
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v14n1p44

Almost unbiased ridge estimator in the count
data regression models
By Abdulahad, Algamal

Published: 20 May 2021

This work is copyrighted by Università del Salento, and is licensed un-
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The ridge estimator has been consistently demonstrated to be an attrac-
tive shrinkage method to reduce the effects of multicollinearity. The Poisson
regression negative binomial regression models are well-known model in ap-
plication when the response variable is count data. However, it is known
that multicollinearity negatively affects the variance of maximum likelihood
estimator of the count regression coefficients. To address this problem, a
count data ridge estimator has been proposed by numerous researchers. In
this paper, an almost unbiased regression estimator is proposed and derived.
Our Monte Carlo simulation results suggest that the proposed estimator can
bring significant improvement relative to other existing estimators. In ad-
dition, the real application results demonstrate that the proposed estimator
outperforms both negative binomial ridge regression and maximum likelihood
estimators in terms of predictive performance.

keywords: Multicollinearity, ridge estimator, almost unbiased estimator,
negative binomial regression model, Poisson regression model, Monte Carlo
simulation.

1 Introduction

In regression modeling, data in the form of counts are usually common. Count data
regression modeling has received much attention in medicine, behavioral sciences, psy-
chology, and econometrics (Algamal, 2012; Asar and Genç, 2017; Coxe et al., 2009).
The Poisson and negative binomial regression models are the most basic models under
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count data regression models (Wang et al., 2014). The problem of overdispersion usually
occurs in count data. Unlike Poisson regression model, negative binomial regression can
handle the overdispersion issue (Cameron and Trivedi, 2013; Hilbe, 2011).
In dealing with the count data regression model, it is assumed that there is no corre-

lation among the explanatory variables. In practice, however, this assumption often not
holds, which leads to the problem of multicollinearity. In the presence of multicollinear-
ity, when estimating the regression coefficients using the maximum likelihood (ML)
method, the estimated coefficients are usually become unstable with a high variance,
and therefore low statistical significance (Kibria et al., 2014; Alkhateeb and Algamal,
2020; Rashad and Algamal, 2019; Alobaidi et al., 2021; Al-Taweel and Algamal, 2020;
Algamal, 2019). Numerous remedial methods have been proposed to overcome the prob-
lem of multicollinearity. The ridge regression method (Hoerl and Kennard, 1970) has
been consistently demonstrated to be an attractive and alternative to the ML estimation
method.
Ridge regression is a shrinkage method that shrinks all regression coefficients toward

zero to reduce the large variance (Asar and Genç, 2015). This done by adding a positive
amount to the diagonal of XTX. As a result, the ridge estimator is biased but it
guaranties a smaller mean squared error than the ML estimator.
In linear regression, the ridge estimator is defined as

β̂Ridge = (XTX + kI)−1XT y, (1)

where y is an n × 1 vector of observations of the response variable, X = (x1, ..., xp) is
an n× p known design matrix of explanatory variables, β = (β1, ..., βp) is a p× 1 vector
of unknown regression coefficients, I is the identity matrix with dimension p × p, and
k ≥ 0 represents the ridge parameter (shrinkage parameter). The ridge parameter, k,
controls the shrinkage of β toward zero. The OLS estimator can be considered as a
special estimator from Eq. (1) with k = 0. For larger value of k, the β̂Ridge estimator
yields greater shrinkage approaching zero (Algamal and Lee, 2015; Hoerl and Kennard,
1970).

2 Almost unbiased Poisson ridge regression estimator

The Poisson regression model is a popular tool when the dependent count data. There
is a widespread usage in micro econometric dependent variable yi is Poisson distributed,
where i=exp(xiβ). Here, xi is the ith row of X which is an n*p data matrix with p
independent variable and β can be estimated by maximizing the log-likelihood given by:

l (β) =
n∑

i=1

[−exp (xiβ) + (xiβ) yi − log (yi!) ] (2)

The vector of coefficients using the ML is then estimated by solving the following equa-
tion

S (β) =
∂l(β)

?β
=

n∑
i=1

[yi − exp (xiβ) ]xi = 0 . . . (2) (3)
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Since eq.(2) is nonlinear in β, the solution of the score vector S (β) is found by the
iterative weighted least-square algorithm

β̂ML = (XT ŴX)−1XT Ŵ ŝ (4)

where Ŵ=diag[µ̂i] and ŝ is a vector where the ith element equals to ŝi = log (µ̂i) +(
yi−µ̂i

µ̂i

)
. The maximum likelihood estimator asymptotically normally distributed with

a covariance matrix that corresponds to the inverse of the matrix of the second deriva-
tive[1].

