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In this paper, we propose a generalized likelihood ratio test to discern
whether a set of data fits a Negative Binomial as a particular case of the
Generalized Negative Binomial Distribution(GNBD). The test attempts to
differentiate the GNBD from Negative Binomial (NBD) distribution when
fitting discrete data. A Monte Carlo simulation study was performed to in-
vestigate the power and the size of the proposed test, and results shows good
performance in power and size under moderate sample sizes of the LRT test
for testing hypotheses on parameter β of the Generalized Negative Binomial
Distribution. A Parametric Bootstrap for investigating the distribution of
parameter β of the GNBD and a Bayesian approach for obtaining the poste-
rior distribution of the GNBD parameters were also implemented. In order
to illustrate the proposed methodology, we included two cases: a dataset
of an entomological study on mosquitoes of malaria and another study on
species of Malaysian butterflies.
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©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 27

1 Introduction

Count data occur in many fields, including biology, agronomy, environmental sciences,
medicine and epidemiology. Some examples are the number of deaths, number of ac-
cidents, number of insects, number of inundations, etc. (Cameron and Trivedi, 1998).
Discrete probability distributions are fitted to observed counts to find a pattern which
may lead an investigator to see if some generating models can be set up for the process
under study (Consul and Famoye, 2006). Jain and Consul (1971) introduced the Gen-
eralized Negative Binomial Distribution (GNBD), a model that includes as particular
cases Negative Binomial and Binomial distributions. The GNBD defined by Jain and
Consul (1971) generalizes the Negative Binomial distribution by including another pa-
rameter which takes into account variations in the mean and variance. The GNBD is
also a member of the Lagrangian distributions studied by Consul and Shenton (1972)
and it is also a member of the Modified Power Series distributions studied by Gupta
(1974).

Parameter estimation in the case of GNBD has been addressed by several researchers.
Jain and Consul (1971) used the method of moments to estimate parameters of GNBD,
Famoye (1998a) obtained estimates by the maximum likelihood method, Gupta (1977)
and Jani (1977) studied the minimum variance unbiased estimation, Hassan et al. (2004)
suggested a simple method for estimating the parameters of this distribution and Islam
and Consul (1986) introduced a Bayesian estimation approach for estimating parameter
β given the other as known in GNBD. However, Consul and Famoye (1995) found that
when estimating parameter β, most of the times, the resulting parameter lies in the (0, 1)
interval. Something similar was observed by Famoye (1998b) and Hassan et al. (2004).
Famoye (1998a) studied the performance of goodness of fit tests based on the empirical
distribution function for the GNBD by using Bootstrap.

Kumar et al. (2014) proposed an alternative estimator of GNBD parameters, but no
further properties of the estimators are given. Arefi et al. (2016) studied some confidence
intervals (Wald’s score, skewness-corrected score, likelihood ratio, and mid-P intervals)
for the mean of the generalized Poisson and generalized negative binomial distributions,
by means of a simulation study.

The purpose of this paper is to study a Generalized Likelihood Ratio Test (LRT) for
testing if a GNBD can be reduced to a NBD. Bayes estimates by using Markov Chain
Monte Carlo (MCMC) methods with their posterior density and credible intervals of the
parameters of the GNBD are also obtained. Additionally the Bootstrap method was
implemented for obtaining a confidence interval for parameter β of the GNDB.

2 The Generalized Negative Binomial distribution

If X is a random variable whose probability mass function is given by:

fX(x; θ, β,m) =

{
m

m+βx

(
m+βx

x

)
θx(1− θ)m+βx−x x = 0, 1, . . . ,

0 otherwise
(1)
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then X is said to have a GNBD distribution for x = 0, 1, 2, 3, ... and zero otherwise,
where 0 < θ < 1, m > 0, β = 0 or 1 ≤ β ≤ θ−1. Also, when β = 0, the parameter m is
a positive integer.

The distribution given in model (1) is denoted as X ∼ GNBD (θ, β,m). The mean
and the variance of the GNBD are µ = mθ(1 − θβ)−1 and σ2 = mθ(1 − θ)(1 − θβ)−3,
respectively. The mean and the variance exist for 1 ≤ β < θ−1. If βθ = 1 then the mean
and variance of GNBD do not exist. In Consul and Famoye (2006) a complete study of
GNBD probability distribution and some of their properties and applications is given.

