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We take a look at the log-logistic distribution via Bahadur’s stochastic comparison of
asymptotic relative efficiency by combining infinitely independent tests of hypotheses.
We discuss the six free-distribution combination producers namely; Fisher, logistic,
sum of p-values, inverse normal, Tippett’s method and maximum of p-values for testing
simple hypotheses against one-sided alternative. These methods are compared via the
exact Bahadur slope (EBS). Moreover, several comparisons among the six procedures
using the exact Bahadur’s slopes were obtained. We further employ numerical study to
investigate these comparisons behavior. These non-parametric procedures depend on
the p-value of the individual tests combined.
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1 Introduction

The combination of n independent tests of hypotheses is an important statistical practice. If H0

is a simple hypotheses. Bahadur’s stochastic comparison is one of the most common approach in
asymptotic relative efficiency for two test procedures in which the probabilities of the two types
of errors (I and II) changes with increasing sample size, and the manner of the alternatives are
behave. In comparison of test procedures, let H0 : F ∈ F0 is to be tested, where F0 is a family of
distributions, for any test procedure Tn. The function γn(T, F ) = PF (Tn rejects H0), for distribu-
tion functions F, represents the power function of Tn. Under H0, γn(T, F ) represents the probability
of a Type I error. The size of the test is αn(T,F0) = sup

F∈F0

γn(T, F ). For F /∈ F0, the probability of

a Type II error is βn(T, F ) = 1−γn(T, F ).We are interesting in studying consistent tests, that is for
fixed F /∈ F0, βn(T, F ) → 0 as n → ∞, and unbiased tests that is F /∈ F0, γn(T, F ) ≥ αn(T,F0).
To compare two test procedures through their power functions, we will use the asymptotic relative
efficiency (ARE) for two test procedures TA and TB, with sample sizes n1 and n2 respectively, then
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the ratio n1/n2 goes to some limit. This limit is the ARE of TB relative to TA. In Bahadur approach,
the following behaviors are satisfied: the Type I error is αn → 0, the Type II error is βn → 0,
and the alternatives is Fn = F fixed. Asymptotic relative efficiency have been considered by many
authors. Kallenberg (1981) showed that in testing problems in multivariate exponential families
the LR test is deficient in the sense of Bahadur of order O(log n). Abu-Dayyeh and El-Masri (1994)
studied six free-distribution methods (sum of P-values, inverse normal, logistic, Fisher, minimum
of P-values and maximum of P-values) of combining infinitely number of independent tests when
the P-values are IID rv’s distributed with uniform distribution under the null hypothesis versus
triangular distribution with essential support (0, 1) under the alternative hypothesis. They proved
that the sum of P-values method is the best method. Abu-Dayyeh et al. (2003) they combined
infinity number of independent tests for testing simple hypotheses against one-sided alternative for
normal and logistic distributions, they used four methods of combining (Fisher, logistic, sum of
P-values and inverse normal). Al-Masri (2010) studied six methods of combining independent tests.
He showed under conditional shifted Exponential distribution that the inverse normal method is
the best among six combination methods. Al-Talib et al. (2020) considered combining independent
tests in case of conditional normal distribution with probability density function X|θ ∼ N(γθ, 1),
θ ∈ [a,∞], a ≥ 0 when θ1, θ2, ... have a distribution function (DF) Fθ. They concluded that the
inverse normal procedure is the best procedure. AL-MASRI (2021) considered combining n inde-
pendent tests of simple hypothesis, vs one-tailed alternative as n approaches infinity, in case of
Laplace distribution L(γ, 1). They showed that the sum of p-values procedure is better than all
other procedures under the null hypothesis, and the inverse normal procedure is better than the
other procedures under the alternative hypothesis.

