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1 Introduction

Many studies have focused on different topics related to students, on the relative impor-
tance of placement quality and an integrated curriculum for the development of student
learning outcomes in terms of general competence, knowledge and skills (Caspersen et
al., 2020), on students’ experiences of their own engagement with feedback and assess-
ment practices in higher education (Vattøy et al., 2020). In recent years, the student
learning has become a topic of growing interest and importance in higher education.
Researchers focused on creating tools to track student progress over time. In this study
progress testing has been presented as a tool to monitor students’ learning throughout
their university career. In particular, this work aims to test the performance of Italian
medical and dental schools and above all the growth of knowledge in the various years
analyzed through the use of a growth curve.
Progress testing is a longitudinal test approach based on equivalent tests given at fixed
intervals with the intention of assessing the development of functional knowledge or
competence. Historically, progress testing was a new approach to assessment. Since its
inception in the late 1970s at both Maastricht University and the University of Missouri-
Kansas City independently, the progress testing of applied knowledge has been increas-
ingly used in medical and health sciences programs (both undergraduate and postgrad-
uate) across the globe. Nowadays, progress testing is used in many medical schools,
in inter-institutional collaborations or for single programs (Ali et al., 2016; Freeman et
al., 2010; Tio et al., 2016; Wrigley et al., 2012). It is currently used in the national
progress test consortia of the United Kingdom, Italy, The Netherlands and Germany
(including Austria) and in individual schools in Africa, Saudi Arabia, South East Asia,
the Caribbean, Australia, New Zealand, Sweden, Finland, and the USA. The National
Board of Medical Examiners in the USA also provides progress tests in various coun-
tries. The feasibility of an international approach to progress testing has recently been
acknowledged and was first demonstrated by Albano et al. (1996), who compared test
scores across German, Dutch, and Italian medical schools. An international consortium
has been established in Canada involving faculties in Ireland, Australia, Canada, Por-
tugal, and the West Indies. Considerable empirical evidence from medical schools, as
well as from postgraduate medical studies and schools in dentistry and psychology, has
shown that the longitudinal approach of progress testing provides a unique and demon-
strable measurement of the growth and effectiveness of students’ knowledge acquisition
throughout their course of study (Van der Vleuten et al., 2018). According to Chen et
al. (2015), “progress test in a medical programme is designed to assess applied medical
knowledge at the level of a new graduate and are administered to all students across
all years of a programme”. This kind of test is intended to discourage students from
preparing specifically for a test and then put aside that knowledge. The progress test
should promote meaning-orientated learning and also foster long-term knowledge reten-
tion, while reducing superficial learning strategies such as rote learning (Chen et al.,
2015). Frequently, a number of tests are set in each academic year, each consisting of
a large number of questions pitched at graduate level functional (relevant) knowledge.
Each of these tests is taken by students of multiple or all year classes. Sometime, the
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results of each individual test are combined in a compensatory way to form the basis for
a promotion decision at the end of the year. The test is comprehensive in that it consists
of questions covering a broad domain of relevant medical knowledge, and it is organi-
zationally founded on centralized test production, review, administration and analysis.
There are various different implementations possible, and more detailed descriptions are
provided in the literature (Schuwirth et al., 2012; Swanson et al., 2010).
In Italy, progress testing is now performed both in medical schools and dental schools.
In medical schools, since its inception in 2006, progress testing has been increasingly
used (from 50% of schools in 2006 to 94% of schools in 2019) and the number of partic-
ipating students has increased from 3.300 to more than 38.000 (Tenore et al., 2016). In
2018, the test has been redesigned on the basis of formal characteristics that have partly
brought it closer to the new state exam, becoming a Training Test (TT), or training
in view of the future state exam (Recchia et al., 2019). The aim of this training test
was to train students to pass a national state exam and therefore the questions were not
extracted by drawing on large and qualified international databases but it was necessary
to strictly adhere to the “core curriculum” of the degree courses in Medicine, developed
by Permanent Conference of the Presidents of the Undergraduate Dentistry and Dental
Prosthodontics Curriculum (Conferenza Permanente dei Presidenti di Corso di Laurea
Magistrale in Odontoiatria e Protesi Dentaria) (Gallo , 2018). In March 2017, for the
first time, progress testing was established for all Italian Dental Schools, on a voluntary
basis, as an initiative of the Permanent Conference of the Presidents of the Undergrad-
uate Dentistry and Dental Prosthodontics Curriculum (Crocetta et al., 2018), with a
third wave in 2019. The results of each individual test do not form the basis for a pro-
motion decision at the end of the year, but, instead, are used, principally, to assess the
performance of each Italian medical/dental university. The many different descriptions
of progress testing, over time and across countries, largely converge on the principle of
a longitudinal repeated assessment of students’ functional knowledge.
Recently, Karay and Schauber (2018) have examined the relation between the growth tra-
jectories obtained from progress tests using a Latent Curve Modeling (LCM) approach.
As Hox and Stoel (2005) wrote in their work “a broad range of statistical methods exists
for the analysis of data from longitudinal designs. Each of these methods has specific
features and the use of a particular method in a particular situation depends on aspects
such as the type and objective of the research”. The central concern of longitudinal
research, however, revolves around the description of patterns of stability and change
and the explanation of how and why change does or does not take place (Kessler and
Greenberg, 1981). A common design for longitudinal research in the social sciences is
panel or repeated measures design, in which a sample of subjects is observed at more
than one point in time (Hox and Stoel, 2005). If all individuals provide measurements
at the same set of occasions, we have a fixed occasions design. When the occasions are
varied, we have a set of measures taken at different points in time for different individu-
als. Such data occur, for instance, in growth studies, where individual measurements are
collected for a sample of individuals at different occasions in their development (Growth
Modeling or LCM). The data collection could be at fixed occasions, but the individuals
will have different ages. Growth analysis is used to obtain a description of the mean
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growth in a population over a specific period of time. However, the main emphasis
consists in explaining the variability between subjects in the parameters that describe
their growth curves, that is, in the inter-individual differences in intra-individual change
(Willett and Sayer, 1994). LCM can be implemented and estimated within a variety of
frameworks including the structural equation modeling (SEM) framework (Bollen, 1989;
Kaplan, 2008), the mixed-effects (multilevel, random coefficient) (Goldstein, 2011; Hox,
2002), modeling framework (Singer et al., 2003), and the Bayesian modeling framework
(Zhang et al., 2007). The explicit invocation of latent variables (LVs) afforded by the
SEM makes this framework the one most commonly used to implement and estimate
latent growth models (Curran, 2003; Stoel et al., 2004). The SEM framework is often
used to study change processes because this framework provides an opportunity to spec-
ify multiple latent variables as predictors and outcomes.
SEM techniques include two main methods: covariance-based SEM (CB-SEM), repre-
sented by LISREL (Jöreskog and Van Thillo, 1972) and variance-based SEM, with Partial
Least Squares - Path Modeling (PLS-PM) or called Partial Least Squares - Structural
Equation Modeling (PLS-SEM) (Henseler and Chin, 2010; Tenenhaus et al., 2005; Wold,
1975, 1982). PLS-PM can be used to implement and to estimate latent growth models.
The aim of this paper is, on the one hand, to demonstrate how PLS-PM can be used
in latent growth models and, on the other, to address the question of whether or not
progress testing results can be used to evaluate medical schools. If between-schools dif-
ferences in initial levels of performance (intercepts) and within-school rates of growth
(slopes) constitute sources of information on the development of knowledge, data from
tests can be legitimately used to formulate hypotheses on medical and dental schools’
patterns of knowledge growth and to stress the possible relations between initial levels
of performance (intercepts) and the growth of knowledge (slopes), as well as their re-
lation to other criteria (for example, the success of the university graduates in finding
employment). In order to address this question, we use LCM with PLS-PM.
This is the first study exploring undergraduate experiences of Progress testing in health-
care education and the research presents some limits principally attributed to the data
available and the type of survey. This work analyzes the only cohort available for only
three years and this does not allow us to make comparisons between different cohorts
and understand if there are differences between the learning and knowledge of students
in the various cohorts. Furthermore, the test was administered on a voluntary basis and
this can lead to biased results. Aware of the limits, however, this study would like to be
a kind of experiment to show that it is possible to study trajectories with growth curves
and in particular by using PLS-PM.
After an introduction to latent curve modeling, our attention will be focused on the
PLS-PM approach. Longitudinal data from progress testing at Italian Dental Univer-
sity Schools will be analyzed by using a PLS-PM LCM approach. The results will be
described in detail and some concluding remarks will be given.
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2 Theoretical framework

