Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index
e-ISSN: 2070-5948

DOI: 10.1285/i20705948v15n1p167

Application of Bayesian analysis on risk factors
of coronary artery disease
By Ghosh, Samanta

Published: 20 May 2022

This work is copyrighted by Universita del Salento, and is licensed un-
der a Creative Commons Attribuzione - Non commerciale - Non opere derivate
3.0 Italia License.

For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/




Electronic Journal of Applied Statistical Analysis
Vol. 15, Issue 01, May 2022, 167-186
DOI: 10.1285/120705948v15n1p167

Application of Bayesian analysis on risk
factors of coronary artery disease

Sarada Ghosh® and Guruprasad Samanta*®

& Department of Statistics, Gurudas College, Phool Bagan, Kolkata-700054, India
b Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur,
Howrah-711103, India

Published: 20 May 2022

Coronary Artery Disease is the leading cause of death globally. Coronary
artery disease (or Ischemic heart disease) is caused by plaque buildup in the
arteries that supply oxygen-rich blood to heart. Plaque causes a narrowing or
blockage that could result in a heart attack. Some risk factors responsible for
mortality and morbidity during IHD (Ischemic heart disease) are evaluated
using suitable statistical models. In this work, due to count data, we propose
Poisson, Negative Binomial and also utilize a flexible class of zero inflated
models such as Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Bi-
nomial (ZINB) models estimated by the method of MLE and are compared
to assess the most appropriate model for the underlying data. The forward
and backward model selection procedures are also taken to permit the most
significant factors associated with heart disease. The ZIP model is identified
as the most appropriate one in this work. Moreover, a Bayesian estimation
is chosen to account for prior on regression coefficients in a small sample
size setting. This estimation also evolves as an alternative to traditionally
used MLE based methods for such data. As per our simulation studies:
the proposed method has better finite sample performance than the classi-
cal method with tighter interval estimates and better coverage probabilities.
The simulation is based on R-software.
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1 Introduction

In the World, heart disease is the biggest killer of both men and women (WHO (2019)).
One can die from heart disease about every minute in the United States alone and one in
every four deaths is associated with heart disease. The risk of heart disease is increased
by fat distribution across the body and other cardio metabolic conditions in women
(presented at annual Radiological Society of North America meeting). It is presented in
the 69t Annual Conference of the Cardiological Society of India that the risk of heart
disease increase by 500 percent with baldness and gray hair in men. In other news, a new
study in the BMJ (British Medical Journal) is presented that smoking just one cigarette
per day can increase the risk of heart disease. It is also suggested recently that restless
leg syndrome (RLS) may also increase the risk of death from heart-related conditions,
especially for older women. All of these mentioned problems gradually destroy the lining
of the heart’s blood vessels and make them become narrowed or blocked completely.

Heart disease is a general term that means that the heart is not working normally. A
person can have heart disease but does not feel any illness. But some people with heart
disease have symptoms (pain in chest, trouble for breathing, palpitations, swelling of
feet or legs, cyanosis or feeling weak due to the body and brain are not getting enough
blood for supplying them with oxygen). Nowadays, Coronary Artery Disease (CAD) is
most common heart disease in the World. CAD is also known as ischemic heart disease
(IHD). It normally happens for accumulating cholesterol on the artery walls and creating
plaques. It is known as atherosclerosis. The arteries become narrow and reducing blood
flow to the heart. Sometimes, a clot can obstruct for delivering blood to the heart muscle.
If blood vessels connecting to the heart become very narrow, or somehow blood vessels
are blocked partially or completely, then blood cannot flow through them normally. As a
result, muscle cannot be able to work in normal capacity for supplying requisite amount
of blood to the heart muscle. Heart muscle become sick and weak, in fact it can even
die if blood flow stops.

There are four primary coronary arteries are detected on the heart’s surface: (i) right
main coronary artery, (i) left main coronary artery, (iii) left circumflex artery, (iv)
left anterior descending artery. These arteries are responsible for bringing oxygen and
nutrient-rich blood to heart. A healthy heart can move daily approximately 3,000 gallons
of blood throughout our body according to the Cleveland Clinic.

Several symptoms, in case of CAD, occur when heart does not get sufficient arterial
blood. Angina (a type of chest pain due to insufficient blood flow to the heart) is the
most common symptom of CAD. Some people describe such a discomfort in another
way just like chest pain, tightness, burning, heaviness, squeezing etc. Apart from this,
minor problems may also occur due to CAD: breathing problem, pain in shoulders or
arm, dizziness etc. In spite of facing these types of problems, women also be disturbed
with many symptoms (such as nausea, vomiting, back and jaw pain, shortness of breath
without feeling chest pain) of CAD. If blood flow is decreasing than normal level of human
body, heart may also become very weak and then abnormal heart rhythms (arrhythmia)
or rates occur due to insufficiency of blood. Regional wall motion abnormality (RWMA)
is a terminology used in echocardiography. This is commonly applicable for abnormalities
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of motion of the left ventricular (lower muscular chamber of the heart) walls. If all
segments of the left ventricle are contracting normally, then RWMA is absent in this case.
It is noted that 30 patients out of 32 having RWMA can assess coronary artery disease.
So, left ventricular regional wall motion abnormality (RWMA) predict the existence of
significant coronary artery disease with 94% accuracy (Safford and Bove (1987)). Some
risk factors are considered in this work which are most important predictors for CAD such
as high blood pressure (HBP), pulse rate (PR), tobacco smoking (present or ex denoted
by PTS and ETS respectively), diabetes mellitus (DM), obesity, body mass index (BMI),
hyper tension (HT) etc. (Alizadehsani et al. (2013); Karaolis, Moutiris and Hadjipanayi
(2010)). For diagnosing of CAD, a review of medical history, a physical examination,
and other medical testing are required. So, some results during medical test are also
included like chronic renal failure (CRF), dyslipidemia, weak peripheral pulse (WPP),
lung rales (LR), typical chest pain (TCP), Dyspnea, Q-wave, left ventricular hypertrophy
(LVH), fasting blood sugar (FBS), creatine, triglyceride, lipo-protein density (low and
high denoted by LLPD and HLPD respectively). Generally, the risk for CAD also
increases with age of people: men have a greater risk for the disease beginning at age 45
and women have a greater risk beginning at age 55 (Alizadehsani et al. (2013)). Among
many tests, electrocardiogram is most important which can helps to determine whether
human had a heart attack or not. So, it is necessary to reduce or control the risk factors
and seek treatment to lower the chance of heart attack or vulnerable stroke, if diagnosed
with CAD. Treatment also depends on patients current health condition, risk factors and
overall well being. Our lifestyle should be changed in such a manner that decreases the
risk of heart disease and stroke. As for examples, quit smoking tobacco, reduce or stop
consumption of alcohol, exercise regularly, lose weight to a healthy level, eat a healthy
diet (describe by doctor). Beside these, doctor may prescribe to the affected patients a
suitable procedure for increasing blood flow to the heart.