2 Stochastic Comparison And A Measure Of ARE

To measure the strength of the observed sample as evidence against the null hypothesis is to compute
the significance level of the observed value of the test statistic, which is another way to compare two
test procedures. When the alternative is true yields strong evidence against the null hypothesis.
Bahadur et al. (1960) Introduced a notion of “stochastic comparison” and corresponding measure
of asymptotic relative efficiency. We consider iid observations X1, . . . , Xn in a sample space having
a distribution by parameter θ ∈ Θ. For testing the hypothesis H0 : θ ∈ Θ0 by a real-valued
test statistic Tn, where H0 becomes rejected for sufficiently large values of Tn. Let Gθn denoted
the DF of Tn under the θ−distribution of X1, . . . , Xn. The level attained is the indicator of the
significance of the observed data against the null hypothesis is given by Ln = Ln(X1, . . . , Xn) =
supθ∈Θ0 [1−Gθn(Tn)]. Where supθ∈Θ0 [1−Gθn(t)] is the maximum probability, under any one of the
null hypothesis models, that the experiment will lead to a test statistic exceeding t. Also, Bahadur
et al. (1960) suggests stochastic comparison of two test sequences TA = TAn and TB = TBn in terms
of their performances with respect to level attained, as follows. Under the nonnull θ−distribution,
the test TAn is more successful than the test TBn at the sample X1, . . . , Xn if LAn(X1, . . . , Xn) <
LBn(X1, . . . , Xn). Equivalently, defining Kn = −2 logLn, TAn is more successful than TBn at the
observed sample if KAn > KBn . In this case, for θ ∈ Θ0, Ln converges in θ−distribution to some
nondegenerate random variable, and under an alternative θ /∈ Θ0, Ln → 0 at an exponential rate
of θ.
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3 Log-Logistic Distribution

The Log-Logistic distribution is often used in decision making business, decision making with
project management and audio dithering. Let X be a random variable following the Log-Logistic
distribution. The distribution function (cdf) of X can take the following form

F (x; ξ) = ΨLogistic

(
ln(x)− ξ

σ

)
IR+(x) (1)

The probability density function (pdf) of X is given by

f(x; ξ) =
1

σx
φLogistic

(
ln(x)− ξ

σ

)
IR+(x), ξ ∈ R, σ ∈ R+. (2)

Where IA is the indicator function and ΨLogistic(h) =
(
1 + e−h

)−1
is the cdf of the standard logistic

distribution with L(0, 1). The mean of X is E (X) = σ π
sin(πσ) ; if σ > 1, else undefined. For more

details see Al-Omari and Zamanzade (2018) and RRL et al. (2010).

4 Definitions And Preliminaries

This section lays out some basic tools to Bahadur’s stochastic comparison theory that used in this
article

Definition (Bahadur efficiency and exact Bahadur slope (EBS)) Let X1, . . . , Xn be i.i.d. from
a distribution with a probability density function f(x, θ), and we want to test H0 : θ = θ0 vs.

H1 : θ ∈ Θ − {θ0}. Let
{
T
(1)
n

}
and

{
T
(2)
n

}
be two sequences of test statistics for testing H0. Let

the significance attained by T
(i)
n be L

(i)
n = 1−Fi

(
T
(i)
n

)
, where Fi

(
T
(i)
n

)
= PH0

(
T
(i)
n ≤ ti

)
, i = 1, 2.

Then there exists a positive valued function Ci(θ) called the exact Bahadur slope of the sequence

{T (i)
n } such that

Ci(θ) = lim
θ→∞

−2n−1 ln
(
Li
n

)
with probability 1 (w.p.1) under θ and the Bahadur efficiency of

{
T
(1)
n

}
relative to

{
T
(2)
n

}
is given

by eB (T1, T2) = C1(θ)/C2(θ). Serfling (2009)

Theorem 1. (Large deviation theorem) Let X1, X2, . . . , Xn be IID, with distribution F and put
Sn =

∑n
i=1Xi. Assume existence of the moment generating function (mgf) M(z) = EF

(
ezX

)
, z

real, and put m(t) = infz e
−z(X−t) = infz e

−ztM(z). The behavior of large deviation probabilities
P (Sn ≥ tn) , where tn → ∞ at rates slower than O(n). The case tn = tn, if −∞ < t ≤ EY, then
P (Sn ≤ nt) ≤ [m(t)]n , the

−2n−1 lnPF (Sn ≥ nt) → −2 lnm(t) a.s. (Fθ) .

Serfling (2009)

Theorem 2. (Bahadur theorem) Let {Tn} be a sequence of test statistics which satisfies the fol-
lowing:

1. Under H1 : θ ∈ Θ− {θ0}:
n− 1

2Tn → b(θ) a.s. (Fθ) ,

where b(θ) ∈ ℜ.
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2. There exists an open interval I containing {b(θ) : θ ∈ Θ− {θ0}} , and a function g continuous
on I, such that

lim
n

−2n−1 log sup
θ∈Θ0

[
1− Fθn(n

1
2 t)

]
= lim

n
−2n−1 log

[
1− Fθn(n

1
2 t)

]
= g(t), t ∈ I.

