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The STATIS method is one of many strategies of analysis devoted to the
unsupervised analysis of multiblock data. A new optimization criterion to
define this method of analysis is introduced and an extension to the cluster
analysis of several blocks of variables is discussed. This consists in a hier-
archical cluster analysis and a partitioning algorithm akin to the K-means
algorithm. Moreover, in order to improve the cluster analysis outcomes, an
additional cluster called noise cluster which contains atypical blocks of vari-
ables is introduced. The general strategy of analysis is illustrated by means
of two cases studies.
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1. Introduction

The instances where practitioners in different fields of application are required to collect
multiblock data are getting more and more frequent. For instance, in consumer studies,
a panel of consumers may be asked to express their appreciation of a set of products for
various attributes. In such a situation, we end up by having as many blocks of variables
as consumers, each block having the products as rows and the attributes as columns.
In other situations, the various blocks at hand may not refer to the same variables.
For instance, in sensory analysis, and more particularly in the evaluation procedure
called free choice profiling (Jack and Piggott, 1991), a panel of subjects are instructed
to assess the intensity of several sensory variables for a set of products. Moreover, each
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subject is free to choose his or her own list of variables. In these situations, it is clear
that the issue regarding the analysis and the clustering of the blocks of variables are of
paramount interest. For the analysis of multiblock data, there are a plethora of methods
since this topic has been a burning issue for the last thirty years or so (De Roover et al.,
2012). For the cluster analysis of multiblock data, the list of methods is much more
limited. Dahl and Næs (2004) used cluster analysis in sensory evaluation with the aim
of identifying homogeneous sub-groups of panellists and outlying panellists. For this
purpose, they computed the Procrustes distances between pairs of blocks of variables
and subjected the distance matrix thus obtained to hierarchical cluster analysis. Cariou
and Wilderjans (2018) proposed a strategy of clustering multiblock data, called CLV3W,
which is particularly designed for the clustering of three way data where the blocks of
variables refer to the same individuals and the same variables. We advocate using the
STATIS method (Lavit et al., 1994) for the analysis of multiblock data and we propose
a method of analysis, called CLUSTATIS, which is tightly linked to STATIS for the
clustering of blocks of variables. CLUSTATIS consists in a hierarchical cluster analysis
and a partitioning algorithm. Both these two strategies aim at optimizing the same
criterion and can be run independently or in combination in an attempt to achieve an
even better solution than that obtained by running one or the other of the two strategies
alone. CLUSTATIS can be seen as an extension of the cluster analysis of variables called
CLV (Vigneau and Qannari, 2003) to the case of blocks of variables. Indeed, these two
methods have the same rationale and follow the same pattern of analysis. CLV aims at
clustering the variables at hand around latent components, whereas CLUSTATIS aims
at clustering the blocks of variables around latent configurations. Within each cluster,
this latent configuration is obtained by means of the STATIS method and can be used to
depict the relationships among the individuals. In section 2 devoted to the material and
methods, we start by sketching a reminder of the STATIS method and we introduce a
new criterion to define this strategy of analysis (subsection 2.1). Based on this criterion,
we discuss a general strategy of cluster analysis of several blocks of variables (subsection
2.2). By way of improving the outcomes of the cluster analysis, we outline in subsection
2.3 how the atypical blocks of variables could be set aside following the concept of noise
cluster introduced by Dave (1991). In section 3, we illustrate the approach on the basis
of case studies. Finally, we end the paper by some concluding remarks.

2. Methods

2.1. A new criterion for the STATIS method

Let us consider m blocks of variables denoted by X1, . . . , Xm, which are assumed to be
column centred. These blocks of variables are measured on the same n individuals but
the variables may not be the same from one block to another. The Figure 1 represents
the data structure of the blocks of variables.

The STATIS method is based on the scalar product matrices associated with the blocks
of variables at hand. These matrices are computed as follows: W1 = X1X

>
1 , . . . ,Wm =
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Figure 1.: m blocks measured on the same individuals.

XmX
>
m. We assume that these matrices are pre-scale so as to have their norm equal

to 1. This is achieved by dividing each Wi by its Frobenius norm, namely ||Wi|| =√
trace(WiWi).