Cov
(
β̂ML

)
= (XT ŴX)−1 (5)

Furthermore, the MSE of Equation eq.(4) can be written as

MSE(β̂ML) = E(β̂ML − β)T (β̂ML − β) = tr[(XT ŴX)−1] (6)

=

J∑
j=1

1

λj(β̂ML)
(7)

where λj is the j
theigenvalue of the (XT ŴX) matrix [2]. When the explanatory variables

are highly correlated the weighted matrix of cross-products, XT ŴX is ill-conditioned
which leads to instability and high variance of the maximum likelihood estimator. In
that situation it is very hard to interpret the estimated parameters since the vector of
estimated coefficients is on average too long.
As a remedy to the problem caused by multicollinearty the Poisson ridge regression

(PRR) method was proposed. The derivation of this method starts by noting that the
ML method approximately minimizes the weighted sum of square error WSSE. Hence,
β̂ML can be seen as the optimal estimator in a WSSE sense. If we choose another
estimator, β̂RR of the parameter vector β we can write the WSSE of this estimator as

Φ = (y − β̂RR)
T
(
y − β̂RR

)
= (y −Xβ̂ML)

T
(
y −Xβ̂ML

)
+ (β̂RR − β̂ML)

TXT ŴX(β̂RR − β̂ML)

= Φmin +Φ(β̂RR) (8)

Where Φ(β̂RR) is the increase of WSSE when β̂ML is replaced by β̂RR. To find the
PRR estimator the length of β̂T

RRβ̂RR Should be minimized subject to the constraint

Φ
(
β̂RR

)
= Φ0. As a Lagrangian problem this may be stated as:

minimize F = β̂T
RRβ̂RR + (1/k)(β̂RR − β̂ML)

TXT ŴX(β̂RR − β̂ML − Φ0) (9)

Differentiating the above expression with respect to β̂RR and setting the result equal to
zero and by solving the equation with respect to β̂RR we obtain the PRR estimator

β̂RR = (XT ŴX + kI)−1XT ŴXβ̂ML = Zβ̂ML (10)
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The MSE of this new estimator is:

E(β̂RR − β)T
(
β̂RR − β

)
=

J∑
j=1

λj

(λj + k)2
+k2

J∑
j=1

α2
j

(λj + k)2

= γ1 (k) + γ2 (k) (11)

Where α2
j defined as the jth element of γT β̂ML and XT ŴX = γTΛγ, where Λ = diag(λj)

and γ be the eigenvector.
The AURE (almost unbiased regression estimator) in linear model is given by

β̂AURE = (I −XTX + kI)−2k−2)β̂ML (12)

So, we proposed the AURE for the PRM as

β̂AUPRRE = (I −XT ŴX + kI)−2k−2)β̂ML (13)

Taking expectation of equation (13) on both sides we have

E
(
β̂AUPRRE

)
=

(
I −XT ŴX + kI)−2k−2

)
E
(
β̂ML

)
= (I −XT ŴX + kI)−2k−2)(XT ŴX)−1XT ŴE(Y )

= (I −XT ŴX + kI)−2k−2)(XT ŴX)−1XT ŴXβ

=
(
I −XT ŴX + kI)−2k−2

)
β (14)

The bias of the AUPRRE can be found as

Bias
(
β̂AUPRRE

)
= E

(
β̂AUPRRE

)
− β

=
(
I −XT ŴX + kI)−2k−2

)
β − β

= −k−2(XT ŴX + kI)−2β

= −k−2
J∑

j=1

αj

(λj + k)2
(15)