The Negative Binomial (NB) and Poisson models are two basic generalized linear
model (GLM) which are widely applied to analyze count data (Agresti (2002); Ghosh
and Samanta (2019)). The Poisson regression is identified by equal mean and variance
and fits admirably for equidispersed data whereas the NB is utilized in the cases if over-
dispersion is present in the response. Poisson regression model is compared with the
NB model for identifying the best fitting model in this paper. However, these standard
models fail when most of the observed counts are zeros. Then zero-inflated models have
been utilized to address in such cases by modelling zero counts separately (Shankar,
Milton and Mannering (1997)). This study seeks to investigate the most appropriate
model to examine the uttermost important factors that significantly influence the region
of regional wall motion abnormalities (RWMA) which is highly related to coronary artery
disease. In section 2 we discuss about model derivation and preliminaries. Then the data
description and simulation are discussed in the section 3. The concluding remarks and
general discussion is held in the last section i.e., at section 4. This work also discusses
the significance of modelling for excess-zero in count data structure in the context of
Bayesian modelling. The simulation of this work is based on R-software (Zeileis, Kleiber
and Jackman (2008)). Finally, the last section consists of the general discussions and
conclusions of the paper.
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2 Model derivation and preliminaries

2.1 Methodology for estimating model parameters

The conventional univariate Poisson model typically comes in mind as the outcomes are
counts. The Negative Binomial and Zero-Inflated models are also considered because the
data has an excess of zero counts and presence of over-dispersion. Since both can arise
simultaneously, extensions such as Zero-inflated Poisson (ZIP) and Zero-inflated Nega-
tive binomial (ZINB) are obviously considerable models as well. Due to over-dispersion,
we can proceed with the quasi-likelihood Poisson GLM and Negative Binomial (NB)
models. The NB model is an extension of the Poisson regression and is generally used
for addressing over-dispersion and is reviewed in this work.

Let X = (X1, Xo, ..., X)) be the vector of p regressors and let Y = (Y7,Y5,...,Y},) be the
response vector with n as the number of observations. Let Y; ~ Pois(6;), with random
mean 0; ~ T'(5%, X). Then the marginal distribution of Y;(i = 1,2,...,n) is the NB with
probability function given by,

Iy, + k) 1 MOkt O\
k = h 7 - 71727 1
p(y, k, 1) T 1 1) <Mik1+1) ki1 o Wherey 0 (1)

The simplest distribution for count data (i.e., data that take only non-negative integer
value) is the Poisson distribution. Let Y denotes a count and let = E(Y"). The Poisson
probability mass function (pmf) for Y is

e 0y

fly;0) = o where y = 0,1, 2, ... (2)
where (> 0) is both the mean and variance of the distribution, so it is described as
equi-dispersed. The Poisson model is not sufficient in the case of excess of zeroes in the
sample due to the violation of the equi-dispersion assumption. In contrast, sometimes
many data are over-dispersed, whenever the variance exceeds their mean, so this reduces
the usefulness of the Poisson distribution. In terms of the ensuing discussion, it is
essential to recognize that the Poisson model and standard variants that permit for
over-dispersion, cannot able for describing multi-modal data. The zero-inflated Poisson
(ZIP) regression model is a modification of the familiar Poisson regression model which
allows for an over-abundance of zero counts in the data (Mullahy (1986); Lambert (1992);
Liu and Powers (2012); Lu et al. (2014)).

Firstly, we have defined the ZIGP (Zero inflated generalised poisson regression) such
as follows (Czado et al. (2007); Wang, Shuangge and Wang (2015)):

pi(zi) + (1 — pi(2:)(0;, 24;0), if y; =0
P(Y; = yilzi, zi) = (3)
(1 = pi(2:)(03; i, i), ifyi >0
where f(0;,2i;vi), v:i=0, 1, 2,... is GPR (generalised poisson regression) model and
0<p <1
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In this work, we have considered ZIP model (Czado et al. (2007); Wang, Shuangge
and Wang (2015)) whose objective is very straightforward, i.e., it assumes that outcomes
emanate from two following processes (Lambert (1992)). It is mentioned that ZIP (i)
models zero inflated by including a proportion (1 — p;) of extra zeroes and a proportion
pi exp(—0;) of zeroes coming from the Poisson distribution and (ii) models the non-zero
counts by using zero-truncated Poisson model. The ZIP model is as follows:

pz(zz) + (1 — pi(zi))POiS(Qi; O’.CEZ'), if y; =0
P(Y; = yilxs, z:) = (4)
(1 — pi(2i))Pois(0;; yi|x;), if y; > 0

with z; as a vector of covariates defining the probability 6;, Pois(6;;0|z;) = exp(—0;),
e 00vi

and Pois(6;; yi|zi) = < 7. The mean and the variance of ZIP are:
E(yi|ai, zi) = (1 — pi)b; (5)
and
Var(yi|zi, 2i) = (1 —p;)(0; + pib}) (6)