3 Maximum likelihood estimators of GNBD parameters

Suppose we have a random sample from the GNBD with probability function given in
(1), and let n0 is the observed frequencies for 0, n1 is the observed frequencies for 1,...,nk

is the observed frequencies for k, with k is the maximum observed value in the sample,
n =

∑
nx and x̄ the sample mean. The log-likelihood function is (Famoye, 1997):

l(θ, β,m|data) = log

{
k∏

x=0

[fX(x; θ, β,m)]nx

}
= (n− n0) log(m) + nx̄ log(θ) + n[m+ (β − 1)x̄] log(1− θ)

+

k∑
x=2

nx

[
x−1∑
i=1

log(m+ βx− i)− log(x!)

]
. (2)

The partial derivatives of the log-likelihood with respect to each parameter are as
follows:

∂l(θ, β,m|data)
δθ

=
n[x̄− θ(m+ βx̄)]

θ(1− θ)
= 0, (3)

∂l(θ, β,m|data)
δβ

= nx̄ log(1− θ) +

k∑
x=2

x−1∑
i=1

xnx

m+ βx− i
= 0, (4)

∂l(θ, β,m|data)
δm

=
n− n0

m
+ n log(1− θ) +

k∑
x=2

x−1∑
i=1

nx

m+ βx− i
= 0. (5)

The maximum likelihood estimates θ, β and m are obtained by solving (3), (4) and (5)
iteratively, taking as initial values the moment estimators (Consul and Famoye, 1995).

3.1 The moment estimators for the GNBD

The moment estimators for the GNBD were obtained by Jain and Consul (1971). Sup-
pose that a random sample of size n is taken from the GNBD model and let the
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observed values be x1, x2, ..., xn and define x̄ =
n∑

i=1
xi/n, s2=

n∑
i=1

(xi − x̄)2/(n − 1),

s3=
n∑

i=1
(xi − x̄)3/(n− 1). The moment estimators are:

θ̃ = 1− 1

2

[
−2 +

(x̄s3 − 3s22)
2

x̄s32

]
+

{[
−2 +

(x̄s3 − 3s22)
2

x̄s32

]2
/4− 1

}
, (6)

β̃ =
1

θ̃

1−

(
x̄(1− θ̃)

s2

)1/2
 , (7)

m̃ =
x(1− θ̃β̃)

θ̃
. (8)

The moment estimators exist for 1 ≤ β < θ−1 (Jain and Consul, 1971).

4 A LRT test on parameter β of the GNBD

The binomial and negative binomial distributions are members of generalized negative
binomial class of distributions for β=0 and β=1, respectively. The problem of interest
is to test if a random sample that follows a GNBD distribution can be reduced to the
Binomial or Negative Binomial Distributions.

Let X1, X2, ..., Xn be an observed random sample of size n from a GNBD(θ, β,m).
We want to test:

H0 : β = 1 vs H1 : β > 1 (Negative Binomial vs GNBD). (9)

In these cases the parameters θ, β and m are unknown and are estimated by from the
sample data by the maximum likelihood method.

4.1 Generalized likelihood ratio test

Suppose that a given random sample X1, . . . , Xn with probability distribution fX(x; θ)
and Ω be the parametric space. We are interested to test the following hypothesis set:
H0 : θ ∈ Ω0 vs H1 : θ ∈ Ω−Ω0. The likelihood ratio statistic to test H0 : θ ∈ Ω0 vs H1 :
θ ∈ Ω− Ω0 is given by:

λ(x) =

sup
θ∈Ω0

L(θ;x)

sup
θ∈Ω

L(θ;x)
.

where L(θ;x) =
n∏

i=1
fXi(xi; θ).

Note that under certain regularity conditions (Casella and Berger, 2002), (under the
null hypothesis) when n → ∞,
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−2 log λ(X)
d→χ2

ν

where χ2
ν is χ2 random variable with ν degrees of freedom. We reject H0 at level α if,

and only if, −2 log λ(X) ≥ χ2
ν,1−α where χ2

ν,1−α is the quantile 1−α of a χ2 distribution
with ν degrees of freedom. Then to test the hypotheses in (9) we proceed as follows.
Suppose that we have a random sample of size n with probability function fX(x; θ)
and let nx be the observed frequencies for the classes x = 0, 1, 2, ..., k where k is the
largest observed value. Considering the set of hypotheses to test in (9), we calculate
the maximum likelihood estimators under the null (θ̂0, β = 1 and m̂0) and alternative
hypotheses (θ̂1, β̂1 and m̂1) and we have the following statistic:

−2 log λ(X) = −2 log

(
supθ∈Ω1

∏k
x=0

(m̂1+x−1)!
(m̂1−1)! x!

