
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/

index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v13n2p413

Properties of the correlation matrix implied by
a recursive path model obtained using the Finite
Iterative Method
By El Hadri et al.

Published: 14 October 2020

This work is copyrighted by Università del Salento, and is licensed un-
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The present paper announces and demonstrates several properties of the
correlation matrix implied by a recursive path model. The main result is that
this matrix is affine with respect to the model parameters. These properties
concern especially the estimation step in which one should seeks for numerical
value for each parameter. Several minimization algorithms are available in
softwares for this task, which use iterative procedure that generally requires
the computation of successive gradient vectors and the Hessian matrices.
The properties established in this paper provide more essence and flexibility
within these types of computation.

keywords: Path Analysis, Finite Iterative Method, implied correlation ma-
trix, Unweighted Least Squares function, First & second derivative.

Introduction.

Path analysis, discovered by Wright (1921, 1923, 1934) is a panoply of statistical tech-
niques used to examine cause and effect relations between a set of observed variables
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(El Hadri and Hanafi, 2015). On the one hand, Path analysis can be seen as a straight-
forward extension of multiple regression. On the other hand, it is the special case of
structural equation modelling (SEM) since all variables are observed (Bollen, 1989).

Nowadays, Path analysis is applied in many areas such as ecology (Pugesek, 2003;
Eisenhauer et al., 2015), social sciences (Duncan, 1966; Hauser, 1975), and psychology
(Breckler, 1990).

Path analysis consists of three major elements: (a) the path diagram , (b) decomposing
correlations as a function of model parameters, (c) and the separation of the effect of
one variable on another into direct, indirect, and total effects.

Figure 1 represents an example of path model with two exogenous variables and three
endogenous variables. Furthermore, a path model is analysed upon five steps: speci-
fication, identification, estimation, testing, and modification (Schumacker and Lomax,
2004).
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Figure 1: Path analysis model with two exogenous variables and three endogenous vari-
ables.

The estimation step is the core of the modelling process. It consists on finding numer-
ical value for each of the model parameters by minimizing a fit function that measures
the difference between two matrices: On one side, (i) R, the empirical correlation ma-
trix obtained from data, and, on the other side, (ii) R̂, the implied correlation matrix
computed as a function of the model parameters. Therefore, the main questions are:
(1) How to compute R̂ when all parameters are known?
(2) How to define a fit function as function of R̂ and R?
(3) And finally, how to find the optimal value for each parameter?

To answer the question (1), El Hadri and Hanafi (2015) have presented a method
called the Finite Iterative Method (FIM) to calculate R̂ when all parameters are given.
Concerning the question (2), several functions are available in the SEM literature, see
Bollen (1989). The maximum likelihood FML, the Generalised Least Squares FGLS and
the Unweighted Least Squares function FULS are widely used. This latter is considered
in the present paper and is defined as:

FULS(θ) =
1

2
Tr(R̂(θ) −R)2 (1)
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Since this function depends on several variables θ = (θ1, θ2, . . . θT ) (θ = (a, b, c, d, e)
for the model in Figure 1), then the minimization of FULS is performed through an
optimization algorithm which is the answer to question (3). In this paper, the Newton
Raphson algorithm defined as follows is considered.

θ(s+1) = θ(s) −
(
H(s)

)−1
g(s) (2)

where θ(s) is a vector containing all free parameters in the model at the sth iteration, g(s)

is the gradient vector at the sth iteration, and H(s) is the Hessian matrix at the sth iter-
ation. At the initialization step, θ(1) is chosen arbitrarily , then new vectors θ(2),θ(3), . . .
are successively generated in a way that FULS(θ(1)) ≥ FULS(θ(2)) ≥ FULS(θ(3)) . . .. This
process is repeated until convergence is achieved.