It is very clear that ZIP model changes into the classical Poisson model when p; =
0. Otherwise, ZIP is over-dispersed since the variance exceeds the mean. This over-
dispersion is not due to the heterogeneity of the data which can be handled using negative
binomial model. Instead, it appears from the splitting of the dataset into the two
statistical processes because of the excess of zeroes. For the independently distributed
responses sampled from ZIP(p;, 6;), the commonly used link functions are given by,

log(6) = 23 (7)
We can model p;(z;) using a Logit model (Lambert (1992)) given by:

exp(zia)
() = 8
pi(z) 1+ exp(2ja) (®)
where z; is a vector of covariates defining the probability p; and « be a vector of its
corresponding parameters. In this work the likelihood function of Y; can be defined as:

—0

e 0¥

L= T] It + (0= meexn-00] TT [0 - ma) )
¥:=0 yi7#0

For statistically well-posed zero-inflated probability model, (Vuong (1989)) proposed a

test which is a well suited method to compare ZIP regression to other non nested models

for counts data. Suppose Py (y;|z;) be the predicted probability (from model N) of it
observed count and define m; as:

W:m(ggig) (10)
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The test statistic for the Vuong’s test (for the hypothesis E(m;) = 0) is defined as
follows:
v my/n

=0 (11)

1 ¢ 1 ¢
where m = mean of m; = - z;mz and S,, = standard deviation = - z;(ml —m)?
1= 1=
and n is the sample size. It is mentioned that the Vuong’s statistic is asymptotically
normally distributed.
At 5% level of significance:

(i) The first model is accepted if V* > 1.96.
(ii) If V* < —1.96, then the second one is preferred.
(iii) The two models are equivalent when —1.96 < V* < 1.96.

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
are used for choosing the best model from several fitted models. When a model is fitted
to a set of observed data generated from the unknown true model, the AIC provides
a clear idea of the information lost by considering the complexity of the model and its
goodness of fit test. The AIC for a model with k parameters and likelihood L is defined
as (at convergence):

AIC = 21In(L) + 2k (12)

As with AIC, the BIC model choice criteria penalizes model with additional parameters:
BIC = 21In(L) + k1In(n) (13)

where n represents the sample size and k is the number of parameters. Out of various
models fitted for a given dataset, the preferred model has smallest AIC and BIC values.

2.2 The Bayesian Inference

In Bayesian approach, prior information about the distribution of parameters is consid-
ered along with the likelihood of the observed data to establish a posterior distribution
of relevant quantities for inference about unknown parameters as well as other predictors
of interest including data with combinations of parameters. Bayesian analysis involves
the specification of prior distribution for the parameters of interest (Ghosh et al. (2006);
Zeng et al. (2014)). In Bayesian analysis, conjugate priors are often chosen for conve-
nience to obtain the resulting posterior distribution in a closed form belonging to the
same distributional family (Neelon (2018)). However Bayesian analysis is performed ba-
sically in the situations where multiple parameters are included (such as the ZIP model).
In this context it is mentioned that ZIP (p, #) consists of two stages: (i) a Bernoulli zero-
inflated stage with parameter p and (ii) a Poisson count stage with parameter . The
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pmf (probability mass function) of ZIP can also be written in the following form:

b(0

~—

If Y =k, where k = 1,2, ..., then pmf is as follows:
b(k)0"
PY=xr=(1- 1
¥ =r)= -7y (15)

where ¢(f) = > 72 b(k)0", 0 < p < 1 and § > 0. For a random sample ¥ =

k=0

(Y1,Ys,...,Y,) from the ZIP model, the form of likelihood function is as follows:

G
n—Go 0

Lp.01Y) o< [pe(6) + (1= p(0) (1 = oy~ o

(16)
where Go = Gp(Y) is the number of {i: ¥; =0} & G = G(Y) = >.7,Y;. The as-
sumption is that the parameters # and p in the case of prior distributions are indepen-
dent. We have to use the conjugate priors such as p ~ Beta(by,b2) & 6 ~ 7(6), where
w(0) ~ 6% /c[(0)]*2. Tt is not necessary to imply the prior and posterior independence.
It is also assume that the hyper parameters a1, ao, b1, and bs are known. If both of the
value of hyper parameters b; and by equal 1, then it provides a uniform prior over (0,1)
for the p parameter. Sometimes, the computation of a joint posterior is very difficult
using a standard density. To overcome such a difficulty, simulations help create a skillful
strategy. The Monte Carlo method is used to sample from the posterior distribution to
get rid of such limitations. Generally, it is assumed that the prior distributions for p and
0 are independent and we have to use the following conditional conjugate priors as p ~
Beta(by,b2) and 6 ~ 7w(6), where 7(0) ~ 6% /c[(0)]*2. It is noted that prior independence
does not necessarily imply posterior independence. The hyper parameters aj,as,b1,bo
are assumed to be known. In particular, if by = by = 1 then it gives the uniform prior
over (0,1) for the parameter p. Small values of ag result in a non-informative (high
variance) prior for 6. Sometimes, it is very tough to compute the joint posterior by
using a standard density. Simulation methods offer a skilful strategy in this case. Monte
Carlo simulation based techniques are used to sample from the posterior distribution
to overcome such analytical limitations. Apart from this, in particular case, the Gibbs
sampling method has been utilized to prevail a large number of random variates from the
posterior distribution. Any distributional summary such as mean, median or quantiles
etc of the posterior distribution can be approximated using their corresponding sample
analogue.

3 Data description and simulation

The data of heart disease is provided by UCI Machine Learning Repository. A sample
of 303 patients are considered in this work. Summary statistics on the number of people
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affected RWMA mean (0.62) and variance (1.28) are different and degree of abnormali-
ties of regional wall motion (i.e., normal, mild, moderate, severe and extreme) are also
considered in this work. This gives an indication of possible over-dispersion in the counts.