The scalar product between two matrices Wi and Ws (for i, s = 1, . . . ,m) is given by
trace(WiWs). Since Wi and Ws are assumed to be of norm equal to 1, this quantity is
equal to the so-called RV coefficient (Robert and Escoufier, 1976), which is central to the
STATIS method and whose popularity goes far beyond this method of analysis (Schlich,
1996; El Ghaziri and Qannari, 2015). In the following, we shall refer to this coefficient
as RV (Wi,Ws). It reflects the similarity between the blocks of variables Xi and Xs. It
ranges between 0 and 1; it is equal to 0 if all the variables in Xi are orthogonal to those
in Xs and it is equal to 1 if Xi and Xs can be matched by a rotation and multiplication
by a scalar factor (Glaçon, 1981).

The STATIS method can be defined by means of the following original criterion. We
seek a group average matrix, W , and weighting scalars, αi, assumed to be such that∑m

i=1 α
2
i = 1 so as to minimize the following quantity:

Q =
m∑
i=1

||Wi − αiW ||2 (1)

We can show (see appendix A) that the weights, αi, are obtained by computing the
eigenvector of the matrix which contains the pairwise RV coefficients between the vari-
ous blocks of variables associated with the largest eigenvalue that we shall denote by λ1.
The matrix W is given by W =

∑m
i=1 αiWi. The rationale behind this solution is that

the weight αi is relatively large if Xi tends to agree with the other blocks of variables.
Contrariwise, the weighting coefficients tend to be relatively small for differing Xi. By



Electronic Journal of Applied Statistical Analysis 439

considering the spectral decomposition of W , we can write W = CC>. The matrix C is
the group average configuration of the blocks of variables X1, . . . , Xm, and can be used
to depict the relationships among the individuals.

Additional properties also shown in appendix A are the following. Most of these
properties are already known (see for instance Robert and Escoufier 1976; Glaçon 1981).

(i) ||W ||2 =
∑m

i=1RV
2(Wi,W ) = λ1

(ii) αi = trace(Wi,W )
||W ||2 = RV (Wi,W )√

λ1

(iii)
∑m

i=1 ||Wi − αiW ||2 = m−
∑m

i=1RV
2(Wi,W ) = m− λ1

(iv)
∑m

i=1 ||Wi||2 = m = ||W ||2 +
∑m

i=1 ||Wi − αiW ||2 = λ1 +
∑m

i=1 ||Wi − αiW ||2

From the property (i), it emerges that λ1 can be seen as an overall agreement or
homogeneity index between the various blocks of variables since it reflects the extent to
which the blocks at hand are related to the group average configuration W . The property
(iv) can be interpreted by stating that the total variation measured by

∑m
i=1 ||Wi||2 = m

can be decomposed into a variation explained by the group average configuration (i.e.,
||W ||2 = λ1) and a residual variation (i.e.,

∑m
i=1 ||Wi−αiW ||2). It follows that the index

I = λ1/m reflects the part of variation in the various matrices Wi explained by W . This
index ranges between 1/m and 1. The larger this index, the higher is the agreement
among the blocks of variables X1, . . . , Xm.

2.2. The CLUSTATIS approach

We propose a cluster analysis approach of multiblock data. It aims at minimizing a
criterion which reflects the fact that we are seeking homogeneous clusters of blocks of
variables. More precisely, the blocks of variables in each cluster are assumed to be highly
related to a latent configuration which is determined by means of the STATIS method.
Formally, let us denote by X1, . . . , Xm the blocks of variables at hand, which are assumed
to be centered. We compute the scalar product matrices: W1 = X1X

>
1 , . . . ,Wm =

XmX
>
m. These matrices are pre-scaled so as to have their Frobenius norm equal to 1.

We seek to determine K clusters of blocks of variables G1, . . . , GK so as to minimize the
following criterion:

D =

K∑
k=1

∑
i∈Gk

||Wi − αiW (k)||2 (2)

where αi (i ∈ Gk) are scalars to be determined and assumed to be such that
∑

i∈Gk
α2
i =

1, and, for k = 1, . . . ,K, W (k) is the group average configuration of cluster Gk. Obvi-
ously, when there is only one cluster of blocks of variables (i.e., K = 1), we retrieve the
same criterion that underlies the STATIS method.
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The procedure of cluster analysis to solve this problem is called CLUSTATIS and
entails two complementary clustering strategies. The first strategy consists in a hierar-
chical cluster analysis. The second strategy consists in a partitioning algorithm akin to
the K-means algorithm. Both strategies aim at optimizing the same criterion above and,
in practice, complement each other. More precisely, the hierarchical cluster analysis can
help selecting the appropriate number, K, of clusters and provides a starting partition
of the blocks of variables that can be improved by means of the partitioning algorithm.
This latter step is called “consolidation” in the French literature (Saporta, 2006).