2.1 Latent Curve Modeling

LCM is an increasingly popular approach in the analysis of longitudinal data. Though
the models go by many names (e.g. latent curve models, growth curve models, latent
growth models, growth models and latent trajectory models), they all refer to statistical
models for longitudinal data that allow each individual in the sample to have distinct
over-time trajectories of change (Bollen and Curran, 2006). LCMs emerged within SEM,
but a similar technique for growth analysis was developed within the Multi-Level Mod-
eling (MLM) framework. Mathematically, these two approaches to growth analysis can
be made equivalent both are instances of the general linear model (Stoel et al., 2004).
As a consequence, both allow for an estimation of intercept and slope means (fixed ef-
fects) and variances (random effects). Further, if equivalent models are estimated, the
parameter estimates will be identical. Nevertheless, growth analyses in SEM and MLM
use different modeling frameworks. MLM uses a regression model framework (Goldstein,
2011; Hox, 2002) whereas SEM involves a LV framework. Thus, in MLM time is a vari-
able in the dataset and an independent variable in the regression model, whereas in SEM
time is represented by the factor loadings on the latent growth factors (the intercepts
and slopes). The use of different frameworks results in a number of differences between
the two approaches and thus the relative strengths and limitations of each. Although
LCM with SEM is not always the best approach, it is the most flexible in most cases.
The general growth curve model, for the repeatedly measured variable yti of an individ-
ual i at occasion t, with a time - invariant covariate (zi) and a time-varying covariate
xti may be written as:

yti = λ0tξinti + λ1tξlini
+ γ2txti + ϵti

ξinti = ν0 + γ0zi + ζ0i

ξlini
= ν1 + γ1zi + ζ1i

(1)

where λ1t denotes the time of measurement and λ0t a constant equal to the value
of 1. In a fixed occasions design, λ1t will typically be a consecutive series of integers
(0,1,2,...,T) equal to all individuals, while in a varying occasions design λ1t can take
on different values across individuals. The individual intercept and slope of the growth
curve are represented by ξinti and ξlini

, respectively, with expectations ν0 and ν1, and
random departures or residuals, ζ0i and ζ1i, respectively. γ2t represents the effect of the
time-varying yt−1i ; γ0 and γ1 are the effects of the time-invariant covariate on the initial
level and linear slope. Time-specific deviations are represented by the independent and
identically standard normal distributed ϵti, with variance σ2

ϵ . The variances of ζ0i and
ζ1i, and their covariance are represented by:

