents the first derivative of Qβα(A) with respect to µA(xi),we notice
that; when 0 ≤ µA(xi) < 0.5, the first derivative is positive, and when 0.5 < µA(xi) ≤ 1,
the derivative is negative, ∀α > 0 and 0 < β < 1. When µA(xi) = 0.5, we end up with
∂Qβα(µA(xi))
∂µA(xi)

= 0. The following figure presents these findings.

Figure 3: First derivative of Qβα(A) at different values of α and β (blue line (0.2,0.3),black
line(0.8,0.4),red line(2,0.6),green line(4,0.1), yellow line(16,0.6))

Its clear that, Qβα(µA(xi)) has its maximum at µA(xi) = 0.5, i.e., when the entropy
measure is at it fuzziest phase. For more investigation we evaluate the second derivative
and its presented in Appendix B2.

The figure below shows the second derivative, we note that the its negative and reaches
its maximum at µA(xi) = 0.5.
• P3 (Resolution):

Table(APPENDIX B3) presents numerical values of the proposed entropy measure for
different values of α and β alongside Figure 3 that the most fuzzy values appears when
the membership function have a value of 0.5, also the concavity is clear; as the values of
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Figure 4: Second derivative of Qβα(A) at different values of α and β (blue line
(0.2,0.3),black line(0.8,0.4),red line(2,0.6),green line(4,0.1), yellow line(16,0.6))

the entropy measure are increasing when µA(xi) is between 0 and 0.5, and are decreasing
between 0.5 and 1. which proves Axiom P3; that the crispier the set (less membership
function value) the lower the value of the entropy measure. It is notable that the value
of the entropy measure is 0 when µA(xi) equals 0 or 1, which goes along with Axiom
P1.
• P4 (Symmetry):

Substituting µA(xi) by 1− µA(xi) in measure 1, we end up with Nβ
α (µA(xi)) = Nβ

α (1−
µA(xi)),∀i. this conclusion can be obtained by noticing symmetry from Figure 3 and
the results from Table APPENDIX B3.

And hence, the proof is done.

3 Application and comparison

In linguistics, phrases such as ” less”, ” more”, ”very” are used to express ambiguity or
probability. These phrases posses fuzziness and uncertainty, hence they are considered
as fuzzy sets. For more details see, Hung and Yang (2006).
Linguistic hedges and phrases are defined on a fuzzy set A as follows:

Very A=A2, more or less A = A1/2

Quite Very A = A3, Very very A = A4

where,

An = {〈xi, (µA(xi))
n〉|xi ∈ X,∀i = 1, ..., n},
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the entropy should satisfy the following requirement to be considered to have a good
performance:

H(A1/2) > H(A) > H(A2) > H(A3) > H(A4) (3)

Joshi and Kumar (2018) presented a two-parameter fuzzy entropy measure to study
the discriminate power of that attribute in decision- making process, they stated ”the
greater the value of entropy corresponding to a special attribute, which implies the
smaller attribute’s weight, the less is the discriminate power of that attribute in decision-
making process.”
Their proposed measure (denoted here as JKH

β
α) compared and was found to be superior

to the well known entropy measures. In Table (1), we subject to the same data set used
by Joshi and Kumar (2018).

Table 1: Results of different fuzzy entropy measures

Fuzzy set JKH
15
0.5 N15

0.5 Q15
0.5

A1/2 0.4672 0.1216 ∗ 10−7 1.7521

A 0.4134 0.1037 ∗ 10−7 1.6309

A2 0.2834 0.6720 ∗ 10−8 1.2045

A3 0.2202 0.5327 ∗ 10−8 0.9249

A4 0.1906 0.4756 ∗ 10−8 0.7566

From the below table that both of our proposed measures satisfies equation (3), i.e.,

Nβ
α (A1/2) > Nβ

α (A) > Nβ
α (A2) > Nβ

α (A3) > Nβ
α (A4),

Qβα(A1/2) > Qβα(A) > Qβα(A2) > Qβα(A3) > Qβα(A4).

Despite that Qβα has the worst results among the three measures, but we can see that
the other proposed measure; Nβ

α have great performance. which nominates it to be
called the crispiest fuzzy measure.

4 Conclusion

In this article, we proposed two new fuzzy entropy measures of order α and β, a gener-
alization of Al-Talib and Al-Nasser (2018). We managed to prove that both measures
are indeed fuzzy entropy measures. a real life application proves the effectiveness of one
of the measures. In future, we will propose an interval valued fuzzy measure based on
the results of this work .
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α
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A
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