The hierarchical algorithm follows an ascending (or merging) strategy. We start with
the situation where each block of variables forms a group by itself. Obviously, in this
case, D = 0. At each step, we merge two blocks of variables or, more generally as the al-
gorithm proceeds, two groups of blocks until all the blocks are merged in a single cluster.

From the properties of the STATIS method stated above and more precisely the prop-

erty (iii), it follows at the current stage, the criterion D is equal to D = m−
∑K

k=1 λ
(k)
1 ,

where λ
(k)
1 is the largest eigenvalue of the matrix which contains the pairwise RV coeffi-

cients of the blocks of variables in group Gk. In the course of the hierarchical algorithm,
the variation of criterion D when two groups of blocks of variables A and B (say) are

merged is equal to DA∪B −DA+B = λ
(A)
1 + λ

(B)
1 − λ(A∪B)

1 , where λ
(A)
1 , λ

(B)
1 and λ

(A∪B)
1

are respectively the largest eigenvalue of the matrix of the RV coefficient between pairs of
configurations in clusters A, B and A∪B. We can show that this variation is positive (see
appendix B). This means that the merging of two clusters A and B ineluctably results
in a deterioration of the within clusters homogeneity (i.e., increase of criterion D). The
rationale of the aggregation strategy is to merge those two clusters A and B which result

in the smallest increase of criterion D (i.e. the smallest variation λ
(A)
1 + λ

(B)
1 − λ(A∪B)

1 ).

One should trace the increase of the criterion D at each stage of the hierarchical cluster
analysis because it reflects the increase of the within-cluster heterogeneity as the merg-
ing strategy proceeds. A jump of this quantity indicates that we are trying to merge
two clusters which are heterogeneous and this should be considered as a signal that the
merging strategy should be stopped. In practice, the increase of criterion D is reflected
in the hierarchical tree (or dendrogram) as the height of the branches that connect two
embedded nodes. Alternatively, the jump between successive steps could be depicted
using bar plots showing their evolution as the number of clusters decreases.

The clustering problem based on criterion D given above can also be solved by means
of a partitioning algorithm akin to the K-means algorithm (Everitt et al., 2011). In the
course of this algorithm, the blocks of variables are allowed to move in and out of the
groups achieving at each step a decrease of the criterion D. This algorithm assumes that
the number of clusters, K, is given beforehand and runs as follows:

� Step 1 (Initial partition of the blocks of variables: K groups of blocks are given by
the practitioner. These clusters could be chosen by a random assignment of the
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blocks to the K groups. A better initialization can be made from the outcomes
of the hierarchical clustering described above. This point will be further discussed
below.

� Step 2 (Determination of the group average scalar product matrix in the various
clusters): In cluster Gk, W

(k) and the associated weights αi are determined by
means of the STATIS method as described above.

� Step 3 (changing clusters): New clusters of blocks of variables are formed by moving
each block, Xi, to the cluster Gk for which ||Wi − αiW

(k)|| is the smallest or,
equivalently, RV (Wi,W

(k)) is the largest. This equivalence stems from the fact
that ||Wi−αiW (k)||2 = 1−RV 2(Wi,W

(k)) (property (iii)). The steps 2 and 3 are
iterated until convergence, that is the criterion D stops to decrease.

It is worth noting that the partitioning algorithms also seeks to maximize the quantity∑K
k=1

∑
i∈Gk

RV 2(Wi,W
(k)) =

∑K
k=1 λ

(k)
1 . This property can be derived from the prop-

erty (iii): D =
∑K

k=1

∑
i∈Gk

||Wi − αiW (k)||2 = m−
∑K

k=1

∑
i∈Gk

RV 2(Wi,W
(k)).