Σζ =
σ2
0

σ2
1σ

2
2

(2)
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Furthermore, it is assumed that cov(ϵitϵit′)=0, cov(ϵitξinti)=0, cov(ϵitξlini
)=0. Within

MLM, ξinti and ξlini
are the random parameters, and λ1t is an observed variable repre-

senting time. In LCM-SEM ξinti and ξlini
are the LVs and λ0t and λ1t are the parameters,

that is, the factor loadings. Thus, the only difference between the models is the way in
which time is incorporated. In MLM time is introduced as a fixed explanatory variable,
whereas in LCM-SEM it is introduced via the factor loadings. Therefore, in longitudi-
nal MLM an additional variable is added, while in the LCM the factor loadings for the
repeatedly measured variable are constrained in such a way that they represent time.
The consequence of this is that with reference to the basic growth curve model, MLR
(Multi-Level Relational) is essentially a univariate approach, with time points treated
as observations of the same variable, whereas the LCM is essentially a multivariate
approach, with each time point treated as a separate variable (Stoel et al., 2004). The
model in (1) can be extended in several ways. First, let us assume that we have collected
data on several occasions from individuals within classes, and that there are (systematic)
differences between the classes in terms of intercepts and slopes. The model in (1) can
easily account for such a “three-level” structure by adding the class-specific subscript j.
The model then becomes:

ytij = λ0tξintij + λ1tξlinij
+ γ2tyt−1ij + ϵtij

ξintij = ν0j + γ0zi + ζ0ij

ξlinij
= ν1j + γ1zi + ζ1ij

ν0j = ν0 + ζ2j

ν1j = ν1 + ζ3j

(3)

The mean intercept and slope may be different across classes. If ζ2j and ζ3j are con-
strained to zero, the model turns into (1). It is straightforward to incorporate class level
covariates and additional higher levels in the hierarchy.
Secondly, the model in (1) can be easily extended to include multiple indicators of a con-
struct at each occasion explicitly. This approach has been termed second-order growth
modeling, in contrast to first-order growth modeling in relation to the observed indi-
cators (Figure 1). If the items of each occasion are R, yrti can be modeled directly,
as indicators of a latent construct or factor at each measurement occasion. The model
incorporating all yrti explicitly, then becomes:

yrti = αr + λrτti + ϵri

τti = λ0tξinti + λ1tξlini
+ γ2tyt−1i + ζti

ξinti = ν0j + γ0zi + ζ0ij

ξlini
= ν1 + γ1zi + ζ2j

(4)

where αr and λr represent, respectively, the item specific intercept and factor loading
of item r, and ϵrii is a residual. τti an individual and time-specific latent factor corre-
sponding to yti of model (1) and ζti a random deviation corresponding to ϵti of model
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Figure 1: (a) First-order growth modeling - SEM model. (b) Second-order growth mod-
eling - SEM model. Source: Geiser et al. (2013)

(1). The growth curve model is subsequently built on the latent factor scores τti with
λ1t representing the time of measurement and λ1t a constant equal to the value of 1.
This model thus allows for a separation of the measurement error ϵri and individual
time-specific deviation ζti. In model (1) these components are confounded in ϵti.

Thirdly, it is possible to estimate a non-linear model. Thus, instead of constraining
λ1t to, for example [0,1,2,3...T], some elements are left free to be estimated, providing
information on the shape of the growth curve. For purposes of identification, at least
two elements of λ1t need to be fixed. The remaining values are then estimated to
provide information on the shape of the curve; λ1t then becomes [0,1,λ12,λ13,...,λ1T−1].
Therefore, essentially, a linear model is estimated, while the non-linear interpretation
comes from relating the estimated λ1t to the real time frame (Meredith and Tisak, 1990;
Stoel et al., 2004). The transformation of λ1t to the real time frame gives the non-linear
interpretation.