θ̂1
x
(1−θ̂1)m̂1

supθ∈Ω1

∏k
x=0

m̂1
m̂1+β̂1x

(m̂1+β̂1x
x )θ̂1

x
(1−θ̂1)m̂1+β̂1x−x

)

If −2 log λ(X) ≥ χ2
1,1−α, then we reject H0 at level α = 0.05. We apply the same

procedure to the other case in equation (9) to test NBD against GNBD.

4.2 Monte Carlo simulation of the power of the proposed test

4.2.1 Power and size of the test

Power

Monte Carlo simulation experiment was conducted to study the power and size of the
proposed test under different values of parameter β and different sample size situations.
To generate samples from the GNBD we wrote an R script by using the inversion method
(Famoye, 1998b). The MLE estimators were obtained by using the optim function in R
(R Core Team, 2017).We used the following algorithm for evaluating the power of the
test for testing hypotheses in (9):

1. Select the values of n, θ, β and m.

2. Set Sum = 0.

3. Generate a random sample X1, X2, ..., Xn from the GNBD(θ, β,m).

4. Calculate the maximum likelihood estimates for the parameters under the null and
the alternative hypothesis.

5. Calculate the likelihood ratio statistic −2 log λ(X).

6. If −2 log λ(X) ≥ χ2
ν,1−α then set Sum = Sum+ 1.

7. Repeat steps 3 to 6 M times.

8. Calculate Sum/M to obtain the estimated power.
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Table 1 shows the results of the power obtained for Negative Binomial model with
sample size n = 300, 500, 800 and 1000 for different values of β and significance level
equal to 0.05. Parameter θ and m where fixed in 0.4 and 2 respectively, the number of
simulation replicates was 5000. From Table, 1 we can observe that the GLR performs
with moderate power in small samples sizes and it increases as the samples size is greater
(n ≥ 500).

Table 1: Power of the Test. Case Negative Binomial vs Generalized Negative Binomial
(H0 : β = 1 vs H1 : β ̸= 1) with α = 0.05

β n

300 500 800 1000

1.0 0.0420 0.0576 0.0510 0.0509

1.3 0.0456 0.0357 0.0669 0.0689

1.4 0.0489 0.0557 0.1205 0.1923

1.6 0.1340 0.2876 0.4219 0.5280

1.7 0.2026 0.4316 0.6213 0.6667

1.9 0.5216 0.7726 0.9233 0.9710

2.0 0.6960 0.8934 0.9788 0.9980

2.1 0.8688 0.9687 1.0000 1.0000

2.2 0.9646 0.9990 1.0000 1.0000

Size

In this section, we present the results of estimation for the size of the test obtained
by simulation for significance level (α) of 0.01, 0.05 and 0.1 with 5000 replicates. Table
2 show the results when the null hypothesis are true, i.e. when the generated random
sample is Negative Binomial. Parameter θ and m where fixed in 0.4 and 2 respectively.
From Table 2 we conclude that the estimated sizes of test are close to the nominal
significance level when the sample size is greater than 500, i.e. the GLR test preserves
the nominal significance level α when the sample size is large enough.

Table 2: Empirical size for Negative Binomial vs Generalized Negative Binomial (H0 :
β = 1).

n α

0.01 0.05 0.1

100 0.2256 0.2200 0.2308

200 0.0618 0.0791 0.1109

500 0.0109 0.0455 0.1299

1000 0.0100 0.0517 0.0983
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5 Parametric bootstrap for β̂

The Bootstrap it is a general technique for constructing confidence intervals using re-
sampling. A parametric bootstrap it proposed for investigating the distribution of β̂
from the GNBD.
The steps to obtain bootstrap confidence intervals are:

1. Simulate a random sample of GNBD of size n by using maximum likelihood esti-
mates of θ, β and m in section 3.

2. Estimate the MLE of the parameters of GNBD for simulated sample.

3. Save the estimate of β.

4. Repeat step 1-3 for 10000 times.

5. Sort de vector of estimate β and find the quantiles 5% and 95%.

6. Plot the estimated density of β̂ by using a kernel smoothing nonparametric esti-
mate.

A 95 percent Bootstrap confidence interval for β that includes the value of 1 supports
the NBD hypothesis. A program was written in R (R Core Team, 2017) for obtaining
the Bootstrap intervals.