Here, elements of g are the first derivatives of FULS with respect to each parameter :

gi =
∂FULS

∂θi
= Tr

[
(R̂−R)

∂R̂

∂θi

]
(3)

And elements of H are the second derivatives of FULS with respect to each pair of
parameters :

Hij =
∂2FULS

∂θi∂θj
= Tr

[
(R̂−R)

∂2R̂

∂θi∂θj
+
∂R̂

∂θi

∂R̂

∂θj

]
(4)

As a consequence, and since R is constant (does not depends on θ), the computation

of these derivatives are reduced to the computation of
∂R̂

∂θi
and

∂2R̂

∂θi∂θj
which are re-

spectively the first and second derivation of R̂. Rationally, this requires the explicit
expression of R̂ with respect to each parameter θi, and with respect to each pair of
parameters (θi, θj). The classical method of estimating a path model uses the finite

difference method to calculate the first derivative of R̂ (Jöreskog et al., 1981):

∂

∂θi
R̂(θ) =

R̂(θ + ε)− R̂(θ)

εi
(5)

Such that ε = (0, 0, . . . , εi, . . . , 0) and εi is a small real number in the ith position. This
approximation is due to the fact that R̂ can’t be explicitely expresssed in term of θi.
Besides, it uses an approximation (Jöreskog et al., 1981) in (4) such that:

Hij =
∂2FULS

∂θi∂θj
' Tr

[
∂R̂

∂θi

∂R̂

∂θj

]
(6)

Contrariwise, since FIM ovecomes these limitations, the aim of the present work is
answer the following question: Does this matrix have specific properties that allow us
to draw conclusions about the problem of parameter estimation?
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The answers to these questions are the main contribution of the present work.
The paper is structured as follows: Section 1 recalls the FIM algorithm for the com-

putation of R̂. Sections 2 introduces basic properties of R̂. In the section 3 we present
alternatives useful procedures to compute the derivatives of R̂. Section 4 and 5 illustrate
these properties through example, using simulated data and considering real data. In
section 6, some conclusions and perspectives are drawn. Finally, all proofs are given in
6 Appendix.

1 Computation of the implied correlation matrix

As mentioned in the introduction, the estimation step consists of finding the parame-
ters that fit the model. In other words, it aims to find values of the parameters that make
the data structure as close as possible to the structure of the model. The data struc-
ture is characterized by the assumption that the distribution of the observed variables is
multivariate and sufficiently well described by its mean and covariance (Jöreskog, 1978).
Since the present paper deals with standardized variables, the data structure is defined
by its correlation matrix. Consequently, the purpose is to determine the correlation
matrix implied by the model.

1.1 Implied correlation matrix

The implied correlation matrix noted by R̂ is computed from the free model parame-
ters. Formally, let:

η1 = γ11ξ1 + . . .+ γ1pξp + ζ1
...

ηq = βq1η1 + . . .+ βq,q−1ηq−1 + γq1ξ1 + . . .+ γqpξp + ζq

(7)

be the system of the structural equations for a recursive path model where p and q are
respectively the number of exogenous and endogenous variables. And let:

η = Bη + Γξ + ζ (8)

be the compact representation of the system (7). η, ξ and ζ represent respectively the
vectors of the endogenous variables, exogenous variables, and disturbances. Assumptions
on these vectors are made (see El Hadri and Hanafi (2015)). Then R̂ is defined as :

R̂ =

(
E(ξξt) E(ξηt)

E(ηξt) E(ηηt)

)
(9)

This matrix can be determined in a compact way by writing the vector of endogenous
variables as a function of the vector of exogenous ones (Jöreskog, 1970, 1978; Jöreskog
and Wold, 1982; Jöreskog and Sorbom, 1993).

It can also be constructed using the Wright’s rules (Wright, 1921, 1923, 1934, 1960), by
calculating every correlation between each pair of model variables. El Hadri and Hanafi
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(2015, 2016) proposed FIM, which uses these rules to build R̂ iteratively. Morover, FIM
was further discussed by El Hadri et al. (2019) and Iaousse et al. (2020a,b). In what
follows, the FIM Algorithm is presented.

1.2 Finite Iterative Method

El Hadri and Hanafi (2015) have demonstrated that under the condition of a recursive
model and standardized variables, R̂ can be constructed using the algorithm 1 called
FIM Algorithm. To make it clear, if we note by A = (Γ,B) the matrix of all model
parameters then (8) becomes:

η = A

(
ξ

η

)
+ ζ (10)

In addition, we note by Φ = E(ξξ
′
) the correlation matrix of the exogenous variables.