2.2 The PLS-PM approach/estimator to SEM

In the previous paragraph, we have analyzed LCM from the perspective of CB-SEM.
Recently, Roemer (2016) has proposed using the component-based approach to SEM
(PLS-PM) (Vinzi Esposito et al., 2010; Tenenhaus et al., 2005; Wold, 1982) in a longi-
tudinal study. Both methods, CB-SEM and PLS-PM are complementary rather than
competitive (Hair et al., 2017). Even though this issue is well-known (Jöreskog andWold,
1982), many researchers still focus on comparing the differences between model estima-
tions when using CB-SEM or PLS-PM composite models (Hair et al., 2014). As Hair et
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al. (2017), we believe that PLS-PM researchers should follow Rigdon (2014) suggestion
and begin emancipating the method from its CB-SEM sibling (Rigdon, 2014; Sarstedt
et al., 2020). For example, Fornell and Bookstein (1982), Hair et al. (2011), Hair et al.
(2012), Jöreskog and Wold (1982) and Reinartz et al. (2009) provide recommendations
about when to use CB-SEM and when PLS-PM. The most important reason driving the
selection of either CB-SEM or PLS-PM is the research goal (structure or prediction):
the primary purpose of the CB approach is to study the structure of the observables,
the primary purpose of the PLS approach is to predict the indicators by means of the
component expansion (Jöreskog and Wold, 1982).
Generally, the choice of using the PLS-PM is particularly useful for several reasons.
This approach has as its main advantages its applicability to small sample, the abil-
ity to estimate quite complex models (with many latent and observable variables) and
less restrictive requirements concerning normality and variable and error distributions
(Henseler et al., 2009). Furthermore, PLS-PM approach provides the possibility of work-
ing with missing data and in the presence of multi-collinearity. Another advantage of
this approach, as compared to other multivariate techniques, is that it examines simulta-
neous a series of dependence relationship, using a single statistical approach to test the
full scope of projected relations (Hair et al., 1998). Furthermore, this approach provides
researchers with much more flexibility as it enables using both formative and reflective
measurement models, providing a more nuanced testing of theoretical concepts (Hair et
al., 2011). It is advisable to use the PLS-PM because it is very flexible and robust and
does not require distributive assumptions and lower requirements for model identifica-
tion (Lauro et al., 2018; Ciavolino and Nitti, 2013; Ciavolino et al., 2022b).
In accordance with Roemer (2016), we posit that PLS path modeling is highly appropri-
ate for an analysis of the development and change in constructs in longitudinal studies,
since it offers three favorable methodological characteristics. First, constructs often need
to be predicted in evolutionary models (Johnson et al., 2006; Shea and Howell, 2000).
Secondly, model complexity quickly increases when development and change need to be
analyzed in longitudinal studies. This is due to the larger number of constructs that are
measured at different points in time and the respective effects between those constructs
(Johnson et al., 2006). PLS-PM is well suited to dealing with such complex models
(Fornell and Cha, 1994; Wold, 1985). Thirdly, sample sizes can become quite small in
longitudinal studies (Jones et al., 2002). PLS-PM is particularly appropriate in such
cases (Hair et al., 2014). Furthermore, many developments recently made in the PLS-
PM algorithm may be very useful if applied to longitudinal studies, and particularly, if
applied to estimate LCMs. PLS-PM is now a full-fledged variance-based estimator for
SEM that can estimate linear, non-linear, recursive and non-recursive structural models
(Dijkstra and Henseler, 2015a,b). Moreover, it is capable of dealing with Higher-Order
Construct Models (Cataldo et al., 2017; Ciavolino et al., 2015; Rajala and Westerlund,
2010) and ordinal categorical indicators (Schuberth et al., 2008). It can incorporate
sampling weights known as weighted partial least squares (Becker and Ismail, 2016),
and address multicollinearity among the constructs in the structural model (Jung and
Park, 2018). Finally, it can also be used for multiple group comparison (Sarstedt et al.,
2011). To analyse the progress test data, we have proposed using consistent PLS-Higher-



Electronic Journal of Applied Statistical Analysis 9

(a) without the impact of ξIti−1
on ξIti (b) with the impact of ξIti−1

on ξIti

Figure 2: Growth modeling - PLS-PM model three times with m indicators in each n
times

Order Construct Modeling. Other developments, such as non-linear PLS-PM, will be
used in our future research.

2.3 Latent Curve Models with the PLS-PM approach

In Wold (1982) original design of PLS-PM it was expected that each construct would
necessarily be connected to a set of observed variables. On this basis, Lohmöller (2013)
proposed a procedure to treat hierarchical constructs, the so-called hierarchical compo-
nent model. This kind of model allows for a reduction of the model complexity and theo-
retical parsimony (Ciavolino, 2012; Ciavolino et al., 2022a). Sarstedt et al. (2019) provide
in their study the guidance that scholars, marketing researchers, and practitioners need
when using Higher-Order constructs in their studies. There are several main reasons for
the inclusion of a Higher-Order Construct Model: Higher-Order Construct Models prove
valuable if the constructs are highly correlated; the estimations of the structural model
relationships may be biased as a result of collinearity issues, and a discriminant validity
may not be established. In situations characterized by collinearity among constructs, a
Second-Order Construct can reduce such collinearity issues and may solve discriminant
validity problems. PLS path modeling allows for the conceptualization of a hierarchical
model, through the use of the main approaches existing in the literature: the Repeated
Indicators Approach (Lohmöller, 2013), the Two Step Approach (Rajala and Wester-
lund, 2010) and the Hybrid Two Step Approach (Ciavolino and Nitti, 2013), then taken
up by Cataldo et al. (2017) with the name of Mixed Two Step Approach. The Repeated
Indicators Approach is the most popular approach when estimating Higher-Order Con-
structs in PLS-PM (Wilson, 2010). The different approaches concern the determination
of the Higher-Order construct, leaving the inner model unchanged. Regardless of the
approach used, we propose using a Higher-Order Construct Model to estimate a LCM.
An example, with three points in time, is presented in Figure 2.

The Higher-Order LV ξIIint describes the mean growth, and the LV ξIIlin.the mean slope.
ξIIint is reflected in the construct of first order ξIt0 , ξIt1 ....ξ

I
tn . The construct of second

order ξIIlin is reflected in the construct of first order ξIt1 ....ξ
I
tn . The equations of the inner

model are:
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ξIIlin = β0lin + βξintξlinξ
II
int + ζlin

ξIt0 = β0t0 + βξintt0ξ
II
int + ζt0

ξIt1 = β0t1 + βξintt1ξ
II
int + βξlint1ξ

II
lin + ζt1

...

ξIti = β0ti + βξinttiξ
II
int + βξlintiξ

II
lin + ζti

ξItn = β0tn + βξinttnξ
II
int + βξlint1ξ

II
lin + ζtn

(5)

where:

- βξintξlin is the strength and sign of the relations between construct ξIIlin and the
predictor construct ξIIint;

- βξintξlin representing the growth mean rate;

- βξintti is the strength and sign of the relations between construct ξIti and the pre-
dictor construct ξIIint;

- βξlinti is the strength and sign of the relations between construct ξIti and the con-
struct ξIIlin.