In practice, both the hierarchical and the partitioning algorithms should be performed
to reach a better solution than when each algorithm is performed alone. Firstly, the hier-
archical strategy can be used to hint to an appropriate number of clusters by examining

the evolution of the aggregation criterion, ∆ = λ
(A)
1 + λ

(B)
1 − λ(A∪B)

1 in the course of the
clustering process. Secondly, the blocks of variables are submitted to the partitioning
algorithm using as an initial solution, the partition obtained by cutting the hierarchical
tree at the indicated level (i.e., with the selected number of clusters). By allowing the
changing of cluster memberships, when running the partitioning algorithm, the solution
obtained by the hierarchical clustering is likely to be improved since we attempt to fur-
ther minimize the criterion D.

Several indices associated with the final solution are of paramount interest. In the

first place, we consider for each cluster Gk, (k = 1, . . . ,K), the index Ik =
λ
(k)
1
mk

, where

λ
(k)
1 is the largest eigenvalue of the matrix of the RV coefficients between the blocks of

variables in group Gk and mk is the number of blocks in this group. This index ranges
between 1/mk and 1 and reflects the homogeneity in Gk. An overall index to assess the
quality of the partition of the blocks of variables obtained by the clustering approach

is given by the weighted average of the indices Ik : I =
∑K

k=1
mkIk
m =

∑K
k=1

λ
(k)
1
m . This

index can be interpreted as the percentage of variation in the original blocks of variables
explained by the group average configurations in the various groups. Within the group
Gk, we can compute for each block of variables Xi (i ∈ Gk), the RV coefficient between
Wi and W (k). This index reflects how each block of variables is close to its associated
group configuration. Alternatively, we could consider the coefficient αi (i = 1, . . . ,m)
which reflects the same idea. Finally, in order to assess how the various groups of blocks
of variables are close to each others, we can compute the RV coefficients between their
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associated group average configurations. These indices will be illustrated through the
two case studies in section 3.

2.3. Cluster analysis while setting aside atypical blocks of variables

2.3.1. The “K+1” or noise cluster

When clustering objects, it often occurs that some atypical objects do not fit any pat-
tern of the clusters that have been determined. By identifying these atypical objects
and setting them aside, the clustering solution is likely to be of better quality. Dave
(1991) introduced the concept of “noise cluster” or “K+1 cluster”, which contains the
objects (blocks of variables in our case) which are deemed to be atypical. Our strategy
of analysis draws from this concept.

In a first stage, we choose a threshold value, ρ, between 0 and 1, below which the link
between two blocks of variables as measured by the RV coefficient will be considered as
insignificant. In a second stage, we perform an iterative algorithm akin to the “K-means”
with the aim to maximizing the following quantity:

Hρ =
K∑
k=1

m∑
i=1

(δki RV
2(Wi,W

(k)) + δK+1
i ρ2) (3)

where δki is the Kronecker symbol which is equal to 1 if the block of variables Xi belongs
to cluster k and 0 otherwise, with the constraint

∑K+1
k=1 δ

k
i = 1. This constraint entails

that a block of variables belongs to one and only one cluster, including the “K+1” cluster.

The rationale behind this criterion is clear: each block of variables, Xi, is assigned
to a cluster Gk for which RV (Wi,W

(k)) is the largest. However, there is a requirement
that this quantity should be larger than ρ. If this requirement is not fulfilled, then Xi

is assigned to the “K+1” cluster because its similarity (i.e., RV (Wi,W
(k))) with all the

clusters is deemed to be very weak (i.e., smaller than the threshold value, ρ).

To solve this optimization problem, we propose a three steps partitioning algorithm:

� Step 1 (Initial partition of the blocks): K groups of blocks and a threshold ρ are
given by the practitioner

� Step 2 (Determination of the group average scalar product matrix in the various
clusters): In cluster Gk, W

(k) and the associated weights αi are determined by
means of the STATIS method.

� Step 3 (changing clusters): New clusters of blocks are formed by moving each
block of variables, Xi, to the cluster Gk for which the quantity RV (Wi,W

(k)) is
the largest providing that this quantity is larger than ρ, otherwise Xi is assigned
to the cluster “K+1”.
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2.3.2. Choice of the threshold value, ρ

We propose a procedure to select an appropriate threshold value, ρ. We consider as
an atypical block of variables, a block which is an outlier in that sense that it is far
removed from all the clusters, or a block which is straddling two or more clusters. These
occurrences are depicted in Figure 2, where each block of variables is represented by a
point. The three circles delineate three clear clusters and the points outside these circles
represent atypical blocks of variables.