Finally, for a given matrix X: Xr:t,l:s denote the submatrix of X containing rows from
r to t and columns from l to s (i.e Xr:t,l:s = (Xij)(r<i<t,l<j<s)). Algorithm 1 shows the

steps to construct the implied correlation matrix R̂ (El Hadri and Hanafi (2015)) and
Figure 2 is an illustration.

Initialization: R̂1:p,1:p = Φ;
Repeat for j = 1, ...q;

1. R̂p+j,1:p+j−1 = Aj,1:p+j−1R̂1:p+j−1,1:p+j−1 ;

2. R̂1:p+j−1,p+j = (R̂p+j,1:p+j−1)t ;

3. R̂p+j,p+j = 1
Algorithm 1: FIM algorithm.

For instance, the correlation matrix implied by the model in Figure 1 using Algorithm
1 is:

R̂ =


1 r12 a + br12 ac + bcr12 dr12 + ace + bcer12

r12 1 ar12 + b acr12 + bc d + acer12 + bce

a + br12 ar12 + b 1 c adr12 + bd + ce

ac + bcr12 acr12 + bc c 1 acdr12 + bcd + e

dr12 + ace + bcer12 d + acer12 + bce adr12 + bd + ce acdr12 + bcd + e 1


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Aj,1:p+j−1

3

R̂p+j,1:p+j−1
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×

R̂1:p+j−1,1:p+j−1

=

1

Transposition

R̂1:p+j−1,1:p+j−1

R̂1:p+j,1:p+j

Figure 2: Illustration of Algorithm 1

2 Basic properties of the implied correlation matrix

As aforementioned, the implied correlation matrix R̂ obtained using FIM disposes of
some useful properties. Recall that R̂ is function of all parameters. In the present paper,
the model parameters are the elements of matrix A.

In what follows, we suppose that we are dealing with a recursive path model with
equations given in (7) or, equivalently in compact form (8 or 10). In addition, x and y
are two parameters of the model such that:

x = Ajk such that (j, k) ∈ {1 : q} × {1 : p+ j − 1} (11)

and
y = Ast such that (s, t) ∈ {1 : q} × {1 : p+ s− 1} (12)

The reader may notice that the dimension of the matrix A is q× (p+q). However, the
column indix k of x (respectivelly t for y) is at most p+j−1 (respectvelly p+s−1) such
that the j (respectivelly s) is the row index. This is because the matrix B is strictilly
lower triangular (since the model is recursive). Thus any parameter of the form Ajk such
that k ≥ p + j vanishes. In addition, since x and y play a symmetric role, we consider
that s ≥ j.

Lemma 1. The bloc R̂1:p+j−1,1:p+j−1 does not depend on x.

Proof. See 6 Appendix.

Lemma 2. The bloc R̂1:p+j,1:p+j is affine on x.
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Proof. See 6 Appendix.

Theorem 1. The correlation matrix implied by the model R̂ is affine with respect to x.

Proof. See 6 Appendix.

A direct consequence of theorem 1 is that R̂ can be expressed as :

R̂ =

(
bR̂(a)− aR̂(b)

b− a

)
+ x

(
R̂(b)− R̂(a)

b− a

)
(13)

such that a and b are arbitrary distinct values for x and R̂(α) = R̂(x = α) is the
correlation matrix implied by the model where x is replaced by α. However, setting
a = 0 and b = 1, (13) is reduced to:

R̂ = R̂(0) + x
(
R̂(1)− R̂(0)

)
(14)

Moreover, we suppose that another parameter is unknown, say y. Then, since R̂(0)
and R̂(1) are implied correlation matrices, we can use (14) to express them in term of
y.
Indeed, R̂ can expressed in term of x and y simultaneously as:

R̂ = R̂(0, 0) + x
[
R̂(1, 0)− R̂(0, 0)

]
+ y

[
R̂(0, 1)− R̂(0, 0)

]
(15)

+xy
[
R̂(1, 1)− R̂(1, 0)− R̂(0, 1) + R̂(0, 0)

]
such that R̂(α, β) = R̂(x = α, y = β) is the correlation matrix implied by the model
where x and y are respectivelly fixed to α and β.