Histogram of patients with density curve

Density
0.6 0.8 1.0 1.2 1.4
|

0.4

0.2

T T T T 1
0 1 2 3 4

0.0
L

Degree of RWMA

Figure 1: The frequencies of the degree of RWMA (from none to extreme)

Also, the histogram in Figure.l shows a skew distribution with over 72% of zero ob-
servation. The two phenomena, over-dispersion and zero-inflated, exhibited by the data
need to be accounted for by our model. Furthermore, a suitable model building process
is required for selecting the most significant predictors of the 24 observations. Since the
outcomes are counts, the conventional univariate Poisson model may be suitable. How-
ever, due to the presence of possible over-dispersion and has an excess of zero counts, the
Negative Binomial and Zero-inflated models are also considered. Since both can occur
simultaneously, extensions such as (i) Zero-inflated Poisson (ZIP) and (ii) Zero-inflated
Negative binomial (ZINB) are obvious candidate statistical models as well.

Cardiovascular disease (CVD) risk factor control is difficult to reduce the CVD risk
of those who have already diabetes. Recently some clinical trials have demonstrated
that the use of more aggressive targets for blood pressure and cholesterol control among
individuals with diabetes results in reduced incidence of CVD events (Shepherd et al.
(2006); Hansson et al. (1998); Collins (2003)). The individuals with diabetes have a
larger decline in both (total and LDL cholesterol) than those without diabetes and similar
declines in blood pressure levels. The improvement in risk factor levels is paralleled by
an increase in different drug treatments, which likely contributes to the observed trends.
Diabetes mellitus is still associated with approximately an overall two to three-fold
increased risk of CVD mortality (Fox et al. (2004); Gregg et al (2007); Gu et al. (1999)).
The aim of this work is to model the RWMA in presence of some covariates using the
zero-inflated model specifications. Generally, maximum likelihood estimation (MLE)
technique is used to obtain the estimates of parameters in these models. The basic
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principle behind this method is to estimate parameters that maximize the likelihood of
the observed data.

3.1 Estimation of model parameters

The Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial
models are fitted to the data set under the present study. First we have to select which
of these regressors are significant in explaining the number of people having RWMA
and then apply both backward and forward model selection. In forward selection, the
model-fitting process begins with only the intercept and then sequentially adds the
effect for improving the fit. This process is terminated when adding an effect produces
no significant improvement. At each step, the effect that is most significant is added.
The process is terminated when the significance level for adding any effect is greater
than some specified entry significance level whereas the backward elimination starts
with the full model where all independent effects are included. Then effects are deleted
one by one until a stopping condition is satisfied. At each step, the effect that makes
‘the smallest contribution to the model’ is deleted. The significance level of an effect
determines whether to drop that effect. At any step, the least significant predictor
is dropped, and the process continues until all effects that remain in the model are
significant at a specified stay significance level. The forward and the backward model
selection criteria are used to find the best subset of effects for the conditional mean
of the underlying models. Here the selection criteria is chosen based on AIC, BIC for
selecting the final model. There are more than 50 variables in the data set. In the
case of backward elimination, first consider the full model and all the AIC which are
more than 700.19 for each model and similarly in case of BIC we get larger BIC for
each model than mentioned in Table 1. Therefore, we eliminate the covariates (variables
which are least significant, i.e., one with large p-value) one by one and terminate the
process until a stopping criterion is reached (Zhang (2016)). Apart from this, the log-
likelihood, AIC and BIC of the final models are displayed in Table 1. Finally, the models
are considered with 24 important predictors, i.e., high blood pressure, smoking, diabetes,
obesity, hyper tension, chest pain, left ventricular hypertrophy, creatine etc. are chosen
as covariates emerge as the best after forward and backward model selection and then
compare among them as follows: The Poisson regression model has performed badly

Table 1: A comparison of log-likelihood, AIC and BIC values

Criterion Poisson NB ZI1P ZINB

Log-likelihood -315.41 -291.19 -279.6 -280.3
AIC 686.82  640.38 617.24 619.23
BIC 790.81  748.07 743.22 746.57
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among all the models. The Pearson statistic suggests how well the model performs in
predicting the observed count response when covariates are considered. It also helps
to evaluate whether there is evidence of over-dispersion or not. Indeed, the large ratio
(Pearson/DF) gives an indication of the presence of over-dispersion in the response that
needs to be accounted for. Next, a NB model is fitted to the data. Some consistency
is observed in the variable selection because the variables are significant for NB model.
It is shown in our work, NB is preferable than Poisson model. But we are still facing
with the problem of excess zeros in our data. So, ZIP model is fitted to handle the over-
dispersion. The AIC for the ZIP is smaller than the case of the conventional Poisson. In
addition, we performed the Vuong test(V* = 2.223),which is significant and emphasized
the superiority of the ZINB model over the conventional NB model. Next, compared
with the Poisson model, we observed that the Poisson had a larger AIC and BIC value
with the ZINB performing better. Thus, it appears the ZINB model corrected for the
excess zeroes and did adequately capture the dispersion in the data as compared to the
Poisson and NB case. Finally, the ZIP model was considered. The AIC for the ZIP
and that of the conventional Poisson model were significantly different. The Vuong test
(V* = 3.454) was significant at 0.05 significance level. This is an indication that the
ZIP model performs quite better than the Poisson. Therefore, amongst all the models
considered, we selected the ZIP model as the best fitting model for the given data set.

3.2 Model fitting with Bayesian approach (for no covariates)

First, we utilize the data set in absence of explanatory variables. Regular Negative
Binomial and Poisson distributions are also fitted to the data set for comparing its
performance with the zero-inflated models. Then generate samples from the posterior
distribution of the parameters. The parameters p, 6, zero defect probability < P(Y =0)
and lastly the deviance are observed for evaluating the convergence of Markov Chain
Monte Carlo (MCMC) method.

Deviance is a measurement of goodness-of-fit for a statistical model, basically used in
hypothesis testing. e.g., for the no covariate case, deviance = —2log[L{(p, #)|Y }]. Since
in this situation deviance is only function of the parameters, its posterior distribution
is simply derived from the MCMC iterations using WinBUGS software. In this work,
Bayesian zero inflated regression models without and with covariates are also been in-
volved. For each Bayesian estimation run, we have applied Gibbs sampling with 10,000
MCMC iterations and 3 chains to the zero inflated models by using the WinBUGS. For
no covariate case, we first initialise with the assumption that a uniform (0,1) prior for
parameter p and a gamma (0.5,0.5) prior for 6.