Figure 2.: Fictitious representation of the blocks of variables in three clusters. The blocks
of variables out of the three circles are considered as atypical.

Since the parameter ρ represents a similarity index as measured by the RV coefficient
between a block of variables and a cluster group average, it should be comprised be-
tween 0 and 1. For ρ = 0, the “K+1” cluster is empty, and for ρ = 1, all the blocks
of variables are set in the “K+1” cluster. Dave (1991), who first introduced the con-
cept of noise cluster for the cluster analysis of observations based on their distances,
suggested a strategy for the choice of ρ. This consists, in a first step, in computing
the average of the squared distances between each observation and each center of the
various clusters. Then, an average of all these distances is computed and multiplied by
yet another parameter (hyper-parameter). However, few indications are given regarding
this hyper-parameter. Vigneau et al. (2016), who were concerned by the cluster analysis
of variables and used the concept of “K+1” cluster, proposed for the selection of the
threshold parameter to explore the range between 0 and 1 by considering several values
of ρ, and assess the evolution of the within-cluster homogeneity as ρ varies. In parallel,
the evolution of the number of variables assigned to the “K+1” cluster is investigated.
From these perspectives, an appropriate ρ should correspond to a satisfactory within-
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cluster homogeneity without, however, setting aside a large proportion of the variables
in the “K+1” cluster.

We propose to automatically compute an appropriate value of the ρ parameter in
CLUSTATIS. This value is defined as the average of the RV coefficients between each
block of variables and the two nearest cluster group average configurations, which cor-
respond to the two largest values of RV coefficients. Formally, the selected value ρ that
we propose is the following:

ρ =

∑m
i=1RV (Wi,W

(ki)) +RV (Wi,W
(ki′ ))

2m
(4)

where W (ki) is the group average scalar products matrix of the cluster to which the ith

block of variables belongs, and W (ki′ ) is the group average scalar products matrix of the
nearest cluster to the ith block of variables.

This index takes into account the proximity of each block of variables with its own
cluster and the nearest cluster (the second nearest group average configuration). The
larger the similarity of the blocks of variables to their group average, the larger is ρ.
Furthermore, the closer the blocks of variables are to the neighbouring clusters the larger
is ρ. The first property entails that for compact clusters with a high within-homogeneity,
we should choose a relatively large threshold value, ρ. The second property entails that
if the various clusters are relatively close to each others, then the threshold value should
also be large so as to delineate clear boundaries between the clusters.

3. Case studies

3.1. Perception of luxury perfumes

The data considered herein can be found in the R package SensoMineR Lê and Husson
(2008). A panel of 103 Dutch consumers were asked to smell 12 luxury perfumes and
score their perception for each perfume with respect to 21 attributes. Examples of such
attributes are “Intensity”, “Freshness”, “Jasmin”, “Rose”, etc. The perfumes “Shali-
mar” and “PurePoison” were replicated twice. All in all, we have 103 blocks of variables
associated to the various subjects and the aim is to segment these subjects on the basis
of how they perceive the perfumes. For this purpose, we run the CLUSTATIS method
by using the R package ClustBlock (Llobell et al., 2020).