6 Bayesian analysis of a generalized negative binomial
distribution

A Bayesian approach using MCMC algorithm by assigning a prior distributions on θ, β
and m of the GNBD (1) and then deriving the posterior distribution by means of Bayes’
theorem.
The likelihood function for a sampleX1, ..., Xn from de GNBD probability function (1)

is given by equation (2). The GNBD distribution does not support a conjugated family
of previous distributions, so advanced simulation techniques are required to obtain the
posterior distribution. The prior distributions of all unknown parameters (θ,β,m) are
considered in Bayesian approach. Since we have no information, non informative prior
distributions to the parameters are used.
In particular, we used a prior Beta distribution for θ. For β and m we assigned a

gamma distribution to each parameter independently. Therefore, the prior distributions
are as follows:

θ ∼ B(a0, b0), (10)

β ∼ Γ(a1, b1), (11)

m ∼ Γ(a2, b2), (12)
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where ai > 0 and bi > 0 for i = 1, 2, 3.

Each parameter is supposed to be independently distributed, and the joint prior dis-
tribution of all unknown parameters can be written as:

π(θ, β,m|a0, b0, a1, b1, a2, b2) = π(θ|a0, b0)π(β|a1, b1)π(m|a2, b2) (13)

The setting of hyperparameter values ai > 0 and bi > 0 was done by tunning values
around a mean of the prior distribution.

6.1 Posterior inference

Combining equations (2) to (13), the joint posterior distribution of the parameters is
given by:

π(θ, β,m|x) ∝
n∏

i=1

fXi(xi|θ, β,m)π(θ|a0, b0)π(β|a1, b1)π(m|a2, b2). (14)

The joint posterior distribution (14) is analytically intractable so inference can be made
using simulation with Markov Chain Monte Carlo techniques (MCMC). To obtain the
posterior marginal distribution. To draw posterior samples, numerical integration it is
required. In this case, we used the random walk Metropolis algorithm (Liu, 2001). We
used the proc MCMC of the SAS software (SAS Institute Inc., 2012) to find the posterior
marginal distribution of the parameters θ, β,m.

7 Study cases

7.1 Example 1: Number of sporozoite-positive malaria mosquitoes

Drakeley et al. (2003) conducted an entomological study on mosquitoes of malaria and
their relative contribution to Plasmodium falciparum transmission in the semi-urban
area of Ifakara, south-eastern Tanzania. Table 3 shows observed numbers of sporozoite-
positive mosquitoes in light trap catches (LTC). Drakeley et al. (2003) found that the
negative binomial distribution fitted better than Poisson for data in Table 3.

Table 3: Number of sporozoite-positive malaria mosquitoes (Drakeley et al., 2003).

No. of sporozoite-positive mosquitoies in LTC No. of times observed

0 761

1 21

2 5

3 0

4 2

5 0

n 789
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

density.default(x = beta, bw = 0.25)

N = 1000   Bandwidth = 0.25

D
en

si
ty

Figure 1: Estimated density of β̂ parameter of fitted distribution on numbers of
mosquitoes by Bootstrap.

7.1.1 testing H0 : β = 1 by using a LRT

Now we are interested testing if data comes from a NBD or a GNBD (as in equation 9).

H0 : β = 1 (NBD) vs H1 : β ̸= 1 (GNBD).

Steps:

1. The MLE are obtained for NBD and GNBD, see Table 4.

2. Using the statistic from subsection 4.1, for this data theGLR statistic is−2 log λ(x) =
0.031 and the percentile χ2

1,0.95 = 3.84, hence we do not reject H0 : β = 1 (NBD),
i.e., the number of sporozoite-positive malaria mosquitoes caught by a light trap
is distributed according to a Negative Binomial distribution.

Table 4: ML parameters under null and alternative hypotheses for malaria Mosquitoes.

Parameter H0 H1

θ̂ 0.549982 0.2532310

β̂ 1 (known) 1.4459204

m̂ 0.06042140 0.1237229

log likelihood -143.95 -143.9345

7.1.2 Bootstrap confidence interval for β̂

A 95 percent Bootstrap confidence interval for β is (0.53, 5.02), note that 1 is included in
the interval witch supports the NBD hypothesis. Figure 1 shows the estimated density
for β̂.
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Figure 2: Traceplot, autocorrelation plot and Posterior distribution for parameter β of
the GNBD for mosquitoes data.