For negative binomial models, the posterior means of the deviance are about 241.87
and for Poisson models it is near about 244.92. Therefore, it indicates that negative
binomial models have roughly better performance than Poisson models. But the poste-
rior mean and median estimates of P(Y =0) from the zero inflated Poisson regression
model are very close to empirical estimates of zero counts (0.72 in our data) which sug-
gests better fitting of ZIP model compared to the regular Poisson or NB and Bayesian
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Table 2: Posterior summary (without covariates): zero-inflated models

Model Parameter Mean | Sd Percentile Average length of CI
/quantity 25% | 50% 97.5%
0 0.432 | 0.064 | 0.231 0.433 | 0.675 0.44
P 0.786 | 0.354 | 0.322 0.792 | 0.893 0.57
ZIP(p,f) w = (1-p)b 0.558 | 0.267 | 0.145 0.556 | 0.764 0.62
P(Y=0) 0.722 | 0.087 | 0.083 0.721 | 0.873 0.79
Deviance 244.97 | 15.7 | 216.38 | 216.87 | 220.91 | 4.51
1-6 0.862 0.08 0.674 0.884 | 0.937 0.26
r 4.12 2.43 3.389 | 3.87 8.989 5.6
ZINB(p.0.r) p 0.782 | 0.42 | 0.252 0.84 | 0.764 | 0.51
u=r(1-p)d/ (1-0) | 0.562 | 0.344 | 0.342 | 0.561 | 0.734 | 0.39
P(Y=0) 0.739 0.77 0.643 0.731 | 0.872 0.23
Deviance 241.87 | 19.7 | 213.33 | 215.78 | 217.7 4.40
Table 3: Simulation for c.p. based on 95% C.I. and RMSE
Study | Parameter /quantity | Classical method Bayesian method Yiavarage reduction
Std dev (1 CP | ALCT | RMSE | Std.dev (I CP [ ALCI | RMSE | on ALCI
Study I |p=01 0.023 (0.233,0.789) | 0.928 | 0.56 | 0.803 | 0.0733 (0.302,0.874) | 0.944 | 057 | 0.801 | 86%
=1 00302 (0010.0.887) | 0.942 0.8 | 0.052 | 0.201 (0.019,0.879) | 0.958 | 0.86 | 0.051
P(Y=0)=043 0.0643 (0.019,0.984) | 0.902 | 0.98 | 0.006 | 0.001 (0.201,0.741) 1 052 | 055 | 0.005
Study IT | p=05 0.2827 (0301,0.792) | 0.962 | 0.49 | 0.403 | 0.053 (0.286,0.830) | 0.952 | 055 | 0.406 | 24%
=1 0.107 (0.112,0.805) | 0.931 | 0.69 | 0.071 | 0.023 (0.080,0.901) | 0.943 | 0.82 | 0.072
P(Y=0)=0.68 0.033 (0.012,0.787) | 0.97 | 0.78 | 0019 | 0.0042 (0.049,0.682) | 0.91 | 0.63 | 0.016
Study I | p=109 0.2062 (0333,0.822) | 0.954 | 0.49 | 0.015 | 0.0553 (0.341,0.789) | 0.938 | 0.45 | 0.016 | 35%
f=1 0.643 (0.182,0.769) | 0.924 1 0.59 | 0.154 | 0.204 (0.201,0.755) | 0.946 | 0.55 | 0.155
( J ( )

P(Y=0)=0.94 0.032 0.008,0.984) | 0.982 | 0.98 | 0.043 | 0.035 0.101,0837) | 0.986 | 0.74 | 0.031

estimation helps for getting such information.

3.3 Simulation studies for comparison

Now, for showing validation of Bayesian method, we have to evaluate ZIP model (with
appropriate statistics) without covariates for better understanding of this model. Here
three simulation studies based on ZIP model are presented.

In simulation for study-1, p = 0.1, # = 1 and P(Y=0)=0.43, in simulation for Study-2,
p=0.5,0=1and P(Y =0) = 0.68 and similarly in simulation for Study-3, p = 0.9,
0 =1 and P(Y = 0) = 0.94 are used. For each case sample size is considered as
100 and is repeated 10,000 times. The results are based on c.p.(coverage probabilities
with 95% interval estimates) in Table 3. The classical 95% confidence intervals are
derived by inverting the LRT (likelihood ratio tests) based on the large sample chi-
square distribution. The frequency and Bayesian estimates of each of the parameters
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0 and p are very close (but in Study-3 the estimation of 6 are different) and these
suggests the Bayesian method performed better for estimating P(Y = 0) (see Table
3). As for example, the reductions of the average length of the intervals are 86% and
35% for Study-1 and Study-3 respectively. It is concluded (from Table 3) that the
Bayesian intervals are very competitive for coverage probabilities and that the average
lengths of the Bayesian intervals can be significantly shorter than that obtained from
the classical methods, when P(Y = 0) is very near to one. For each case (Study-1, 2
and 3) sample size is considered as 50 and proceeding in the similar manner, we get the
results (based on c.p.) for Study-1: 0.724, 0.853 and 0.822 respectively (for classical)
and 0.969, 0.943 and 0.901 respectively (for Bayesian). For Study-2: 0.892, 0,919, 0.890
respectively (for classical) and 0.923, 0.911, 0.853 respectively (for Bayesian). Similarly,
for Study-3: 0.874, 0.853, 0.822 respectively (for classical) and also get 0.917, 0.889, 0.867
(for Bayesian) respectively. So, as per the simulations: Bayesian method (specially for
Study-1 and Study-3) gets high probability of convergence than classical method. Next,
for fulfilling of comparison: root mean square error (RMSE) have also been evaluated in
terms of classical and Bayesian estimations.