Indeed, using (14) it holds:

∂R̂

∂x
= R̂(1)− R̂(0) (16)

And

∂2R̂

∂x2
= 0 (17)

And using (15) it holds:

∂2R̂

∂x∂y
= R̂(1, 1)− R̂(1, 0)− R̂(0, 1) + R̂(0, 0) (18)
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3 Alternative methods for computing the fisrt and the
second derivative of the implied correlation matrix

In this section, we propose alternative strategies to compute
∂R̂

∂x
and

∂2R̂

∂x∂y
. We begin

by the algorithm 2 below allowing the computation of the first derivative. Let G be a
(p+ q)× (p+ q) matrix.

? If j 6= q then :

1. G1:p+j−1,1:p+j−1 = 0

2. Gp+j,1:p+j−1 = R̂k,1:p+j−1

3. G1:p+j−1,p+j = (Gp+j,1:p+j−1)
t

4. Gp+j,p+j = 0

5. for j
′ ∈ {j + 1 : q}

a) Gp+j′ ,1:p+j′−1 = Aj′ ,1:p+j′−1G1:p+j′−1,1:p+j′−1

b) G1:p+j′−1,p+j′ = Gt

c) Gp+j′ ,p+j′ = 0

? If j = q then the building stops at step 4.

Algorithm 2: First derivative algorithm.

Theorem 2. The first derivative can be computed by algorithm 2 above:
∂R̂

∂x
= G.

Proof. See 6 Appendix.

Remark 1. We can note that algorithm 2 is an adaptation of Algorithm 1 in the sense
that:

1. The iterations begin at p+ j + 1 instead of p+ 1,

2. the iterations are initialized by G1:p+j,1:p+j instead of Φ,

3. diagonal elements are fixed to 0 instead of 1.

Next, using algorithm 3 below, we can compute iteratively the second derivative with
respect to two distinct parameters x and y. Let H be a (p+ q)× (p+ q) matrix.
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? If s 6= q:

1. H1:p+s−1,1:p+s−1 = 0

2. Hp+s,1:p+s−1 =
∂

∂x
R̂t,1:p+s−1

3. H1:p+s−1,p+s = (Hp+s,1:p+s−1)
t

4. Hp+s,p+s = 0

5. for s
′ ∈ {s+ 1 : q}

a) Hp+s′ ,1:p+s′−1 = As′ ,1:p+s′−1H1:p+s′−1,1:p+s′−1

b) H1:p+s′−1,p+s′ = (Hp+s′ ,1:p+s′−1)
t

c) Hp+s′ ,p+s′ = 0

? If s = q then the building stops at step 4.

Algorithm 3: Second derivative algorithm.

Theorem 3. The second derivative can be computed by algorithm 3 above:
∂2R̂

∂x∂y
= H.

Proof. See 6 Appendix.

Remark 2. Once again, algorithm 3 is an adaptation of Algorithm 1 in the sense that:

1. The iterations begin at p+ s+ 1 instead of p+ 1,

2. the iterations are initialized by H1:p+s,1:p+s instead of Φ,

3. diagonal elements are fixed to 0 instead of 1.

Corollary 1. If x and y are associated with the same endogenous variable then
∂2R̂

∂x∂y
=

0.

Proof. See 6 Appendix.

4 An example of a recursive path model for illustration

In this section, we consider the model in Figure 1 (see Introduction section). The
system of structural equation of this path model is:

η1 = aξ1 + bξ2 + ζ1

η2 = cη1 + ζ2

η3 = dξ2 + eη2 + ζ3

(19)
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Or, in the compact form:

η =

0 0 0

c 0 0

0 e 0

η +

a b

0 0

0 d

 ξ + ζ (20)

such that, η = (η1, η2, η3)
t, ξ = (ξ1, ξ2)

t, and ζ = (ζ1, ζ2, ζ3)
t. Thus, the matrix of

parameters is

A =

 a b 0 0 0

0 0 c 0 0

0 d 0 e 0

 (21)

In addition, the correlation matrix among exogenous variables is

Φ =

(
1 r12

r12 1

)
(22)

where r12 is the empirical correlation between the two exogenous variables ξ1 and ξ2.
Next, we consider the following values for parameters: a = 0.45, b = 0.32, c =
−0.10, d = 0.72, e = −0.92 and r12 = 0.60. In what follows, we propose to apply

properties announced in the previous section to compute the following derivatives:
∂R̂

∂a
,

∂2R̂

∂a∂c
, and

∂2R̂

∂d∂e
.