The variance of the AUPRRE can be defined as

V
(
β̂AUPRRE

)
=

(
I −XT ŴX + kI)−2k−2

)
V (β̂)(I −XT ŴX + kI)−2k−2)T

=
(
I −XT ŴX + kI)−2k−2

)
(XT ŴX)−1(I −XT ŴX + kI)−2k−2)T

=
1

λj

J∑
j=1

(1− k2

(λj + k)2
)2 (16)
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Using Eq.(15) and Eq.(16), the EMSE of AUPRRE can be simplified as

EMSE
(
β̂AUPRRE

)
= V

(
β̂AUPRRE

)
+ (Bias(β̂AUPRRE))

2

=
1

λj

J∑
j=1

(1− k2

(λj + k)2
)2 + (−k−2

J∑
j=1

αj

(λj + k)2
)2

=
1

λj

J∑
j=1

(λ2
j + 2λjk)

2

(λj + k)4
+ k4

J∑
j=1

α2
j

(λj + k)4
(17)

3 Almost unbiased negative Binomial ridge regression
estimator

The negative binomial regression model is very popular in applied research when the
dependent variable yi becomes non-negative integers or counts distributed as NB(µi, µi+
δµ2

i ) where µi = exp?(xiβ) such that xi is the ith row of the data matrix X which is a
nxp data matrix with p explanatory variables, β is the coefficient vector with intercept
and zi is a random variable following the gamma distribution such that zi (δ,δ), i=1, 2,
3, . . . , n. The density function of the dependent variable yi is

pr (yi | xi) =
Γ
(
α−1 + yi

)
Γ (α−1) Γ (1 + yi)

(
α−1

α−1 + µi
)α

−1
(

µi

α−1 + µi
)yi (18)

where the over dispersion parameter α is define as α=1/δ. The conditional mean and
variance are given as follows

E (yi | xi) = µi , V (yi | xi) = µi(1 + αµi) (19)

This is the most commonly applied NB model and the estimate of β is usually found
by maximizing the log likelihood

l (α, β) =
n∑

i=1

{
y−1∑
j=0

log
(
j + α−1

)
− log (yi!) −

(
yi − α−1

)
log (1 + αexp (xiβ) ) +

+yilog (α) + yilog?(exp (xiβ) } (20)

Since ln
[
Γ(α−1+yi)
Γ(α−1)

]
=

∑n
i=1

(
j + α−1

)
. The vector of coefficients using maximum like-

lihood estimation by solving the equation

S (β) =
∂l(µ, y)

?β
=

n∑
i=1

(yi − µi)

1 + αµi
xi = 0 (21)

Since the eq.(19) is nonlinear in β the solution of S(β) equal to zero is found by using
the method of scoring.

βr = βr−1 + I−1 (βr−1)S(βr−1) (22)
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where S(βr−1) is the first derivative of the log likelihood evaluated at βr−1 and

I−1 (βr−1) = E

(
∂2l (X,β)

?β?β′

)
= XTWX (23)

where W = diag
[

(µi(βr−1))
1+αr−1µi(βr−1)

]
. The final part of eq.(22) may be written as

XTWXβr = XTWz(βr−1)

By define z(βr−1) as a vector where the ith value equals log (µi (βr−1)) + yi−µi(βr−1)
µi(βr−1)

.
Hence, the method of scoring may be written by

βr = (XTWX)−1XTWz (βr−1) (24)

which has the same form as the weighted least squares regression with the weighted
matrix defined as W. However, both W and z depend on βr−1 , the current estimate of
the parameter vector so the solution of eq.(23) has to be found iterative. This method
is known as iteratively weighted least squares IWLS and in the final the maximum
likelihood estimate of β denoted as βML is obtained

The covariance matrix of this estimator given by

Cov
(
β̂ML

)
= (XTWX)−1 (25)

and the MSE is given by

MSE
(
β̂ML

)
= E(β̂ML − β)T (β̂ML − β)

= tr[(XT ŴX)−1]