If we consider the whole panel as a unique cluster, the homogeneity index is equal
to 40.1% which indicates a rather poor agreement among the consumers. The den-
drogram or hierarchical tree and the graph which shows the evolution of the merging
criterion in the course of the hierarchical clustering (Figure 3) indicate to consider four
clusters of consumers since the merging criterion has jumped when passing from four
to three clusters. The overall homogeneity index obtained as the weighted average of
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the homogeneity indices in the four clusters is equal to 46.7%. By way of consolidat-
ing this partition, we run the partitioning algorithm considering the partition in four
clusters derived from the hierarchical algorithm as a starting point. Only six consumers
changed clusters and the homogeneity index is now equal to 47.1% indicating but a slight
improvement over the solution obtained by means of the hierarchical algorithm. In a
subsequent stage, we run the partitioning algorithm by activating the “K+1” option.
This means that we added a noise cluster that should contain all the consumers who do
not fit to the pattern of any cluster. This resulted in up to 36 consumers being discarded
and the homogeneity index significantly increased (55.3%). The fact that 36 out of 103
consumers were set in the noise cluster may seem as relatively large. However, this is
a common occurrence in this kind of studies which involve non-trained consumers who,
in addition, do not get any pecuniary retribution. Some of these consumers perform
the task casually or without a real motivation, others may not perceive a significant
difference among the products or may confuse or misinterpret the attributes. Other
studies dealing with consumers also reported that around one third of the panel may be
deemed as atypical (Vigneau et al., 2016). The homogeneity results of our analysis are
summed up in Table 1, where we also give the sample sizes of the various clusters. It
can be seen that the cluster 2 was originally the cluster with the poorest homogeneity
(39.0%). This explains why up to 23 consumers of this cluster moved to the noise cluster.

Figure 3.: The perfume data: Dendrogram and variation of criterion D given by the
CLUSTATIS hierarchical algorithm.

CLUSTATIS yields, in addition to the partition of the blocks of variables into clusters,
a group average scalar product matrix W (k) (k = 1, . . . , 4) within each cluster. By

performing the spectral decomposition of W (k): W (k) = C(k)C(k)> , we can depict the
relationships among the perfumes on the basis of the columns of C(k). In Figure 4,
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Table 1.: The perfume data: Size, homogeneity and global homogeneity indices using
CLUSTATIS without and with the “K+1” strategy.

CLUSTATIS CLUSTATIS with “K+1”

Cluster Size Homogeneity index (%) Size Homogeneity index (%)

1 21 49.3 16 55.1

2 38 39.0 15 50.7

3 18 59.3 14 64.4

4 26 48.7 22 52.6

Overall (weighted
average)

- 47.1 - 55.3

The whole panel 84 40.1

we show the representation of the perfumes on the basis of the first two components
(i.e., eigenvectors of W (k) associated with the largest eigenvalues) associated with the
four clusters. We can see that these configurations are on the whole different from one
another indicating a difference in the perception of the products in the four clusters.
A further indication of the relatively poor performance in cluster 2 is that, unlike the
other clusters, the two replicates corresponding to “Shalimar” are far removed from each
other along the second component. In order to achieve a better characterization of the
perfumes, we can investigate the correlations of the principal components in the various
clusters with the original variables (data not given to save space).

3.2. Projective mapping data

In sensory evaluation, we have witnessed over the last decade or so a strong tendency
to recourse to simple and quick procedures to evaluate a set of products. Very often,
these procedures involve the final consumers of the products instead of trained assessors
(Varela and Ares, 2014). Projective mapping (Risvik et al., 1994), also called Napping
(Pagès, 2005), is one of these procedures that have gained ground. In this procedure, a
set of products are presented to a panel of subjects and each subject is instructed to ar-
range the products on a sheet of paper, usually 60cm x 60cm, in such a way that similar
products are arranged near one another, whereas different products are placed far apart.
The data from each subject can be stored in a two dimensional block of variables where
the variables refer to the coordinates on the sheet of paper. Note that although the
blocks of variables associated to the various subjects are two-dimensional, the variables
do not necessarily refer to the same sensory perceptions from one subject to another.

The data used in this case study relate to an experiment performed by 97 students
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from Agrocampus-France. Each student was instructed to place the same 12 luxury
perfumes as in case study 1 on a sheet of paper.

By way of segmenting the students who took part in the experiment, we run CLUS-
TATIS on the 97 two-dimensional blocks of variables. The dendrogram derived from
the hierarchical algorithm is shown in Figure 5. It indicates that a partition into five
clusters is appropriate.

We can see in Table 2 that the homogeneity of the whole panel is very poor (26.0%).
It significantly increases after the partitioning of the panel into four clusters (39.9%). It
very significantly increased to 53.5% when we added the noise cluster. Up to 34 blocks
of variables moved to the noise cluster, with 15 blocks providing from cluster 3, which
originally had a very poor homogeneity (23.7%). As in the previous case study, we can
note that around one third of the panel of consumers were set in the noise cluster. This
might seem at first sight too high a proportion but the reader should keep in mind that
the panellists were non-trained students who were asked to perform this evaluation task
as an assignment to practice the projective mapping procedure, that is without major
issues at stake.