In Study-1, the RMSE and standard deviation (std.dev.) of the estimates based on
ML are 0.803 (std.dev.= 0.023), 0.052 (std.dev.= 0.0302) and 0.006 (std.dev.= 0.0643)
for the parameters p, 6 and P (Y = 0) respectively whereas the corresponding RMSE
and standard deviation of the Bayesian estimates are 0.801 (std.dev.= 0.0733), 0.051
(std.dev.= 0.201) and 0.005 (std.dev.= 0.001) for the parameters p, 6 and P(Y =0)
respectively. In Study-2, the RMSE and standard deviation of the MLE estimates are
0.403 (std.dev.= 0.2827), 0.071 (std.dev.= 0.107) and 0.019 (std.dev.= 0.033) and the
RMSE and standard deviation of the Bayesian estimates were 0.406 (std.dev.= 0.0535),
0.072 (std.dev.= 0.023) and 0.016 (std.dev.= 0.0042) for the parameters p, § and P(Y
=0) respectively. Lastly in Study-3, the RMSE and standard deviation of the MLE
estimates are 0.015 (std.dev.= 0.2062), 0.154 (std.dev.= 0.643) and 0.043 (std.dev.=
0.032) and the corresponding Bayesian estimates are 0.016 (std.dev.= 0.0553), 0.155
(std.dev.= 0.204) and 0.031 (std.dev.= 0.035) for the parameters p, # and P(Y =0)
respectively.

By the similar way, we get the results for Study-1: 0.801, 0.168 and 0.159 respectively
(for classical) and 0.772, 0.141 and 0.143 respectively (for Bayesian). For Study-2: 0.356,
0,321, 0.280 respectively (for classical) and 0.369, 0.301, 0.299 respectively (for Bayesian).
Similarly, for Study-3: 0.240, 0.501, 0.272 respectively (for classical) and also get 0.147,
0.442, 0.258 (for Bayesian) respectively for the small sample (i.e., n=>50). The values of
RMSE from the two approaches are also quite similar when the sample size is large. But
it is shown by the simulations that the Bayes estimator also has smaller values of RMSE
in the case of small sample, i.e., n = 50 and p = 0.1 or p = 0.9 than the MLE. The
simulation results suggest that the Bayesian method performs better in terms of larger
coverage probabilities and smaller RMSE than maximum likelihood, especially in the
case of small samples along with either very high or very low incidence of zero inflated
outcomes.

Our simulation studies indicate that the Bayesian approach performs better because
it yields larger coverage probabilities and smaller bias than the classical maximum likeli-
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hood method, particularly in the case of small samples with either very high or very low
incidence of excess zeros outcomes. When n is sufficiently large: MLE and Bayesian both
perform well and the difference between the two approaches are almost identical (for this
reason we get almost same RMSE in both cases). Therefore, MLEs and the Bayesian
estimates behave very similar and they have the same asymptotic normal distribution
(when n is very large).

3.4 Simulation studies in presence of covariates (using Bayesian
approach)

For regression cases, normal distribution is assumed as prior for the regression parame-
ters a and 8. In particular, for the assumption of normal distribution we have considered
mean as 0 with a very large variance 1000. A reasonable choice for the starting values of
« and S for the Monte Carlo simulation chain can be prevailed by fitting the underlying
models using statistical software (Ghosh et al. (2006)). In Table 4, posterior summary for
zero-inflated model is presented. The 2.5% and 97.5% contribute an equal tail 95% pos-
terior interval estimate for the parameters. In addition to such defect counts, we have
also obtained data on other covariates that might explain the variation in the defect
counts. Regression models with commonly used discrete distributions such as Poisson
and Negative Binomial (Miaou (1994)), may not fit these data well, and seriously un-
derestimate the zero-defect probability, which is an important indicator of heart disease.
In a ZIP regression model, the covariates are usually linked to model parameters p and
6 (Lambert (1992)). However, when covariates are present, a model having little more
sophisticated algorithm such as data augmentation is required. Regression-type models
are widely used in applied research to adjust for covariate effects and assess relationships
between key predictors and the responses. While conventional regression models contain
only one set of predictors for inference about a single response, covariates typically enter
a ZIP regression model at both the Bernoulli zero-inflation and Poisson count stages,
yielding two sets of parameters corresponding to p and 6. Thus, this allows simulta-
neous inferences to be made about the zero-inflated and count process. In the usual
specification, covariates are related to 6 through a log-linear model, and to p through
a logit model. In previous section 3.2, we have considered no covariate cases for com-
paring the effects and assess relationships between key predictors and the response in
this section 3.3. Since important predictors have already been chosen in Section 3.1, so
we are considering only those covariates which are uttermost important for our current
work.

The zero inflated models are fitted to link count data to mentioned covariates. In
previous section, WinBUGS is used for fitting both regression models. Next, a five
number summary (mean, std.dev., 2.5%, median and 97.5% ) of parameters from zero
inflated models have been presented in Table 4. A positive intercept in Table 4 of 11.456
with 95% posterior interval [0.386,40.643] indicates that the chance of being in the zero
state is higher, moreover the sample mean of zero defect probability is 0.728 (which is
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Table 4: Posterior summary of parameters (with covariates): ZIP model