=
J∑

j=1

1

λj(β̂ML)
(26)

where λj is the jtheigenvalue of the (XT ŴX) matrix. When the explanatory variables
are highly correlated the weighted matrix of cross-products, XT ŴX is ill-conditioned
which leads to instability and high variance of the maximum likelihood estimator. In
that situation it is very hard to interpret the estimated parameters since the vector of
estimated coefficients is on average too long.
The maximum likelihood estimator of β is found by using IWLS method and it can

therefore be seen as the optimal estimator in a weighted sum of squares error WSSE
sense. If another estimator, β̂ , of the parameter vector β is chosen, the WSSE of this
estimator can be written as

φ = (y− β̂)T
(
y − β̂

)
= (y−XβML)

T (y −XβML) + (β̂ − βML)
TXTWX

(
β̂ − βML

)
=

(27)
φmin + φ(β̂)
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where φ(β̂) is the increase of the WSSE when βML is replaced by β̂. The negative
binomial ridge regression NBRR estimator is found by minimizing the length of β̂T β̂

subject to the constraint δ
(
β̂
)
= δ0. This may be stated as a Lagrangian problem

Min. F = β̂T β̂ + (1/k)(β̂ − βML)
TXTWX(β̂ − βML − δ0) (28)

Where k is the Lagrange multiplier. If the Lagrange is differentiated with respect to β̂
and if the result is set to zero the following equation is obtained

∂F

∂β̂
= 2 β̂ +

(
1

k

)(
2XTWX β̂ − 2XTWX βML

)
= 0 (29)

Then the NBRR estimator can be obtained by solving Eq.(28)

βRR = (XTWX + kI)−1
(
XTWXβML

)
= ZβML (30)

The MSE of this new estimator is:

E(β̂RR − β)T
(
β̂RR − β

)
=

J∑
j=1

λj

(λj + k)2
+k2

J∑
j=1

α2
j

(j + k)2

= γ1 (k) + γ2 (k) (31)

Where α2
j defined as the jth element of γT β̂ML and XT ŴX = γTΛγ, where Λ = diag(λj)

and γ be the eigenvector.

The AURE for the NBRM is defined as

β̂AUNBRRE = (I −XT ŴX + kI)−2k−2)β̂ML (32)

Taking expectation of equation (11) on both sides we have

E
(
β̂AUNBRRE

)
=

(
I −XT ŴX + kI)−2k−2

)
E
(
β̂ML

)
= (I −XT ŴX + kI)−2k−2)(XT ŴX)−1XT ŴE(Y )

= (I −XT ŴX + kI)−2k−2)(XT ŴX)−1XT ŴXβ

=
(
I −XT ŴX + kI)−2k−2

)
β (33)

The bias of the AUNBRRE can be found as

Bias
(
β̂AUNBRRE

)
= E

(
β̂AUNBRRE

)
− β

=
(
I −XT ŴX + kI)−2k−2

)
β − β

= −k−2(XT ŴX + kI)−2β
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= −k−2
J∑

j=1

αj

(λj + k)2
(34)

The variance of the AUNBRRE can be defined as

V
(
β̂AUNBRRE

)
=

(
I −XT ŴX + kI)−2k−2

)
V (β̂)(I −XT ŴX + kI)−2k−2)T

=
(
I −XT ŴX + kI)−2k−2

)
(XT ŴX)−1(I −XT ŴX + kI)−2k−2)T

=
1

λj

J∑
j=1

(1− k2

(λj + k)2
)2 (35)

Using Eq.(34) and Eq.(35), the EMSE of AUNBRRE can be simplified as

EMSE
(
β̂AUNBRRE

)
= V

(
β̂AUNBRRE

)
+ (Bias(β̂AUNBRRE))

2

=
1

λj

J∑
j=1

(1− k2

(λj + k)2
)2 + (−k−2

J∑
j=1

αj

(λj + k)2
)2

=
1

λj

J∑
j=1

(λ2
j + 2λjk)

2

(λj + k)4
+ k4

J∑
j=1

α2
j

(λj + k)4
(36)

4 Simulation results

In this section, a Monte Carlo simulation experiment is used to examine the performance
of the new estimator with different degrees of multicollinearity. The response variable
of n observations is generated from Poisson regression model by

θi = exp(xTi β), (37)

where β = (β0, β1, ..., βp) with
∑p

j=1 β
2
j = 1 and β1 = β2 = ... = βp (Kibria, 2003). The

response variable of n observations is generated from negative binomial regression model
by using Eq.(37) when the value of α is chosen as 2.