They indicate how both intercept and slope factors contribute to explaining each time.
β0 is just the intercept term and ζ accounts for the residuals. The intercept term β0 of
each equation should always be non-significant. If we introduce the impact of the LV
at i-1 time (ξIti−1

) on the LV at i time (ξIti), for its better prediction (ξIt0 → ξIt1 ; ξ
I
t1 →

ξIt2 ;....; ξ
I
tn−1

→ ξItn) as in Figure 2 (b), the equations of the inner model become:

ξIIlin = β0lin + βξintξlinξ
II
int + ζlin

ξIt0 = β0t0 + βξintt0ξ
II
int + ζt0

ξIt1 = β0t1 + βξintt1ξ
II
int + βξlint1ξ

II
lin + βt0t1ξ

I
t0 + ζt1

...

ξIti = β0ti + βξinttiξ
II
int + βξlintiξ

II
lin + βti−1tiξ

I
ti−1

+ ζti

ξItn = β0tn + βξinttnξ
II
int + βξlint1ξ

II
lin + ζtn

(6)

where βti−1ti represent the carry-over effects (Johnson et al., 2006; Duncan et al.,
2013). Carry-over effects are special effects that emerge from one construct at one point
in time to the same construct at a subsequent point in time (Johnson et al., 2006;
Roemer, 2016). In this way, an evaluation of a construct at a subsequent point in time
represents an updated version of its prior evaluation (Bolton and Drew, 1991; Oliver,
1980). A sizeable positive effect means that the individuals’ estimations of the construct
remain stable over time (Duncan et al., 2013). In contrast, a small effect means that
there has been a substantial reshuffling of the individuals’ standings on the construct
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over time (Selig and Little, 2012). Finally, a sizeable negative effect means that there
has been a reversal of the position of individuals on the structure over time. βti−1ti

contributes to explaining the variability at t time.
As in the CB-SEM framework, the model must be evaluated: first the measurement
model and then the structural model. For the measurement model the Dillon-Goldstein’s
Rho, the mean of communalities and the mean redundancies must be examined. The
structural model quality of the inner model must be assessed by examining the following
indices: the regression weights, the coefficient of determination (R2), the redundancy
index, and the goodness-of-fit (GoF) statistics (Tenenhaus et al., 2005). If the structural
model quality is well assessed, but one or more carry-over effects are negative, this
means there are two or more subsamples, with different growth curves. In this case,
we suggest splitting the sample into two or more subsamples. Subsequently, multi-
group comparisons could be used to test any differences in the structural path estimates.
Farther, the total effect must be analyzed. Considering the model in Figure 2(b), the
construct ξIt0 can be considered as a mediator construct. This means that ξIIlin is related
to both ξIt0 and ξIt1 , and ξIt0 is related to variable ξIt1 , and therefore the indirect effects of
ξIIlin acting through variable ξIt0 on variable ξIt1 have to be analyzed. It is the same case
in relation to the other LVs where a mediator construct is present. More specifically,
mediating analysis determines the degree to which indirect effects (through the mediating
variables) modify the assumed (hypothesized) direct paths, or relationships. According
to Hair et al. (2017), the focus on mediation is on a theoretically established direct path
relationship as well as on an additional theoretically relevant component mediator which
indirectly provides information on the direct effect via its indirect effect.

3 Progress testing of Italian Dental Schools

3.1 Cross-sectional data

On 29th March 2017 the first Progress Test was carried out in all Italian Schools of Dental
Medicine, as an initiative of the Italian Conference of the Presidents of the Undergradu-
ate Dentistry and Dental Prosthodontics Curriculum (the “Conferenza Permanente dei
Presidenti di Corso di Laurea Magistrale in Odontoiatria e Protesi Dentaria”) with a
third version in 2019. The percentage of Dental Medicine Schools participating was very
high with, initially, only three schools (Catanzaro, Perugia and Milano Cattolica) not
being involved in the initiative. The number of participating students, in each group,
was also significant, ranging from 44% to 97% in the different schools. In Italy, degree
course on Dentistry and Dental Prosthodontics last six years. Progress tests are admin-
istered once per year, from degree year one to six, at the end of the first annual semester
(Crocetta et al., 2018). Participation is voluntary.

In total, students should take up to six progress tests within their dentistry and dental
and prosthodontics training. The progress test consists of 300 interdisciplinary multiple-
choice (MC) questions with a single-best-answer format. The items align with various
areas: 150 items related to basic sciences (BS) and 150 to clinical sciences (CS), ten for
each science. In Table 1 the detail of the questions is reported.
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Table 1: Disciplines for the two areas

Basic Sciences Clinical Sciences

Behavioural Sciences 10 Principles of Dentistry 10

Chemistry and Biochemistry 10 Dental Materials 10

Physics 10 Laboratory Technologies 10

Biology and Genetics 10 Oral Pathology 10

Histology and Anatomy 10 Oral Surgery 10

Physiology 10 Periodontology 10

General Pathology 10 Hearing 10

Pharmacology 10 Gnathology 10

Internal Medicine 10 Orthodontics 10

Anestesiology and General Surgery 10 Conservative 10

Pathological Anatomy 10 Endodontics 10

Legal Medicine 10 Maxillofacial 10

Hygiene 10 Implantology 10

Neurology and Psychiatry 10 Pediatric Dentistry 10

Radiology 10 Oral Clinic 10

With these interdisciplinary questions, it is possible to study knowledge growth as
students progress in their undergraduate study. PTs also provide comprehensive feed-
back to students so they can identify gaps in their knowledge base, which facilitates
self-directed learning. The test scores the number of correctly answered items, without
any deduction of points for “don’t-know” or incorrect answers. The scores in Table 2
are the averages of the percentage of correct answers for each degree year from 2017 to
2019 for BS and CS questions (cross-sectional data).