Table 2.: The projective mapping data: Size, homogeneity and global homogeneity in-
dices using CLUSTATIS without and with the “K+1” strategy.

CLUSTATIS CLUSTATIS with “K+1”

Cluster Size Homogeneity index (%) Size Homogeneity index (%)

1 27 49.1 23 54.4

2 13 47.5 11 51.9

3 23 23.7 8 48.7

4 19 36.7 11 51.1

5 15 45.9 10 59.5

Overall (weighted
average)

- 39.9 - 53.5

The whole panel 97 26.0

Table 3 gives the RV coefficients between the W (k) (k = 1, . . . , 5) that is the group
average scalar product matrices associated with the five clusters. It highlights how far
the clusters are distant from one another. It turns out that the closest clusters are clus-
ters 1 and 2 (RV=0.64) and the two most distant clusters are clusters 4 and 5 (RV=0.22).
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Table 3.: The projective mapping data: RV coefficients between the cluster group aver-
ages.

Cluster 1 2 3 4 5

1 1 0.64 0.56 0.46 0.61

2 1 0.53 0.42 0.58

3 1 0.51 0.46

4 1 0.22

5 1

4. Conclusion

The collection of several blocks of variables is becoming more and more frequent. This
explains why the investigation of methods of analysis of this kind of data has been cen-
tral in multivariate data analysis in the last thirty years or so (De Roover et al., 2012).
However, the problem of clustering several blocks of variables has not been sufficiently
addressed notwithstanding its interest in situations such as consumer segmentation, for
example. CLUSTATIS fills this gap. It is a method of clustering blocks of variables
that can be applied to blocks of variables that pertain to the same individuals but not
necessarily the same variables. It encompasses a hierarchical cluster analysis and a
partitioning algorithm. It is based on optimization criteria that, on the one hand, sug-
gest clustering procedures and, on the other hand, provide performance indicators that
make it possible to evaluate the quality of the obtained solutions. The introduction of a
“K+1” class or “noise cluster” improves the quality of the solution obtained by means of
CLUSTATIS by discarding those blocks of variables that do not fit to the pattern of any
cluster. To do this, we have drawn from ideas developed by Dave (1991) and Vigneau
et al. (2016). The proposed procedure requires the determination of a threshold param-
eter that governs the decision whether a block of variables should be assigned to a main
cluster or to the “noise cluster”. We proposed a procedure for automatically selecting a
threshold taking into account the proximity between the clusters.

The R package ClustBlock (Llobell et al., 2020) allows to perform the CLUSTATIS
method including its different options as well as functions for the cluster analysis of
blocks of variables from specific sensory evaluation procedures.

Performing the hierarchical algorithm in a first step has two purposes (i) it helps choos-
ing the number of clusters from the structure of the dendrogram or by examining the
diagram showing the evolution of the aggregation criterion in the course of hierarchical
clustering; (ii) it makes it possible to automatically compute the ρ parameter associated
with the noise cluster. The partitioning algorithm can improve the solution obtained by
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means of the hierarchical and, if the “K+1” option is activated, it makes it possible to set
aside atypical blocks, resulting in yet a further improvement in terms of within clusters
homogeneity. The counterpart of performing the two clustering algorithms in succession
is that the computation time may be relatively large if the number of blocks of variables
is large and if the number of rows (i.e., individuals) is also large. In particular, the
hierarchical algorithm is costly in terms of computation time. That is the reason why
we advocate, in a setting with very many blocks of variables and individuals, performing
only the partitioning algorithm. However, we recommend in this case using a multi-start
strategy consisting in running the partitioning algorithm several times (say, 30 times)
by choosing different staring points at random. As an indication, for the first case study
which involved 103 blocks of variables, 21 variables and 14 products, the running time
for both the hierarchical and partitioning algorithms was around 35 seconds.

The problem of determining the number of clusters is an important and tricky issue
that should be more precisely investigated. For the time being, we have recommended
determining this parameter by examining the evolution of the aggregation criterion as-
sociated with the hierarchical cluster analysis. Analytical procedures, possibly with
hypothesis testing strategies, would certainly be more appropriate. Ongoing research on
this indicates promising perspectives.