The explanatory variables xTi = (xi1, xi2, ..., xin) have been generated from the follow-
ing formula

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, j = 1, 2, ..., p, (38)

where ρ represents the correlation between the explanatory variables and wij ’s are inde-
pendent standard normal pseudo-random numbers. Because the sample size has direct
impact on the prediction accuracy, three representative values of the sample size are
considered: 30, 50 and 100. In addition, the number of the explanatory variables is
considered as p = 4 and p = 8 because increasing the number of explanatory variables
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can lead to increase the MSE. Further, because we are interested in the effect of multi-
collinearity, in which the degrees of correlation considered more important, three values
of the pairwise correlation are considered with ρ = {0.90, 0.95, 0.99}. For a combination
of these different values of n, p, and ρ the generated data is repeated 1000 times and the
averaged mean squared errors (MSE) is calculated as

MSE(β̂) =
1

1000

1000∑
i=1

(β̂ − β)T (β̂ − β), (39)

where β̂ is the estimated coefficients for the used estimator. The efficiency of ridge
estimator strongly depends on appropriately choosing the k parameter. To estimate the
value of k for our new estimator, the most well-known used estimation methods is Hoerl
and Kennard (1970)(HK), which is defined as

HK =
1

α̂2
max

, j = 1, 2, ..., p, (40)

The estimated MSE of Eq. (26) for ML, RR, AUPRE, NBRE, and AUNBRRE, for all
the combination of n, p, and ρ, are respectively summarized in Tables 1 and 2. Several
observations can be made. First, in terms of ρ values, there is increasing in the MSE
values when the correlation degree increases regardless the value of n, p. However, the
proposed estimators AUPRE and AUNBRRE perform better than ML, RR, and NBRE.
For instance, in Table 1, when p = 8, n = 50, and ρ = 0.99, the MSE of AUPRE was
about 77.022% and 11.897% lower than that of ML and RR, respectively.

Second, regarding the number of explanatory variables, it is easily seen that there is
increasing in the MSE values when the p increasing from four variables to eight variables.
Although this increasing can affected the quality of an estimator, AUPRE and AUN-
BRRE are achieved the lowest MSE comparing with ML, RR and NBRE, for different
n, ρ.

Third, with respect to the value of n, The MSE values decreases when n increases,
regardless the value of ρ, p. However, AUPRE and AUNBRRE still consistently outper-
forms RR, NBRE, and ML by providing the lowest MSE.
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Table 1: MSE values for the Poisson regression model

ML PR AUPRE

ρ

p = 4 n = 30 0.90 4.823 0.862 0.709

0.95 5.451 1.093 0.942

0.99 5.849 1.743 1.591

n = 50 0.90 3.194 0.495 0.342

0.95 4.269 0.767 0.614

0.99 4.461 1.084 0.931

n =
100

0.90 3.037 0.297 0.144

0.95 3.247 0.421 0.268

0.99 4.002 1.447 1.294

p = 8 n = 30 0.90 4.928 1.064 0.911

0.95 5.547 1.295 1.142

0.99 5.962 1.945 1.792

n = 50 0.90 3.463 0.697 0.544

0.95 4.606 0.969 0.816

0.99 4.931 1.286 1.133

n =
100

0.90 3.373 0.489 0.336

0.95 3.648 0.613 0.461

0.99 4.206 1.639 1.486
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Table 2: MSE values for the negative binomial regression model