Table 2: Averages of the percentage of correct answers in basic sciences (BS) and clinical
sciences (CS)

Year of Year group

dental degree BS CS BS CS BS CS

1 39 19 36 21 43 24

2 49 27 42 24 47 30

3 59 39 52 39 56 44

4 68 51 60 52 63 64

5 69 62 61 68 62 73

6 68 63 61 70 65 76
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3.2 Panel data

To study the developmental pattern across the course of study, only the test results of
the 2016-2017 cohort of students have been analyzed. At the first wave, this cohort was
in the first year of the dental degree, at the second wave the students were in the second
year, and, finally, at the third wave in the third year. Only in 2022 will this longitudinal
series of data be complete. The units are the schools of dental medicine of the Italian
Universities. The times of measurement were three (t0,t1,t2). The aim is to investigate
how the developmental pattern across the course of study can be described adequately.
Summary statistics of the correct answers for the BS and CS questions for the 2016-2017
cohort are provided in the Table 3.

Table 3: Summary statistics of the percentage of correct answers in basic sciences (BS)
and clinical sciences (CS) for each wave

BS CS

t0 t1 t2 t0 t1 t2

2017 2018 2019 2017 2018 2019

mean 39,1 42,1 56,1 19,3 23,9 43,6

σ 15,8 16,6 10,8 5, 0 12,2 13,6

Summary statistics of the correct answers both for BS and CS questions for the 2016-
2017 cohort are provided in the Table 4.

The XLSTAT software (2017) 1 was used for data processing and to estimate the
PLS-PM model. Any missing data was handled by using the NIPALS algorithm (Wold,
1975). We used a SEM PLS-PM framework, assuming a continuum of growth from
the first to the third academic year both for BS and CS. For each testing time, three
LVs were considered: knowledge (K) at ti, BS at ti, and CS at ti. Each BS at ti,
(BSti) has 15 reflective MVs (behavioral sciences; chemistry and biochemistry; physics;
biology and genetics; histology and anatomy; physiology; general pathology; pharmacol-
ogy; internal medicine; anesthesiology and general surgery; pathological anatomy; legal
medicine; hygiene; neurology and psychiatry and radiology). Equality applies to each
CS at ti, each having 15 reflective MVs (principles of dentistry; dental materials; labo-
ratory technologies; oral pathology; oral surgery; periodontology; hearing; gnathology;
orthodontics; conservative; endodontics; maxillofacial; implantology; pediatric dentistry
and oral clinic). Conversely, no K at ti has its own MVs, as each is composed by BSti

and CSti). Therefore, the model is a Higher-Order PLS-PM model with reflective lower
order and reflective-reflective higher order constructs (Kt0 ; Kt1 ; Kt2), with reflective
measurement model. Two models, shown in Figure 2, have been estimated with the
Repeated Indicator: the first model without any relation between the LVs at time i-1

1XLSTAT software Copyright © 2017 Addinsoft
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Table 4: 2016-2017 cohort - Summary statistics of the percentage of correct answers in
each science in BS and CS for each year group

t0 t1 t2

2017 2018 2019

BS

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Behavioral sciences 26,35 9,18 45,03 12,50 54,32 9,45

Chemistry and biochemistry 66,68 11,07 54,35 8,10 65,08 9,16

Physics 59,89 12,38 53,65 12,58 50,32 13,83

Biology and genetics 63,38 11,62 63,82 11,26 77,00 5,71

Histology and anatomy 58,12 14,68 67,55 11,68 58,36 12,53

Physiology 32,46 9,83 67,86 12,72 65,37 9,50

General pathology 49,94 10,39 41,76 16,38 65,67 8,91

Pharmacology 31,75 13,14 35,45 15,05 55,04 19,03

Internal medicine 41,06 10,30 25,39 15,47 52,48 9,80

Anesthesiology and general surgery 21,29 12,34 27,39 15,42 56,45 16,15

Pathological anatomy 33,51 13,22 21,67 14,05 55,87 14,68

Legal medicine 39,31 11,18 32,07 15,28 43,81 16,75

Hygiene 27,13 8,97 51,45 12,70 65,35 10,94

Neurology and psychiatry 23,02 8,47 19,75 10,11 32,41 12,99

Radiology 24,47 13,00 18,18 10,99 46,38 18,89

CS

Principles of dentistry 32,82 11,97 64,10 12,17 81,38 7,50

Dental materials 28,39 10,61 22,00 13,00 38,99 10,03

Laboratory technologies 22,04 8,91 23,84 12,32 60,39 15,68

Oral pathology 26,59 11,81 41,85 18,34 46,88 16,96

Oral surgery 18,85 10,58 22,07 8,68 43,46 18,57

Periodontology 22,44 10,62 23,50 12,95 32,78 13,06

Hearing 17,11 8,70 22,00 12,46 41,95 17,31

Gnathology 15,16 7,11 19,19 12,02 47,83 15,23

Orthodontics 17,00 9,80 15,20 13,30 36,79 15,44

Conservative 17,33 10,25 19,07 13,63 45,77 18,00

Endodontics 14,74 8,74 19,07 9,20 34,70 19,06

Maxillofacial 17,15 9,23 15,18 8,81 21,91 11,39

Implantology 15,82 10,43 12,45 7,52 35,63 15,97

Pediatric dentistry 15,35 9,41 20,60 14,95 53,85 19,65

Oral clinic 23,96 10,80 22,67 14,49 35,44 16,58

and the LVs at time i (Figure 2 (a)); the second model with impact without relation
between LV at time i-1 and LV at time i (Figure 3 (b))

The path weighting scheme was chosen (Hair et al., 2017) for both models and they
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(a) without the impact of ξIti−1
on ξIti (b) with the impact of ξIti−1

on ξIti

Figure 3: Theoretical model

were estimated with a maximum of 1,000 iterations. For both models we used 500
replications, with a bootstrap sample equal to 1000. The overall model fit is assessed
by GoF and relative GoF (Tenenhaus et al., 2005). The prediction performance of the
PLS-PM is higher for the model (b) with ξIti−1

that impact on ξIti (Table 5).