1. Computation of
∂R̂

∂a
:

a) Using Algorithm 1, it holds R̂1:2,1:2 = Φ =

(
1 0.6

0.6 1

)
,

b) Initialization:

(
∂R̂

∂a

)
1:2,1:2

=

(
0 0

0 0

)
,

?

(
∂R̂

∂a

)
3,1:2

= R̂1,1:2 =
(

1 0.6
)

?

(
∂R̂

∂a

)
1:2,3

=

(
1

0.6

)

?

(
∂R̂

∂a

)
3,3

= 0

Thus,

(
∂R̂

∂a

)
1:3,1:3

=

0 0 1

0 0 0.6

1 0.6 0

.
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c) Iteration 1:

?

(
∂R̂

∂a

)
4,1:3

= A2,1:3

(
∂R̂

∂a

)
1:3,1:3

=
(

0 0 −0.1
)0 0 1

0 0 0.6

1 0.6 0


=

(
−0.1 −0.06 0

)
?

(
∂R̂

∂a

)
1:3,4

=

 −0.1

−0.06

0

 and

(
∂R̂

∂a

)
4,4

= 0

Thus

(
∂R̂

∂a

)
1:4,1:4

=


0 0 1 −0.1

0 0 0.6 −0.06

1 0.6 0 0

−0.1 −0.06 0 0

.

d) Iteration 2:

?

(
∂R̂

∂a

)
5,1:4

= A3,1:4

(
∂R̂

∂a

)
1:4,1:4

=
(

0 0.72 0 −0.92
)


0 0 1 −0.1

0 0 0.6 −0.06

1 0.6 0 0

−0.1 −0.06 0 0


=
(

0.092 0.0552 0.432 −0.0432
)

?

(
∂R̂

∂a

)
1:4,5

=


0.092

0.0552

0.432

−0.0432


?

(
∂R̂

∂a

)
5,5

= 0

Thus
∂R̂

∂a
=


0 0 1 −0.1 0.092

0 0 0.6 −0.06 0.0552

1 0.6 0 0 0.432

−0.1 −0.06 0 0 −0.0432

0.092 0.0552 0.432 −0.0432 0

.
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2. Computation of
∂2R̂

∂a∂c
:

a) Using Algorithm 2 (or the previous example), it holds

(
∂R̂

∂a

)
1:3,1:3

=

0 0.0 1.0

0 0.0 0.6

1 0.6 0.0

,

b) Initialization:

(
∂2R̂

∂a∂c

)
1:3,1:3

=

0 0 0

0 0 0

0 0 0

,

?

(
∂2R̂

∂a∂c

)
4,1:3

=

(
∂R̂

∂a

)
3,1:3

=
(

1 0.6 0
)

?

(
∂2R̂

∂a∂c

)
1:3,4

=

 1

0.6

0


?

(
∂2R̂

∂a∂c

)
4,4

= 0

Thus,

(
∂2R̂

∂a∂c

)
1:4,1:4

=


0 0 0 1

0 0 0 0.6

0 0 0 0

1 0.6 0 0

.
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c) Iteration 1:

?

(
∂2R̂

∂a∂c

)
5,1:4

= A3,1:4

(
∂2R̂

∂a∂c

)
1:4,1:4

=
(

0 0.72 0 −0.92
)


0 0 0 1

0 0 0 0.6

0 0 0 0

1 0.6 0 0


=
(
−0.92 −0.552 0 0.432

)

?

(
∂2R̂

∂a∂c

)
1:4,5

=


−0.92

−0.552

0

0.432


?

(
∂2R̂

∂a∂c

)
5,5

= 0

Thus,
∂2R̂

∂a∂c
=


0 0 0 1 −0.92

0 0 0 0.6 −0.552

0 0 0 0 0

1 0.6 0 0 0.432

−0.92 −0.552 0 0.432 0

.

3. Computation of
∂2R̂

∂d∂e
:

Since d and e are associated with the same endogenous variable (see (19) then

according to the corollary 1, it holds:
∂2R̂

∂d∂e
= 0 where 0 is the null matrix of

order (5× 5).

5 Simulation Study and Empirical Example

In the present section, we propose to compare the results of the present paper to some
classical methods. This comparison shall concern two aspects : a) the gradient vectors
and the Hessian matrices and b) the parameters estimates of a known model using real
data.