7.1.3 Posterior distributions using MCMC

A summary of results is given in Table 5, and a posterior density plot of β es given in
Figure 2. For the MCMC algorithm we used 100000 iterations, the fist 50000 iterations
were considered as burn-in, and we set the thinning rate to 20. In this case the credibility
interval for beta includes the 1, then data supports the NBD.

Table 5: Summary of the posterior distribution of the GNBD, using 50000 iterations,
(LC,UC) is the credibility interval of 95 %.

Parameter Mean Standard Deviation LC UC

θ 0.3261 0.1464 0.0854 0.6137

β 1.4083 0.4924 0.7635 2.4243

m 0.1188 0.0764 0.0224 0.2747

7.2 Example 2: Number of species of Malaysian butterflies

A data set on Malaysian butterflies from (Corbet 1942) study is considered. The data
contains 9029 individuals belonging to 620 species this data set was used by Izsák (2008)
to fit a Poisson lognormal distribution. The data are shown in Table 6.
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Table 6: Number of species of Malaysian butterflies, Corbet (1941).
Frequency N Species Frequency N Species Frequency N Species Frequency N Species

1 118 20 10 39 3 60 2

2 74 21 11 40 1 64 1

3 44 22 5 41 1 66 1

4 24 23 3 42 2 68 1

5 29 24 3 43 1 70 1

6 22 25 5 44 1 71 4

7 20 26 4 45 4 76 1

8 19 27 8 46 2 84 1

9 20 28 3 48 2 89 1

10 15 29 3 49 1 92 1

11 12 30 2 50 3 93 1

12 14 31 5 51 1 100 1

13 6 32 4 52 2 105 1

14 12 33 7 53 1 108 1

15 6 34 4 54 4 119 1

16 9 35 5 55 1 141 1

17 9 36 3 56 5 147 1

18 6 37 3 58 2 194 1

19 10 38 3 59 1

Table 7: ML parameters under null and alternative hypotheses in spots in southern pine
beetle.

Parameter H0 H1

θ̂ 0.048988 0.2211

β̂ 1 (known) 3.8195

m̂ 0.75024 10.2232

log likelihood -2286.4895 -2247.05

7.2.1 testing H0 : β = 1 by using a LRT

for this data the GLR statistic is −2 log λ(x) = 78.879 and the percentile χ2
1,0.95 = 3.84,

hence we reject H0 : β = 1 (NBD), i.e., the number of species is distributed according
to a Generalized Negative Binomial distribution.

7.2.2 Bootstrap confidence interval for β̂

A 95 percent Bootstrap confidence interval for β is (3.31, 4.12), note that 1 is not included
in the interval witch supports the GNBD hypothesis, in Figure 3 the estimated density
of β̂ it is shown.

7.2.3 Posterior distributions using MCMC for GNBD in Malayan
butterflies data

A summary of results is given in table (8), and a posterior density plot of β es given in
figure (4). For the MCMC algorithm, we used 100000 iterations, the fist 50000 iterations
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Figure 3: Estimated density of β̂ parameter of fitted distribution on numbers of Malayan
butterflies by Bootstrap.

were considered as burn-in, and we set the thinning rate to 20.

Figure 4: Traceplot, autocorrelation plot and Posterior distribution for parameter β of
the GNBD for Malaysian butterflies data.

In this case the credibility interval for beta does no includes the value 1, then data
supports the GNBD.
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Table 8: Summary of the posterior distribution of the GNBD, using 50000 iterations,
(LC,UC) is the credibility interval of 95 %, in Malayan butterflies data.

Parameter Mean Standard Deviation LC UC

θ 0.2312 0.0438 0.1491 0.3098

β 3.7809 0.6999 2.4804 5.1567

m 10.1811 2.1917 6.428 14.7075

8 Conclusions

We have developed a likelihood ratio test to test if the GNBD or NBD distribution is
appropriate for a given data set. We also investigated the performance of this test with
respect to its power by simulation. The study shows that the likelihood ratio test has
good performance in power and size under moderate sample sizes n > 200. The test
showed consistency and with sample size n > 1000 the test reached the nominal size
of the test and the power was acceptable for detecting changes on parameter β. We
also proposed a Bayesian analysis and a Bootstrap of testing if β is one. Finally, we
present two example where proposed test shows consistency with Bayes and Bootstrap
approaches.
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