If {Tn} satisfied (1)-(2), then for θ ∈ Θ− {θ0}

−2n−1 log sup
θ∈Θ0

[1− Fθn(Tn)] → C(θ) a.s. (Fθ) .

Bahadur et al. (1960)

Theorem 3. Let X1, . . . , Xn be i.i.d. with probability density function f(x, θ), and we want to test
H0 : θ = 0 vs. H1 : θ > 0. For j = 1, 2, let Tn,j =

∑n
i=1 fi(xi)/

√
n be a sequence of statistics

such that H0 will be rejected for large values of Tn,j and let φj be the test based on Tn,j. Assume
Eθ(fi(x)) > 0, ∀θ ∈ Θ, E0(fi(x)) = 0, V ar(fi(x)) > 0 for j = 1, 2. Then
1. If the derivative b′j(0) is finite for j = 1, 2, then

lim
θ→0

C1(θ)

C2(θ)
=

V arθ=0(f2(x))

V arθ=0(f1(x))

[
b′1(0)

b′2(0)

]2
,

where bi(θ) = Eθ(fj(x)), and Cj(θ) is the EBS of test φj at θ.
2. If the derivative b′j(0) is infinite for j = 1, 2, then

lim
θ→0

C1(θ)

C2(θ)
=

V arθ=0(f2(x))

V arθ=0(f1(x))

[
lim
θ→0

b′1(θ)

b′2(θ)

]2
.

Al-Masri (2010)

Theorem 4. If T
(1)
n and T

(2)
n are two test statistics for testing H0 : θ = 0 vs. H1 : θ > 0 with

distribution functions F
(1)
0 and F

(2)
0 under H0, respectively, and that T

(1)
n is at least as powerful as

T
(2)
n at θ for any α, then if φj is the test based on T

(j)
n , j = 1, 2, then

C(1)
φ1

(θ) ≥ C(2)
φ2

(θ).

Serfling (2009)

Corollary 1. If Tn is the uniformly most powerful test for all α, then it is the best via EBS.
Serfling (2009)

Theorem 5. Let U1, U2, . . . be i.i.d. like U with probability density function f and suppose that
we want to test H0 : Ui ∼ U(0, 1) vs. H1 : Ui ∼ f on (0, 1) but not U(0, 1). Then Cmax(f) =
−2 ln (ess.supf (u))
where ess.supf (u) = sup {u : f(u) > 0} w.p.1 under f. Abu-Dayyeh and El-Masri (1994)

Theorem 6. If π(lnπ)2f(π) → 0 as π → 0, then CT (f) = 0. Abu-Dayyeh and El-Masri (1994)

Theorem 7.
2t ≤ mS(t) ≤ et, ∀ : 0 ≤ t ≤ 0.5,

where

mS(t) = inf
z>0

e−zt e
z − 1

z
.

Al-Masri (2010)



Electronic Journal of Applied Statistical Analysis 221

Theorem 8. 1. mL(t) ≥ 2te−t, ∀t ≥ 0,

2. mL(t) ≤ te1−t, ∀t ≥ 0.852,

3. mL(t) ≤ t
(

t2

1+t2

)3
e1−t, ∀t ≥ 4,

where mL(t) = infz∈(0,1) e
−ztπz csc(πz) and csc is an abbreviation for cosecant function.

Al-Masri (2010)

Theorem 9. For x > 0,

ϕ(x)

[
1

x
− 1

x3

]
≤ 1− Φ(x) ≤ ϕ(x)

x
.

Where ϕ is the pdf of standard normal distribution. Al-Masri (2010)

Theorem 10. For x > 0,

1− Φ(x) >
ϕ(x)

x+
√

π
2

.

Al-Masri (2010)

Lemma 1. 1. mL(t) ≥ inf
0<z<1

e−zt = e−t

2. mL(t) ≤
e−t2/(t+1)

(
πt
t+1

)
sin

(
πt
t+1

)
3.

{
ms(t) = infz>0

e−zt(1−e−z)
z ≤ infz>0

e−zt

z ≤ −et, t < 0

ms(t) ≥ −2t, −1
2 ≤ t ≤ 0.