5.1 Comparison of the gradient vector and Hessian matrix

We consider the model described in figure 1 and the following simulation: 100 vectors
of model parameters are generated. For each vector, the gradient vector given in (3)
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and the Hessian matrix given in (4) are computed using two approaches. (i)Classical
Approach (CA): The package NumDeriv In R software and (ii) Proposal Approach (PA):
Theorem 2 and Theorem 3 of the present paper. To compare the two approaches, we
compute the following quantities: ∆g = Norm(g2−g1) and ∆H = Norm(H2−H1) where
g1 (respectively H1) is the gradient vector (respectively the Hessian matrix) computed
using CA and g2 (respectivelyH2) is the gradient vector (respectively the Hessian matrix)
computed using PA.

0 20 40 60 80 100
Index

0.0
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0.4

0.6

0.8
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1.6

Δ g
ΔΔ

H

1e−8
Δg
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Figure 3: The difference between the gradient vectors (∆g) and the Hessian matrices (∆H) for 100

simulated vectors of parameters

Values of ∆g and ∆H are represented in Figure 3. We can observe that these values do
not exceed 1.4× 10−8 in the case of the gradient vectors and 1.6× 10−8 for the Hessian
matrices. In other words, we can affirm that PA and CA are identical.

5.2 Comparison of estimated parameters

Here, we consider the Union Sentiment Model described in figure 4 (available in
MIIV sem package in R). According to Bollen (1989), the union sentiment data come
from a study of union sentiment among southern non-union textile workers. It contains
175 observations and 5 variables which are: years in the textile mill, age, deference
to managers, support for labour activism, and sentiment toward unions. The causal
ordering adopted by Bollen (Bollen, 1989) specifies that age (age) influences deference
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(deferenc) and attitude toward activism (laboract), while seniority (yrsmill) affects
only union sentiment (unionsen). The causal ordering among endogenous variables
specifies that deference (deferenc) causes attitudes toward activism (laborct) and unions
(unionsen); and that activism influences union sentiment.

The parameters of this model are estimated using two methods. (i) the lavann package
in R software; and (ii) the Newton Raphson algorithm described in (2) using Theorem
2 and Theorem 3 of the present paper. The results are shown in Table 1. This table
shows that the estimates are either equal or very close.

unionsenyrsmill

age

deferenc

laboractr12

b

a

c

f

e
d

ζ1

ζ2

ζ3

Figure 4: The path diagram for the Union Sentiment Model

Parameter (i) (ii)

a -0.323 -0.323

b 0.278 0.279

c 0.166 0.166

d -0.332 -0.321

e -0.141 -0.142

f 0.508 0.507

Table 1: Estimates of Union sentiment paramters’s model

6 Conclusion and perspectives

The estimation stage is a crucial step in modelling. Consequently, it is better to make
the steps of the computation more accurate and avoid as much as possible approxima-
tions. In this paper, we tried to achieve this objective by demonstrating some properties
of the implied correlation matrix, which make the computation of the derivatives of the
fit function precise. We believe that these properties will lead to new perspective for
model estimation. It should be noted that the proposed properties are applicable only
to path models with standard assumption. The question that still remain is how could
behave the correlation matrix implied by path model with some violated hypothesis (e.g.
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a model with correlated disturbances)?
In addition, it should be mentioned that the present paper treats the estimation stage.

However, the classical indices of fit can be used to measure how a path model can produce
given data. In this regard, further work will focus on how the properties found in the
present can be exploited to propose new model fit measures. Moreover, further research
will also focus on the exploitation of the results found in this work to the composited-
based approach to SEM, as the Partial Least Squares Path Modeling (PLSPM) and its
more recent developments (Dolce et al., 2018). In particular, the FIM algorithm could
be used as a module (i.e., a sub-iterative algorithm) within the PLSPM algorithms, to
obtain new proporties for the PLSPM solutions.
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Appendix

Proof of lemma 1

Proof. We know from (11) that x = Ajk such that (j, k) ∈ {1 : q} × {1 : p+ j − 1}.