Model Parameter Predictors ‘ Mean ‘ Sd Percentile ALCI
25% 50% 97.5%
Intercept 11.456 2.34 | 3.053 | 11.289 | 19.496
Age 0.192 0.008 0.017 0.184 | 12.194 | 12.2
Obesity 0.234 | 0.184 | -1.002 | 0.198 | 22.279 | 23.3
Weight 0.112 0.029 | -0.142 0.117 | 15.122 | 15.2
BMI 0.027 | 0.083 | -2.132 | 0.017 | 19.024 | 21.5
Sex -0.7 | 0.532 | -3.456 | -0.865 | 10.701 | 14.1
HBP -0.005 0.01 | -5.019 | -0.098 | 11.13 | 16.1
PR -0.024 | 0.017 | -1.724 | -0.127 | 8.924 | 10.6
PTS 1.22 1.07 | 0.001 0.034 21.28 | 21.2
ETS -0.407 0.45 | -4.432 | -0.977 | 17.412 | 21.8
DM -0.768 | 0.521 | -6.768 | -1.597 | 9.768 | 15.5
P HT -0.119 0.428 | -3.113 | -0.154 8.169 | 11.2
CRF 1.209 1.32 0.034 1.201 | 18.209 | 18.2
Dylipidemia | 0.392 0.351 | -0.092 0.192 | 21.392 | 22.4
WPP 0.707 | 1.399 | -0.049 | 0.678 | 17.997 | 18.0
LR -0.855 | 1.031 | -3.899 | -0.987 | 13.855 | 17.7
TCP -0.761 | 0.355 | -3.989 | -0.861 | 21.761 | 24.6
Dyspnea 0.392 | 0.351 | -2.398 | 0.378 | 22.392 | 24.6
Q-wave -1.27 | 0.826 | -4.297 | -1.23 | 9.279 | 13.5
LVH 1.212 0.75 0.002 1.103 | 19.212 | 19.2
FBS 0.004 | 0.004 | -2.004 | 0.001 | 8.654 | 10.6
Creatine 0.224 0.664 | -3.334 0.225 | 18.984 | 21.4
Trygyceride | -0.005 | 0.003 | -4.875 | -0.012 | 8.005 | 12.9
LLPD 0.007 | 0.005 | -3.543 | 0.005 | 12.345 | 15.8
HLPD 0.005 | 0.017 | -2.329 | 0.005 | 11.987 | 13.3
ZIP (p,6)
Intercept -2.393 | 0.098 | -4.987 | -2.389 | -0.879
Age 2.57 | 0.002 | 0.985 2.55 | 1.939 | 0.95
Obesity 0.556 | 0.104 | 0.234 | 0.508 | 2.279 | 1.9
Weight 1.179 | 0.012 | 0.166 | 1.173 | 5.767 | 5.6
BMI 1.132 0.033 0.182 1.132 3.398 | 3.2
Sex 0.076 | 0.421 | -0.019 | 0.065 | 2.991 | 0.07
HBP -0.002 | 0.009 | -0.419 | -0.002 | 3.751 | 4.1
PR 1.693 | 0.012 | 0.677 | -0.112 | 6.924 | 6.2
PTS 0.192 | 0.938 | -0.042 | 0.032 728 | 7.3
ETS -0.449 | 0.333 | -2.121 | -0.897 | 5.401 | 7.5
DM 0.188 | 0.334 | -1.178 | -1.566 | 3.768 | 4.9
0 HT 0.076 | 0.428 | -2.006 | -0.154 | 8.169 | 6.1
CRF 0.062 | 1.292 | -3.061 | 1.234 7.75 | 10.8
Dylipidemia | 0.607 | 0.281 | -2.637 | 0.159 | 5.598 | 8.2
WPP -1.355 1.01 | -3.336 | 0.787 | 4.998 | 7.3
LR -2.461 | 1.017 | -5.437 | -0.987 | 4.574 | 1.0
TCP 0.892 | 0.223 | -2.972 | -0.909 | 4.912 | 6.8
Dyspnea -1.266 | 0.351 | -3.284 | 0.895 | 8.354 | 11.6
Q-wave 2.931 | 0.546 | 0.274 | -1.242 8.75 | 8.5
LVH 0.104 | 0.497 | -1.892 | 0.103 | 8.643 | 9.5
FBS 0.233 | 0.004 | 2.277 0.23 7.25 | 4.9
Creatine -1.005 | 0.562 | -4.937 | 0.195 | 5.565 | 9.5
Trygyceride | 0.005 | 0.003 | -2.744 | 0.005 | 7.586 | 10.1
LLPD 0.031 | 0.002 | -1.771 | 0.029 | 3.999 | 5.6
HLPD 0.762 | 0.009 | -2.712 | 0.654 | 3.909 | 6.7
Sample Mean P(Y=0) 0.728 | 0.078 | 0.093 |0.730 |0.899 |0.8
Deviance 216.93 | 15.701 | 201.54 | 216.87 | 220.91 | 18.7
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very close to the empirical percentage of the zero counts) with 95% posterior interval
[0.683,0.752] but in the case of ZINB model it does not happen (sample mean of zero
defect probability is 0.746). Apart from this, for ZINB model, our simulation studies
indicate that the deviance is changed slightly to 234.87 from the deviance mentioned in
Table 2 but it is shown in Table 4 that the deviance is dropped much to 216.93 from the
deviance of Table 2 for the case of ZIP model.

3.5 Interpretations of the results related to heart disease

In the underlying model (ZIP), there may be a number of groups with different number
of parameters related to heart disease. Numerical results of parameter estimation of
model clearly demonstrate the efficacy of the proposed approach. With the reference
level as male, we observe a negative coefficient —0.679 and a p-value 0.02 for female.
The decrement is represented by a percentage of 49.29%, so the results suggest that the
probability of heart disease counts is reduced for female as compare with male. Here it is
also mentioned that there is a myth that coronary artery disease (CAD) is less common
and less severe in women. But in our work, although we get that men are more affected
than women but the heart disease due to CAD is not negligible in case of women. Since,
a 50-year-old woman’s risk of dying from CAD is 10 times more than her mortality risk
from hip fracture and breast cancer combined. Although mortality from ischaemic heart
disease (IHD) has declined but as per observations it is of lesser magnitude in women
as compared to men of a similar age (Heron et al. (2006)). It is obtained that the
estimated coefficient of 0.5158 (for obesity) is highly significant (p < 0.01), we deduce
that the increasing effect of obesity on the expected number of CAD affected persons is
about 67.50%. Because there is a positive association between obesity and cholesterol
level (Veghari et al. (2013)). Diabetes mellitus (DM) is one of the highly risk factor
of heart disease. In our work, it is observed that persons having diabetes mellitus are
affected more in heart disease (CAD). Among adults (with DM) there is a prevalence
of 70% — 80% for elevated low density lipoprotein (LDL), 60% — 70% for obesity and
75% — 85% of hypertension (Preis et al. (2009)). Diabetes mellitus (DM) is associated
with increased mortality risk of heart disease. More than 70% of people older than 65
years with diabetes mellitus die from heart disease or stroke (Berry, Tardif and Bourassa
(2007)). Similarly, it is observed that current smokers are more than 20% more risk of
CAD than ex-smoker. Typical chest pain is one of the uttermost important risk factor in
our studies. The increment of typical chest pain of a person is affected more in regional
wall motion abnormalities. Besides, some secondary factors (i.e., creatine, dyslipidemia,
congestive heart failure, Q-wave etc.) have deep influences on heart disease.