Al-Masri (2010)

5 The Basic Problem

Consider testing the hypothesis

H
(i)
0 : ηi = ηi0, vs , H

(i)
1 : ηi ∈ Ωi − {ηi0} (3)

such that H
(i)
0 becomes rejected for large values of some real valued continuous random variable

T (i), i = 1, 2, . . . , n. The n hypotheses are combined into one as

H
(i)
0 : (η1, ..., ηn) = (η10, ..., η

n
0 ), vs , H

(i)
1 : (η1, ..., ηn) ∈

{
n∏

i=1

Ωi − {(η10, ..., ηn0 )}

}
(4)

For i = 1, 2, . . . , n the p-value of the i-th test is given by

Pi(t) = P
H

(i)
0

(
T (i) > t

)
= 1− F

H
(i)
0

(t) (5)

where F
H

(i)
0

(t) is the DF of T (i) under H
(i)
0 . Note that Pi ∼ U(0, 1) under H

(i)
0 .

If considering the special case where ηi = θ and ηi0 = θ0 for i = 1, . . . , n, and also assume that
T (1), . . . , T (n) are independent, then (4) reduces to

H0 : θ = θ0, vs , H1 : θ ∈ Ω− {θ0} (6)
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It follows that the p-values P1, . . . , Pn are also iid rv’s that have a U(0, 1) distribution under H0,
and under H1 have a distribution whose support is a subset of the interval (0, 1) and is not a U(0, 1)
distribution. Therefore, if f is the probability density function (pdf) of P , then (6) is equivalent to

H0 : P ∼ U(0, 1), vs , H1 : P ≁ U(0, 1) (7)

where P has a pdf f with support subset of the interval (0, 1).
In this paper we will study the case when

f(x; ξ) =
1

x
φLogistic (ln(x)− ξ) IR+(x), ξ ∈ R,

where σ = 1.
By sufficiency we may assume ni = 1 and T (i) = Xi for i = 1, . . . , n. Then we consider the sequence{
T (n)

}
of independent test statistics, thus is we will take a random sample X1, . . . , Xn of size n

and let n → ∞ and compare the six non-parametric methods via exact Bahadur slope (EBS).
The producers that we will used in this paper are Fisher, logistic, sum of P-values, inverse nor-
mal, Tippett’s method and maximum of p-values. These producers are based on p-values of the
individual statistics Ti, and reject H0 if

ΨFisher = −2
n∑

i=1

ln(Pi) > χ2
2n,α (8)

Ψlogistic = −
n∑

i=1

ln

(
Pi

1− Pi

)
> bα (9)

ΨNormal = −
n∑

i=1

Φ−1(Pi) >
√
nΦ−1(1− α) (10)

ΨSum = −
n∑

i=1

Pi > Cα (11)

ΨMax = −max Pi < α
1
n (12)

ΨT = −min Pi < 1− (1− α)
1
n . (13)

where Φ is the DF of standard normal distribution.

6 Derivation of the EBS

In this section we will study testing problem (7). We will compare the six methods Fisher, logistic,
sum of P-values,the inverse normal, Tippett’s method and maximum of p-values using EBS.
Let X1, . . . , Xn be IID with probability density function (2) and we want to test (7). The i-th
P-value is given by

Pi(ti) = PH0(Pi ≥ ti) = 1− FH0(ti) = 1−ΨLogistic (ln(ti)) , ∀i = 1, . . . n. (14)

The next sections give the EBS for Fisher (CF ), logistic (CL), inverse normal (CN ), and sum of
p-values (CS), maximum of p-values (Cmax) and Tippett’s method (CT ) methods.
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6.1 The EBS For Fisher Combination Method

Theorem 11. The exact Bahadur’s slope (EBS’s) of the Fisher’s procedure is

CF (ξ) = bF (ξ)− 2 ln(bF (ξ)) + 2 ln(2)− 2

= −2 +
2ξeξ

eξ − 1
− 2 ln

(
2ξeξ

eξ − 1

)
+ 2 ln 2

Proof. By Equation (8) and by Bahadur’s Theorem (2) (1) it follows that

bF (ξ) = −2EH1 ln [Pn(Xn)] .

Now by Equations (14) and (2) it follows that

bF (ξ) = −2

∫ ∞

0

1

x
ln [1−ΨLogistic (ln(x))]φLogistic (ln(x)− ξ) dx =

2ξeξ

eξ − 1
.