1. If j = 1 then R̂1:p,1:p = Φ is constant, i.e the bloc R̂1:p,1:p does not depend on x.

2. If j > 1. We know that x does not appears in all equations of (7) from 1 to j − 1,
thus the rows of A from 1 to j − 1 do not depends on x. As a consequence,

� (i) the 1st sub-rowA1,1:p ofA is constant, and (ii) the bloc R̂1:p,1:p is constant,

thus, the sub-row R̂p+1,1:p = A1,1:pR̂1:p,1:p is constant. And by transposition,

the sub-column R̂1:p,p+1 is constant. And since R̂p+1,p+1 = 1 is constant then

the bloc R̂1:p+1,1:p+1 is constant.

� (i) the 2nd sub-row A2,1:p+1 of A is constant, and (ii) from the previous

iteration, the bloc R̂1:p+1,1:p+1 is constant, thus, the sub-row R̂p+2,1:p+1 =

A2,1:p+1R̂1:p+1,1:p+1 is constant. And by transposition, the sub-column

R̂1:p+1,p+2 is constant. And since R̂p+2,p+2 = 1 is constant then the bloc

R̂1:p+2,1:p+2 is constant.

� we continue in the same way. (i) the (j − 1)th sub-row Aj−1,1:p+j−2 of A

is constant, and (ii) from the previous iteration, the bloc R̂1:p+j−2,1:p+j−2 is

constant, thus, the sub-row R̂p+j−1,1:p+j−2 = Aj−1,1:p+j−2R̂1:p+j−2,1:p+j−2 is

constant. And by transposition, the sub-column R̂1:p+j−2,p+j−1 is constant.

And since R̂p+j−1,p+j−1 = 1 is constant then the bloc R̂1:p+j−1,1:p+j−1 is
constant. See Figure 5.
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Aj−1,1:p+j−2

R̂1:p+j−1,1:p+j−1

3

R̂p+j−1,1:p+j−2

2

1

5

×

R̂1:p+j−2,1:p+j−2

=
Constant Constant

Constant

1

Constant

Transposition

Constant

R̂1:p+j−2,1:p+j−2

4

Figure 5: Illustration of lemma 1

Proof of Lemma 2

Proof. We know that (i) the jth sub-row Aj,1:p+j−1 of A is affine on x, and (ii) from

lemma 1, the bloc R̂1:p+j−1,1:p+j−1 is constant, thus, the sub-row

R̂p+j,1:p+j−1 = Aj,1:p+j−1R̂1:p+j−1,1:p+j−1 is affine on x. And by transposition, the

sub-column R̂1:p+j−1,p+j is affine. And since R̂p+j,p+j = 1 is constant then the bloc

R̂1:p+j,1:p+j is affine. See Figure 6.

Proof of Theorem 1

Proof.

� (i) the (j + 1)th sub-row Aj+1,1:p+j of A is constant, and (ii) from lemma 2, the

bloc R̂1:p+j,1:p+j is affine, thus, the sub-row R̂p+j+1,1:p+j = Aj+1,1:p+jR̂1:p+j,1:p+j

is affine. And by transposition, the sub-column R̂1:p+j,p+j+1 is affine. And since

R̂p+j+1,p+j+1 = 1 is constant then the bloc R̂1:p+j+1,1:p+j+1 is affine.

� (i) the (j + 2)th sub-row Aj+2,1:p+j+1 of A is constant, and (ii) from the previous

iteration, the bloc R̂1:p+j+1,1:p+j+1 is affine, thus, the sub-row :

R̂p+j+2,1:p+j+1 = Aj+2,1:p+j+1R̂1:p+j+1,1:p+j+1

is affine. And by transposition, the sub-column R̂1:p+j+1,p+j+2 is affine. And since

R̂p+j+2,p+j+2 = 1 is constant then the bloc R̂1:p+j+2,1:p+j+2 is affine.
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Figure 6: Illustration of lemma 2

� we continue in the same way. (i) the qth sub-row Aq,1:p+q−1 of A is constant, and

(ii) from the previous iteration, the bloc R̂1:p+q−1,1:p+q−1 is affine, thus, the sub-row

R̂p+q,1:p+q−1 = Aq,1:p+q−1R̂1:p+q−1,1:p+q−1 is affine on x. And by transposition, the

sub-column R̂1:p+q−1,p+q is affine. And since R̂p+q,p+q = 1 is constant then the

bloc R̂ = R̂1:p+q,1:p+q is affine. See Figure 7.