ML NBPR AUNBRRE

ρ

p = 4 n = 30 0.90 5.094 1.133 0.981

0.95 5.722 1.364 1.213

0.99 6.12 2.014 1.862

n = 50 0.90 3.465 0.766 0.613

0.95 4.54 1.038 0.885

0.99 4.732 1.355 1.202

n =
100

0.90 3.308 0.568 0.415

0.95 3.518 0.692 0.539

0.99 4.273 1.718 1.565

p = 8 n = 30 0.90 5.199 1.335 1.182

0.95 5.818 1.566 1.413

0.99 6.233 2.216 2.063

n = 50 0.90 3.734 0.968 0.815

0.95 4.877 1.241 1.087

0.99 5.202 1.557 1.404

n =
100

0.90 3.644 0.76 0.607

0.95 3.919 0.884 0.732

0.99 4.477 1.91 1.757

5 Real application

To further investigate the usefulness of our new estimator, we apply the proposed esti-
mator to the football Spanish La Liga, season 2016-2017. This data contains 20 teams.
The response variable represents the number of won matches. The six considerable ex-
planatory variables included the number of yellow cards (x1), the number of red cards
(x2), the total number of substitutions (x3), the number of matches with 2.5 goals on
average (x4), the number of matches that ended with goals (x5), and the ratio of the
goal scores to the number of matches (x6).

First, the deviance test (Montgomery et al., 2015) is used to check whether the negative
binomial regression model is fit well to this data or not. The result of the residual
deviance test is equal to 8.651 with 14 degrees of freedom and the p-value is 0.822. It is
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indicated form this result that the negative binomial regression model fits very well to
this data.
Second, to check whether there are relationships between the explanatory variables or

not, it is obviously seen that there are correlations greater than 0.82 between x1 and x6,
x1 and x4, x2 and x4, and, x4 and x6.
Third, to test the existence of multicollinearity, the eigenvalues of the matrix XT ŴX

are obtained as 997.247, 321.922, 170.541, 41.386, 22.694, and 2.054. The determined
condition number CN =

√
λmax/λmin of the data is 22.034 indicating that the multi-

collinearity issue is exist.
The estimated negative binomial regression coefficients and MSE values for the ML,

NBRE, and AUNBRRE estimators are listed in Table 3. According to Table 3, it
is clearly seen that the AUNBRRE estimator shrinkages the value of the estimated
coefficients efficiently”. In terms of MSE, the AUNBRRE achieves the lowest MSE.

Table 3: The estimated coefficients and MSE values for the ML, NBRE, and AUNBRRE
estimators

ML NBRE AUNBRRE

β̂1 -1.219 -1.057 -0.616

β̂2 0.441 0.135 0.184

β̂3 0.575 0.127 0.106

β̂4 -3.476 -1.158 -0.122

β̂5 -2.432 -1.118 -0.108

β̂6 5.121 2.173 1.217

MSE 4.148 2.102 1.157

6 Conclusion

In this paper, a new estimator of ridge regression is proposed to overcome the multi-
collinearity problem in the Poisson regression and negative binomial regression models.
According to Monte Carlo simulation studies, the proposed estimator has better per-
formance than maximum likelihood estimator and ordinary ridge estimator, in terms
of MSE. Additionally, a real data application is also considered to illustrate benefits
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of using the new estimator in the context of negative binomial regression model. The
superiority of the new estimator based on the resulting MSE was observed and it was
shown that the results are consistent with Monte Carlo simulation results.
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Kibria, B. M. G., Månsson, K., and Shukur, G. (2014). A simulation study of some bi-
asing parameters for the ridge type estimation of poisson regression. Communications
in Statistics - Simulation and Computation, 44(4):943–957.



Electronic Journal of Applied Statistical Analysis 57

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2015). Introduction to linear
regression analysis. John Wiley & Sons, New York.

Rashad, N. K. and Algamal, Z. Y. (2019). A new ridge estimator for the poisson re-
gression model. Iranian Journal of Science and Technology, Transactions A: Science,
43(6):2921–2928.

Wang, Z., Ma, S., Zappitelli, M., Parikh, C., Wang, C. Y., and Devarajan, P. (2014).
Penalized count data regression with application to hospital stay after pediatric cardiac
surgery. Stat. Meth. Med. Res., In press.