Table 5: Goodness of Fit - model (a) and model (b)

GoF Standard Critical LL UL

GoF (Bootstrap) Error Ratio (CR) 95% CI 95% CI

Model (a)

Absolute GoF 0,57 0,58 0,02 27,85 0,53 0,62

Relative GoF 0,85 0,84 0,02 40,79 0,81 0,89

Outer model 0,98 0,98 0,02 46,02 0,93 1,00

Inner model 0,87 0,86 0,01 78,49 0,85 0,89

Model (b)

Absolute GoF 0,60 0,60 0,02 26,45 0,56 0,64

Relative GoF 0,87 0,86 0,02 38,12 0,82 0,91

Outer model 0,98 0,98 0,02 46,72 0,93 1,00

Inner model 0,89 0,89 0,01 75,59 0,86 0,91

The R2 coefficients show that the endogenous LVs of model (b) are better predicted
by the explanatory LVs, while the values of the communality index are appreciably
higher for all blocks (the value of 0.50 indicates a sufficient degree of construct validity).
Moreover, all the blocks are unidimensional, as it is possible to verify from the values of
the Dillon-Goldstein’s Rho reported, which are high for all blocks (Table 6).
The results for the model (b) are shown below. In order to assess the significance of

the path coefficients, Table 7 reports the value and significance of the direct structural
coefficients linking the constructs at different times.
The value and significance of the structural parameters linking the different constructs

in the model is considered for the evaluation of the hypothesis that there is a relation
between the initial levels of performance (the intercepts) and the growth of knowledge
(the slopes). The significance of all of these parameters serves to determine whether these
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Table 6: Overall model quality

Construct MV Type R2 R2 adjusted Communalities D.G’s Rho

Model (a)

Kint 31,76 Exog. 0,42 0,97

Klin 35,38 End. 0,94 0,94 0,41 0,96

Kt0 26,23 End. 0,76 0,76 0,45 0,96

BSt0 35,54 End. 0,62 0,62 0,53 0,94

CSt0 19,95 End. 0,83 0,83 0,71 0,97

Kt1 26,79 End. 0,80 0,79 0,49 0,96

BSt1 34,38 End. 0,84 0,84 0,49 0,93

CSt1 21,03 End. 0,91 0,91 0,63 0,96

Kt2 48,19 End. 0,61 0,60 0,47 0,94

BSt2 55,91 End. 0,81 0,81 0,49 0,89

CSt2 41,95 End. 0,92 0,92 0,47 0,93

Model (b)

Kint 31,80 Exog. 0,42 0,97

Klin 35,48 End. 0,94 0,94 0,41 0,96

Kt0 25,85 End. 0,76 0,76 0,45 0,96

BSt0 35,44 End. 0,60 0,60 0,53 0,94

CSt0 19,92 End. 0,85 0,85 0,71 0,97

Kt1 26,52 End. 0,93 0,93 0,49 0,96

BSt1 34,29 End. 0,84 0,84 0,49 0,93

CSt1 21,01 End. 0,91 0,91 0,63 0,96

Kt2 48,33 End. 1,00 1,00 0,47 0,94

BSt1 56,03 End. 0,81 0,81 0,49 0,89

CSt2 41,99 End. 0,92 0,92 0,47 0,93

estimates differ from zero and can be used to answer questions such as “is the amount of
variation, on average, significantly different from zero?” or “is there significant variability
in the rate of change of individuals?” (Berlin et al., 2014). The path coefficient between
Klin and Kt1 (Klin → Kt1) is negative and therefore the hypothesis of a continuum of
growth is not verified. For the time t2, the path coefficient between KInt and Kt2 (Klnt

→ Kt2) is negative and not significant and therefore the hypothesis of a fixed intercept
is not verified. The negative carry-over effects between Kt0 and Kt1 and Kt1 and Kt2

suggests to use an explanatory variable to explain the reversal of the unit positions from
time t1 to time t2. In the Figure 4, a confront between observed trajectories, model-
implied trajectories without effect Kt0 , Kt1 , Kt1 , Kt2 (model a) and without effect Kt0 ,
Kt1 , Kt1 , Kt2 (model b) is presented.