Now underH0, and by using Large deviation Theorem (1), it follows thatMF (z) = EF

(
e−2 ln(x)z

)
=∫ 1

0
e−2 ln(x)z dx. Set t = − ln(x) implies dt = −etdx. It then follows thatMF (z) =

∫ 1

0
e−x(1−2t) dx =

(1 − 2z)−1, Z < 1/2. Then, mF (t) = inf
z>0

e−zt(1 − 2z)−1 = t
2e

1−t/2, now by Bahadur’s Theorem

(2) (2), we complete the proof, that is CF (ξ) = −2 ln(mF (bF (ξ))) = −2 ln

(
bF (ξ)

2
e1−

bF (ξ)

2

)
=

bF (ξ)− 2 ln(bF (ξ)) + 2 ln(2)− 2.

6.2 The EBS For Logistic Combination Method

Theorem 12. The exact Bahadur’s slope (EBS’s) of the logistic procedure is CL(ξ) = −2 ln(m(bL(ξ))),
where mL(t) = inf

z∈(0,1)
e−ztπz csc(πz) and bL(ξ) = ξ.

Proof. Similar to the proof of Theorem (11).

6.3 The EBS For Sum Of p-values Combination Method

Theorem 13. The exact Bahadur’s slope (EBS’s) of the Sum of p-values procedure is CS(ξ) =

−2 ln(m(bS(ξ))), where mS(t) = inf
z>0

e−zt 1− e−z

z
and bS(ξ) =

eξ − ξeξ − 1

(eξ − 1)
2 .

Proof. By Equation (11) and by Bahadur’s Theorem (2) (1) it follows that bS(ξ) = −EH1 [Pn(Xn)] .

Now by Equation (14), clearly,
TS√
n

w.p.1−−−→ bS(ξ) = −EH1 (X) . So, by Equation (2) it follows that

bS(ξ) = −
∫ ∞

0

1

x
[1−ΨLogistic (ln(x))]φLogistic (ln(x)− ξ) dx =

eξ − ξeξ − 1

(eξ − 1)
2 . Now, by Theorem

1, we have mS(t) = infz>0 e
−ztMS(z), where MS(z) = EF (e

zX). Under H0 : −x ∼ U(−1, 0), so

MS(z) = 1−e−z

z , by part (2) of Theorem (2) we complete the proof, we conclude that CS(ξ) =
−2 ln(mS(bS(ξ))).
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6.4 The EBS For Inverse Normal Combination Method

Theorem 14. The exact Bahadur’s slope (EBS’s) of the inverse normal procedure is CN (ξ) =

−2 ln(m(bN (ξ))) = b2N (ξ) = e2ξ E2
N(0,1)

{
v

MBin(2,Φ(v))(ξ)

}
.

Proof. By Equation (10) and by Bahadur’s Theorem (2) (1) it follows that bN (ξ) = −EH1 [Pn(Xn)] .

Now by Equation (14), clearly,
TN√
n

w.p.1−−−→ bN (ξ) = −EH1 Φ−1(X). So, by Equation (2) it follows

that

bN (ξ) = −
∫ ∞

0

1

x
Φ−1(1−ΨLogistic (ln(x)))φLogistic (ln(x)− ξ) dx = −

∫ ∞

0
Φ−1

(
1

1 + x

)
eξ

(x+ eξ)
2 dx.

On substituting v = Φ−1

(
1

1 + x

)
, implies

1

1 + x
= Φ(v),

dx

dv
=

ϕ(v)

Φ2(v)
. It follows that bN (ξ) =∫

ℜ

−eξvϕ(v)

(1− Φ(v) + Φ(v)eξ)
2 dv = −eξ EN(0,1)

{
v

MBinomial(2,Φ(v))(ξ)

}
. Now under H0, and by Large

deviation Theorem (1), it follows that MN (z) = EN

(
e−zΦ−1(X)

)
=

∫ 1

0
e−zΦ−1(X) dx. Set w =

−Φ−1 (x) implies x = 1−Φ(w), then dx = −ϕ(w)dw. It then follows thatMN (z) =

∫
ℜ
ewzϕ(w) dw =

MN(0,1)(z) = ez
2/2. Then, mN (t) = inf

z>0
e−ztez

2/2 = e−t2/2, now by Bahadur’s Theorem (2) (2), we

complete the proof, that is

CN (ξ) = −2 ln(mN (bN (ξ))) = −2 ln(e−b2N (ξ)/2) = b2N (ξ) = e2ξ E2
N(0,1)

{
v

MBin(2,Φ(v))(ξ)

}
.