4 Concluding Remarks

In this work, we have analyzed the effect of most significant predictors that could explain
the number of affected people in serious heart conditions. Various suitable models are
fitted and through a careful modeling selection process, the ZIP model is recognized as
the best among them (from Table 1) based on the data that have been used. The most
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appropriate model (ZIP) is taken to examine the important factors that significantly
influences the region of regional wall motion abnormalities related to coronary artery
disease. Zero inflated Poisson model is best among all, although Poisson is worst among
underlying models. We have obtained the significance of modelling for excess-zero in
count data structure in the context of Bayesian method. Bayesian method has better
finite sample performance than the classical method with tighter interval estimates and
better coverage probabilities. It can also be concluded that Bayesian approach performs
better than the classical maximum likelihood estimation in the sense of yielding larger
coverage probabilities and smaller root mean square error. Besides, in this work, we
have analyzed the effect of risk factors that could explain the number of victims for
heart disease and get fruitful conclusions from the interpretations of the results related
to heart disease. This analysis evidently endorses the perception of people concerning
heart disease. The major risk factors for coronary heart disease are obesity, diabetes
mellitus, cholesterol, smoking etc. Apart from this some secondary risk factors are also
influenced to heart failure. As well, female reduce the risk of fatality as compare with
male but the rate of female due to CAD is not imperceptible. In previous work it was
only demonstrated assessing the importance of cardiovascular risk factors with various
approaches (Pencina et al. (2019)). But in this work, we not only analyze the effect of
risk factors but also perform the Bayesian approach. Besides, it is shown that Bayesian
method has better finite sample performance than the classical method which was not
performed in earlier work (Ghosh et al. (2006)). It was shown in earlier that if negative
binomial is better than Poisson (for excess zero count data set) then ZINB is better
than ZIP (Wiafe et al. (2018)). But in our work, we have shown that ZIP model is best
among all, although Poisson is worst among all.

The zero inflated models have been evolved and utilized to manage such count data
and is estimated conventionally using maximum likelihood estimator. Apart from this,
Bayesian methods have been utilized for estimating ZIP model because these methods
provide various advantages in compare with maximum likelihood estimation for this
model. In this context, it is mentioned that Bayesian intervals (also known as credible
intervals) give a strong impetus to adopt a Bayesian perspective (Gelman et al. (2004)).
It is very influential (in case of ZIP model) that Bayesian analysis can provide full
joint distribution of the parameters (in which we are interested) and to account for
various sources of uncertainty in modelling zero-inflated count data, which is not easy
to achieve in traditional maximum likelihood methods (Gelman et al. (2004)). Zero-
inflated model has the following advantages: (i) it is useful for modeling outcomes of
manufacturing processes and different situations where count data has excess zeros, (ii)
it is also very useful for process optimization in presence of covariates. In this work,
Bayesian analysis has been used to model such type of count data (with excess zeros)
using sampling-based methods. From simulation studies, it can be also concluded that
the proposed method is very effective for inferences based on small samples. We have
also performed simulations based on small sample (n = 25,50 etc.) which assess that
the proposed Bayesian approaches provide better results than the maximum likelihood
method for estimating the ZIP model, with larger c.p. (coverage probabilities) and
smaller bias measured from root mean squared error (RMSE). It is very special case
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for small samples. Because such cases (very high or very low incidence) are the mirrors
of the presence of excess zeros outcomes. In case of small samples with parameters
close to the boundary of the Bayesian intervals can result: (i) extra uncertainty in
parameters and (ii) failure of the asymptotic assumptions. Both are critical in maximum
likelihood estimation. These situation may create uncertainty on inferences about model
parameters when consider the excess zeros count data based on the variance of the
estimator under MLE approaches (Gelman et al. (2004)). In our work, the Bayesian
approach performs better than the classic maximum likelihood estimation in the sense
of providing larger c.p.(coverage probabilities) and smaller bias (from Tables 3 and 4).
Moreover, Bayesian methods provide the inference of combinations of parameters, data,
or both which is a major advantage of the Bayesian approach. Finally, for ductility of
Bayesian analysis in modelling, mixture data has specific relevance in ZIP model. Count
data with excess zeros is a special case of a two-stage mixed structure which is very
natural candidate for Bayesian analysis.

The Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative bi-
nomial models are fitted to the count-data for forward and backward model selection
criteria. If the data has lots of zero, then between Poisson and negative binomial models,
sometimes Poisson gives better result than negative binomial and sometimes negative
binomial gives better result, after fitted the data to the model. If negative binomial gives
better result than Poisson, then generally it was shown zero-inflated negative binomial is
the best model of all: Poisson, negative binomial, zero-inflated Poisson and zero-inflated
negative binomial, for excess zeros data (Wiafe et al. (2018)). On the other hand if
Poisson gives better than negative binomial, then zero-inflated Poisson model is the best
model among all (i.e., poisson, negative binomial, zero-inflated Poisson and zero-inflated
negative binomial) for excess zeros data (Ghosh et al. (2006); Neelon (2018)). But in this
work, Poisson model is worst among all but in spite of that zero-inflated Poisson model
(ZIP) is the best fitted among the models (considered here) which have been verified
with various procedures in this work.

The ZIP model is specifically suitable for modelling zero-inflated count data. Zero-
inflated is a potential mechanism that generates over-dispersion in count data. Although
the ZIP model is used as an example of a Bayesian approach to model zero-inflated count
data, the limitation of the model in the presence of over-dispersion can result in biased
parameter estimates. Apart from this, the interactions between available covariates is
not contemplated in work. Other models such as the zero-inflated negative binomial
(ZINB) model provides additional corrections for over-dispersion. This paper illustrates
the superiority of Bayesian analytic model of count data characterized by excess zeros.
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