The PLS-PM Model, with the effect between the construct of time ( Kt0 → Kt1

and Kt1 → Kt2) allows us to evaluate the unit performances (the best and the worst),
identifying, at the same time, the intercept and the slope of the growth curve. As our
aim was to investigate to what extent the between-unit variation in levels of performance
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(a) Observed trajectories with Model curve

(b) Model trajectories without effect Kt0 , Kt1 and Kt1 ,Kt2

(c) Model trajectories with effect Kt0 , Kt1 and Kt1 ,Kt2

Figure 4: Italian university trajectories
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Table 7: Path coefficients

From–>To Value
Value

Bootstrap
S.E. t Pr >|t|

β0lin 1,53 0,00 1,66 0,92 0,37

Klin Kint –> Klin 1,07 0,96 0,05 20,91 0,00

β0kt1 -1,57 0,00 3,01 -0,52 0,61

Kt0 Kint –> Kt0 0,86 0,90 0,09 9,34 0,00

β0kt1 3,50 0,00 3,03 1,16 0,26

Kint –> Kt1 33,58 16,51 4,83 6,95 0,00

Klin –> Kt1 -20,81 -9,93 3,13 -6,64 0,00

Kt1 Kt0 –> Kt1 -11,86 -6,68 1,73 -6,85 0,00

β0kt2 2,32 0,00 0,64 3,62 0,00

Kint –> Kt2 -0,06 -0,05 0,07 -0,82 0,42

Klin –> Kt2 2,41 2,39 0,07 36,51 0,00

Kt2 Kt1 –> Kt2 -1,42 -1,75 0,03 -47,82 0,00

β0BSt0 12,02 0,00 3,84 3,13 0,00

BSt0 Kt0 –> BSt0 0,91 0,75 0,14 6,32 0,00

β0CSt0 -7,56 0,00 2,32 -3,26 0,00

CSt0 Kt0 –> CSt0 1,06 0,94 0,09 12,28 0,00

β0BSt1 7,68 0,00 2,36 3,25 0,00

BSt1 Kt1 –> BSt1 1,00 0,91 0,08 11,92 0,00

β0CSt1 -5,41 0,00 1,69 -3,21 0,00

CSt1 Kt1 –> CSt1 1,00 0,96 0,06 16,58 0,00

β0BSt2 16,24 0,00 3,81 4,26 0,00

BSt2 Kt2 –> BSt2 0,82 0,91 0,08 10,63 0,00

β0CSt2 -13,48 0,00 3,20 -4,21 0,00

CSt2 Kt2 –> CSt2 1,15 0,95 0,07 17,64 0,00

and the rates of gains in performances can be regarded as distinct factors in describing
school learning trajectories we can assert that our goal has been achieved.

4 Conclusions and closing remarks

The aims of this paper have been, on the one hand, to offer a new perspective on
the use of results from progress tests for benchmarking efforts, and, on the other, to
demonstrate how PLS-PM could assist us in the analysis of growth curves. Using progress
tests for benchmarking efforts, the effectiveness of an instructional approach might be
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captured by the ability to “lift” comparatively low-performing students to the level
of students with higher initial ability. In contexts where performance indicators are
very important, the information obtained from progress tests may indeed constitute an
additional criterion for judging the effectiveness of a particular institution or curriculum.
The study contributes to the confirmation of a thesis already present in the literature,
according to which a substantial amount of variation can be attributed to different rates
in the growth of knowledge across medical schools. From a methodological point of view,
we have demonstrated that the PLS-PM approach can be successfully used to estimate
growth curves. Using PLS-PM we have the best estimation of the measurement model
without any problem concerning its identification. The possibility of applying the PLS-
PM approach with a small sample has allowed us to estimate the growth curve with only
29 units.
The study presented in this paper has several limitations. An immediate problem to note
is that progress tests in Italy are optional and used only as a summative assessment.
This could lead to misleading results as it is a self-selected sample. Future research
should be based on mandatory tests for all. The second limit is linked to the availability
of data. We had access to aggregate data, so the unit of analysis is the university, that
is, the synthesis of the elementary data that are represented by the students. It would
have been more appropriate to work with disaggregated data, in such a way as to have
the individual student as the unit of analysis and thus the raw, not synthesized, data.

The third aspect concerns the single cohort analyzed for three years. This work
analyzes the only cohort available for only three years. If we had had the availability of
other cohorts we could have made comparisons among different cohorts and understand
if there were differences in student learning and among growth curves.
In the end, the tests were not administered in the 2020 due to the Covid-19 pandemic.
To date, we are unable to establish whether failure to administer due to force majeure
had a negative impact on the results. Future research is needed to recognize this impact.

Despite these limitations, this study provides an additional argument for the validity
of the use of progress testing used for benchmarking efforts. The work wants to em-
phasize that the creation and implementation of the progress test is among the most
important actions promoted by Italian Conference of the Presidents of the Undergrad-
uate Medical Curriculum. The analysis, however, highlights the weaknesses that need
to be strengthened to ensure that it can be a valid tool to be provided to the various
universities not only for the acquisition of information on students’ transversal skills but
also for an interpretation of their disciplinary skills. We hope that this preliminary study
will inspire further research on these important but largely understudied processes.
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Jöreskog, K.G. and Van Thillo, M. (1972) Lisrel: A general computer program for esti-
mating a linear structural equation system involving multiple indicators of unmeasured
variables.

Jung, S. and Park, J. (2018) Consistent partial least squares path modeling via regular-
ization.Frontiers in Psychology, 9, 174.

Kaplan, D. (2008) Structural equation modeling: Foundations and extensions, 10. Sage
Publications.

Karay, Y. and Schauber, S.K. (2018) A validity argument for progress testing: Examin-
ing the relation between growth trajectories obtained by progress tests and national
licensing examinations using a latent growth curve approach.Medical Teacher, 40 (11):
1123-1129.

Kessler, R.C. and Greenberg, D.F. (1981) Models of Quantitative Change. Linear Panel
Analysis.

Lauro, N.C, Grassia, M.G. and Cataldo, R. (2018) Model based composite indicators:
New developments in partial least squares-path modeling for the building of different
types of composite indicators. Social Indicators Research, 135 (2): 421-455.
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