6.5 The EBS For Maximum of p-values Method

Theorem 15. The exact Bahadur’s slope (EBS’s) of the maximum of p-values is Cmax(ξ) = ∞.

Proof. By Theorem (5), Cmax(ξ) = −2 ln (ess.supξ(u)) where ess.supξ(u) = Sup (u : f(u) > 0)
w.p.1 under ξ, then ess.supf (u) = 0. It follows that Cmax(ξ) = ∞.

6.6 The EBS For Tippett’s Method

Theorem 16. The exact Bahadur’s slope (EBS’s) of the Tippett’s method is CT (ξ) = 0.

Proof. By Theorem (6), Equation (2), it follows that lim
t→0

t(ln t)2
φLogistic (ln(t)− ξ)

t

= lim
t→0

t(ln t)2
eξ

(t+ eξ)
2 . Clearly, by using L’Hoptial rule twice, lim

t→0
t(ln t)2 = 0 and lim

t→0

eξ

(t+ eξ)
2

= e−ξ which implies CT (ξ) = 0.

7 Comparison of the EBSs

In this section, we will compare the EBSs that obtained in Section (6). We will find the limit of
the ratio of the EBSs of any two methods under study when ξ → 0 and ξ → ∞.
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7.1 The Limiting ratio of the EBS for different tests when ξ → 0

Lemma 2. lim
ξ→0

CD(ξ)

Cmax(ξ)
= 0, where CD ∈ {CF , CL, CS , CN , CT } .

Proof. It follows by Theorem (11) and Theorem (15) that lim
ξ→0

2ξeξ

eξ − 1
= 2, it then follows that

lim
ξ→0

CF (ξ) = −2 + lim
ξ→0

2ξeξ

eξ − 1
− 2 lim

ξ→0
ln

(
2ξeξ

eξ − 1

)
+ 2 ln 2 = 0. Thus eB (TF , Tmax) → 0. For

CL, we use Theorem (12) then lim
ξ→0

bL(ξ) = lim
ξ→0

ξ = 0, hence with Lemma (1)(1) we have that

mL(t) ≥ inf
0<z<1

e−zt = e−t implies CL(ξ) ≤ 2bL(ξ). Clearly, lim
ξ→0

CL(ξ) ≤ 2 lim
ξ→0

bL(ξ) = 0. So

lim
ξ→0

CL(ξ) = 0. Thus eB (TL, Tmax) → 0. In the same way for CS(ξ), we use Theorem (13) to

show that bS(ξ) → −1
2 , hence with Lemma (1) (3) we have that mS(t) ≥ −2t implies CS(ξ) ≤

−2 ln (−2bS(ξ)) . Clearly, lim
ξ→0

CS(ξ) ≤ −2 ln(2) − 2 lim
ξ→0

ln (−bS(ξ)) = −2 ln(2) − 2 ln
(
1
2

)
= 0.

So lim
ξ→0

CS(ξ) = 0. Thus eB (TS , Tmax) → 0. Finally, by Theorem (14) it is easy to show that

lim
ξ→0

bN (ξ) = lim
ξ→0

∫
ℜ

−eξvϕ(v)

(1− Φ(v) + Φ(v)eξ)
2 dv → −

∫
ℜ
vϕ(v) = EN(0,1) V = 0. Clearly, CN (ξ) is

converges to 0 as ξ → 0. Thus eB (TN , Tmax) = eB (TT , TN ) → 0.

Lemma 3. lim
ξ→0

CT (ξ)

CD(ξ)
= 0, where TD ∈ {TF , TL, TS , TN} .

Proof. Similar to the proof of the previous lemma.

Lemma 4. lim
ξ→0

CS(ξ)

CF (ξ)
> 1.

Proof. By Theorems (11), (13) and (3)(1) it follows that b′F (ξ) =
2eξ(eξ − ξ − 1)

(eξ − 1)2
It follows that

b′F (0) = 1. Clearly that b′F (0) is finite. Also, in the same way b′S(ξ) =
eξ(2 + eξ(ξ − 2) + ξ)

(eξ − 1)3
. It

follows that b′S(0) =
1
6 . Also b′S(0) is finite. Now under H0 : hF (x) = −2 ln [1−ΨLogistic (ln(x))] ∼

χ2
2 and hS(x) = − [1−ΨLogistic (ln(x))] ∼ U(−1, 0), so V arξ=0(hF (x)) = 4 and V arξ=0(hS(x)) =

1
12 , also,

b′S(0)

b′F (0)
= 1

6 . By applying Theorem (3) we get lim
ξ→0

CS(ξ)

CF (ξ)
= eB (TS , TF ) =

4
3 > 1.