A. Proof of the STATIS properties

In this appendix, several properties are proved. One should bear in mind that the blocks
of variables at hand were centred and normalized so as to have ||Wi|| = 1. As a conse-
quence, we have RV (Wi,Wj) = trace(WiWj).

Let us consider the problem of minimization of the Q quantity with the constraint∑m
i=1 α

2
i = 1. We have:

Q =
∑m

i=1 ||Wi − αiW ||2 =
∑m

i=1 ||Wi||2 − 2
∑m

i=1 αi < Wi,W > +
∑m

i=1 α
2
i ||W ||2 =

m− 2
∑m

i=1 αi < Wi,W > +||W ||2.

The Lagrangian expression associated with the minimization problem is given by:
L(αi,W, µ) = m − 2

∑m
i=1 αi < Wi,W > +||W ||2 + µ(

∑m
i=1 α

2
i − 1) where µ is the

Lagrange multiplier. Setting the partial derivative of L with respect to W to zero, it
follows:
∂L
∂W = 0⇔ −2

∑m
i=1 αiWi + 2W = 0⇔W =

∑m
i=1 αiWi.

Replacing in the expression of Q,
∑m

i=1 αiWi by W , we have:
Q = m− 2

∑m
i=1 αi < Wi,W > +||W ||2 = m− 2||W ||2 + ||W ||2 = m− ||W ||2.

If instead, we replace W by
∑m

i=1 αiWi, it follows:
Q = m−

∑m
l=1

∑m
i=1 αiαl < Wi,Wl >= m−

∑m
i=1 αiαlRV (Wi,Wl) = m− α>Rα where

α = (α1, . . . , αm)> and R is the matrix which contains the pairwise RV coefficients. It
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follows that the minimization of Q with respect to α leads to the maximization of the
quantity α>Rα. The solution to this problem is given by the eigenvector of R associated
with the largest eigenvalue, that we denote by λ1. This shows that we are led to the
same solution as the STATIS method.

We have ||W ||2 = α>Rα = λ1α
>α = λ1 (property (i)).

From the expression Rα = λ1α, it follows that for each i,∑m
l=1RV (Wi,Wl)αl = λ1αi ⇔

∑m
l=1 < Wi,Wl > αl = λ1αi ⇔< Wi,W >= λ1αi ⇔

αi = <Wi,W>
λ1

= RV (Wi,W )
||W || = RV (Wi,W )√

λ1
(property (ii)).

Since ||W ||2 = λ1, Q = m−||W ||2 = m−λ1 (property (iii)) and m = Q+λ1 (property
(iv)).

B. Proof of the CLUSTATIS properties

In this appendix, we show that for two clusters of blocks of variables A and B (say),

λ
(A∪B)
1 ≤ λ(A)1 + λ

(B)
1 :

As a preliminary remark, let us note that RV (Wi,Wj) = v>i vj where vi = V ec(Wi)
and vj = V ec(Wj). vi (respectively, vj) is obtained by stacking the columns of Wi (re-
spectively, Wj) so as to form a unique vector.

Let us denote by RA∪B the pairwise RV coefficients between the blocks of variables
in A∪B . We have RA∪B = V >

A∪BVA∪B where VA∪B contains as columns the vectorised
Wi associated with the blocks of variables in A ∪B. In a similar way, we denote by VA
(respectively, VB) the vectorised Wi associated with blocks of variables in A (respectively,
B). Since the largest eigenvalue of V >

A∪BVA∪B is equal to that of VA∪BV
>
A∪B, it follows:

λ
(A∪B)
1 = max

α,||α||=1
{α>VA∪BV

>
A∪Bα} = max

α,||α||=1
{α>VAV

>
A α + α>VBV

>
B α}

≤ max
α,||α||=1

{α>VAV
>
A α} + max

α,||α||=1
{α>VBV

>
B α} = λ

(A)
1 + λ

(B)
1 .
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Figure 4.: The perfume data: Graphical representation of the perfumes on the basis of
the first two principal components in each cluster.
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Figure 5.: The projective mapping data: Dendrogram and variation of criterion D given
by the CLUSTATIS hierarchical algorithm.