Lemma 5. lim
ξ→0

CL(ξ)

CF (ξ)
> 1.

Proof. Similar to the proof of the previous lemma.

Lemma 6. lim
ξ→0

CN (ξ)

CF (ξ)
> 1.

Proof. By Theorems (11), (14), (3)(1) and Lemma (4) it follows that b′F (0) = 1. Also,

b′N (ξ) =

∫
ℜ

eξvϕ(v)
((
1 + eξ

)
Φ(v)− 1

)
(1− Φ(v) + Φ(v)eξ)

3 dv.Now b′N (0) =

∫
ℜ
vϕ(v) (2Φ(v)− 1) dv.=

∫
ℜ
−vϕ(v) dv+∫

ℜ
2vϕ(v)Φ(v) dv = 0+

∫
ℜ
ϕ2(v) dv =

1√
π
< ∞.Now underH0 : hF (x) = −2 ln (1−ΨLogistic (ln(x))) ∼
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χ2
2 and hN (x) = −Φ−1 (1−ΨLogistic (ln(x))) ∼ N(0, 1), so V arξ=0(hF (x)) = 4 and V arξ=0(hN (x)) =

1, also,
b′N (0)

b′F (0)
=

1√
π
. By applying Theorem (3) we get numerically that lim

ξ→0

CN (ξ)

CF (ξ)
= eB (TN , TF ) =

4

π
> 1.

Lemma 7. lim
ξ→0

CN (ξ)

CL(ξ)
> 1.

Proof. By lemmas (5) and (6) it follows that b′N (0) =
1√
π
, and b′L(0) = 1. Now under H0 :

hL(x) ∼ Logitic(0, 1), so V arξ=0(hL(x)) =
π2

3
, also,

b′N (0)

b′L(0)
=

1√
π
. By applying Theorem (3) we

get numerically that lim
ξ→0

CN (ξ)

CL(ξ)
= eB (TN , TL) =

π

3
> 1.

7.2 The Limiting ratio of the EBS for different tests when ξ → ∞

Lemma 8. lim
ξ→∞

CL(ξ)

CF (ξ)
= 1.

Proof. It follows by Theorem (11), Theorem (12) and lemma (1)(1) that CL(ξ) ≤ 2bL(ξ). So

lim
ξ→∞

CL(ξ)

CF (ξ)
≤ lim

ξ→∞

2bL(ξ)

bF (ξ)− 2 ln(bF (ξ)) + 2 ln(2)− 2
. Clearly, it is sufficient to obtain lim

ξ→∞

2bL(ξ)

bF (ξ)
.

Now, lim
ξ→∞

2bL(ξ)

bF (ξ)
≤ lim

ξ→∞

2ξ
2ξeξ

eξ−1

= lim
ξ→∞

e−ξ
(
eξ − 1

)
= 1. Therefore, lim

ξ→∞

CL(ξ)

CF (ξ)
≤ 1. In the

same way, by Theorem (8)(2) we have CL(ξ) ≥ −2 + 2bL(ξ) − 2 ln (bL(ξ)) . So lim
ξ→∞

CL(ξ)

CF (ξ)
≥

lim
ξ→∞

−2 + 2bL(ξ)− 2 ln (bL(ξ))

bF (ξ)− 2 ln(bF (ξ)) + 2 ln(2)− 2
. Clearly, it is sufficient to obtain lim

ξ→∞

2bL(ξ)

bF (ξ)
.Now, lim

ξ→∞

2bL(ξ)

bF (ξ)
≥

lim
ξ→∞

2ξ
2ξeξ

eξ−1

= lim
ξ→∞

e−ξ
(
eξ − 1

)
= 1. Therefore, lim

ξ→∞

CL(ξ)

CF (ξ)
≥ 1. By pinching theorem, we have

lim
ξ→∞

CL(ξ)

CF (ξ)
= 1.

Lemma 9. lim
ξ→∞

CS(ξ)

CF (ξ)
= 1.

Proof. It follows by Theorem (11), Theorem (13) and lemma (1)(3) that CS(ξ) ≤ −2 ln(2) −

2 ln(−bS(ξ)). So lim
ξ→∞

CS(ξ)

CF (ξ)
≤ lim

ξ→∞

−2 ln(2)− 2 ln(−bS(ξ))

bF (ξ)− 2 ln(bF (ξ)) + 2 ln(2)− 2
. Clearly, it is sufficient to

obtain lim
ξ→∞

−2 ln(−bS(ξ))

bF (ξ)
. Now, by L’Hopitals rule, we have lim

ξ→∞

−2 ln(−bS(ξ))

bF (ξ)

= lim
ξ→∞

e−ξ
(
1− e−ξ

) (
−2 ln

(
eξ − 1

)
+ ln

(
1 + eξ(ξ − 1)

))
ξ

≤ 1. Therefore, lim
ξ→∞

CS(ξ)

CF (ξ)
≤ 1. In the

same way, lemma (1)(3) that CS(ξ) ≥ −2− 2 ln(−bS(ξ)). Therefore, lim
ξ→∞

CS(ξ)

CF (ξ)
≥ 1. By pinching

theorem, we have lim
ξ→∞

CS(ξ)

CF (ξ)
= 1.
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Lemma 10. lim
ξ→∞

CF (ξ)

CN (ξ)
= 1.

Proof. By Theorems (11), (14), (9), (10) and L’Hopitals rule, we have

lim
ξ→∞

CF (ξ)

CN (ξ)
= lim

ξ→∞

bF (ξ)− 2 ln(bF (ξ)) + 2 ln(2)− 2

e2ξ E2
N(0,1)

{
v

MBin(2,Φ(v))(ξ)

} . Clearly, it is sufficient to obtain

lim
ξ→∞

bF (ξ)

e2ξ E2
N(0,1)

{
v

MBin(2,Φ(v))(ξ)

} = 1. Which implies that lim
ξ→∞

CF (ξ)

CN (ξ)
= 1. Thus lim

ξ→∞

CS(ξ)

CN (ξ)
=

1.

Lemma 11. lim
ξ→∞

CS(ξ)

CN (ξ)
= 1.

Proof. By using the limiting properties and Lemma (9) and Lemma (10).

Lemma 12. lim
ξ→∞

CL(ξ)

CN (ξ)
= 1.

Proof. By using the limiting properties and Lemma (8) and Lemma (10).

8 Comparison of the EBS for the six methods

By the results of Section (7.1) the best procedure, which has a higher EBS, is the maximum of
p-values since it has the highest limit as ξ → 0, then the sum of p-values, the inverse normal,
logistic, Fisher and Tippett’s procedure, respectively. Whereas, from the results of Section (7.2)
for large values of ξ the sum of p-values, the inverse normal, logistic and Fisher methods remain
the same, since they have the same limit as ξ approaches to infinity. For the other values of ξ, the
EBS’s will be compared numerically. These results are summarized in Table 1.
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Table 1: EBS for the log-logistic distribution

ξ CF (ξ) CL(ξ) CS(ξ) CN (ξ)

0.01 0.00002500 0.00003039 0.00003333 0.00003183

0.05 0.00062498 0.00075972 0.00083326 0.00079574

0.1 0.00249965 0.00303824 0.00333222 0.00318254

0.25 0.01561146 0.01896148 0.02079004 0.01987249

0.5 0.06228418 0.07542218 0.08264598 0.07922904

1 0.24660312 0.29526990 0.32266708 0.31283918

1.5 0.54575562 0.64284946 0.69863471 0.68933628

2 0.94894929 1.09683459 1.18167736 1.19177037

2.5 1.44324502 1.63627862 1.74306019 1.80030286

3 2.01501124 2.24326519 2.36054060 2.49468754

3.5 2.65111225 2.90354503 3.02076352 3.25616867

4 3.33969927 3.60616108 3.71666039 4.06860537

4.5 4.07060702 4.34278934 4.44345147 4.91888808

5 4.83543923 5.10710076 5.19700214 5.79684761

5.5 5.62745248 5.89424348 5.97364911 6.69487783

6 6.44133634 6.70044401 6.77020560 7.60744953

9 Numerical values of the EBS for the log-logistic distribution
using SRS

Through Table 1, we have the EBS using the SRS for the log-logistic distribution under study. We
observe that, when ξ is small, the best method is the sum of p-values followed by the inverse normal,
logistic and Fisher methods, respectively, and when ξ becomes big the inverse normal method
becomes the best than the sum of p-values followed by logistic and Fisher methods, respectively.
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