Proof of Theorem 2

Proof.

1. Using lemma 1, it comes

(
∂R̂

∂x

)
1:p+j−1,1:p+j−1

= 0.

2.

(
∂R̂

∂x

)
p+j,1:p+j−1

=

(
∂

∂x
Aj,1:p+j−1

)
R̂1:p+j−1,1:p+j−1 = (0, . . . 0, 1, 0, . . . , 0)R̂1:p+j−1,1:p+j−1

where 1 is in the kth position. As a consequence,
∂

∂x
R̂p+j,1:p+j−1 = R̂k,1:p+j−1.

3. Flows from the symmetry of
∂R̂

∂x
.

4.

(
∂R̂

∂x

)
p+j,p+j

=
∂

∂x
(1) = 0. See Figure 8 (a).
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4

Figure 7: Illustration of theorem 1

5. a)

(
∂R̂

∂x

)
p+j′ ,1:p+j′−1

= Aj′ ,1:p+j′−1

(
∂

∂x
R̂1:p+j′−1,1:p+j′−1

)
.

b) Flows from the symmetry of
∂R̂

∂x
.

c)

(
∂R̂

∂x

)
1:p+j′−1,1:p+j′−1

=
∂

∂x
(1) = 0. See Figure 8 (b).

Proof of Theorem 3

Proof. 1. Using lemma 2, the bloc R̂1:p+s−1,1:p+s−1 is constant on y.

Thus

(
∂2R̂

∂x∂y

)
1:p+s−1,1:p+s−1

= 0.

2. Using theorem 2,

(
∂2R̂

∂x∂y

)
p+s,1:p+s−1

=

(
∂

∂x

(
∂R̂

∂y

))
p+s,1:p+s−1

=

(
∂R̂

∂x

)
t,1:p+s−1

3. Flows from the symmetry of
∂2R̂

∂x∂y
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3

R̂k,1:p+j−1

2

1
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(
∂R̂

∂x
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1:p+j−1,1:p+j−1

= 0

Transposition(
∂R̂
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)
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Figure 8: Illustration of Algorithm 2

4.

(
∂2R̂

∂x∂y

)
p+s,p+s

=
∂2

∂x∂y
(1) = 0. See Figure 9 (a).

5. a) (
∂2R̂

∂x∂y

)
p+s′ ,1:p+s′−1

=
∂2

∂x∂y
(As′ ,1:p+s′−1R̂p+s′ ,1:p+s′−1)

=

(
∂2

∂x∂y
As′ ,1:p+s′−1

)
R̂p+s′ ,1:p+s′−1

+(
∂

∂x
As′ ,1:p+s′−1)(

∂

∂y
R̂p+s′ ,1:p+s′−1)

+

(
∂

∂y
As′ ,1:p+s′−1

)(
∂

∂x
R̂p+s′ ,1:p+s′−1

)
+As′ ,1:p+s′−1

(
∂2

∂x∂y
R̂p+s′ ,1:p+s′−1

)
We know that: s

′
> s > j thus As′ ,1:q+s′−1 does not depends on x and y.

Hence
∂

∂x
As′ ,1:q+s′−1 = 0,

∂

∂y
As′ ,1:q+s′−1 = 0 and

∂2

∂x∂y
As′ ,1:q+s′−1 = 0.

As a consequence,

(
∂2R̂

∂x∂y

)
p+s′ ,1:q+s′−1

= As′ ,1:q+s′−1

(
∂2R̂

∂x∂y

)
p+s′ ,1:q+s′−1

b) Flows from the symmetry of
∂2R̂

∂x∂y

c)

(
∂2R̂

∂x∂y

)
p+s′ ,p+s′

=
∂2

∂x∂y
(1) = 0. See Figure 9 (b).
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(
∂R̂

∂x
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∂2 R̂
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)
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Figure 9: Illustration of Algorithm 3

Proof of Corollary 1

Proof. Since x and y are associated with the same endogenous variables then s = j and
t ∈ {1 : p+ j − 1}.

1. If j < q.

a) i. Using theorem 3,

(
∂2R̂

∂x∂y

)
1:p+j−1,1:p+j−1

= 0

ii. Using theorem 3,

(
∂2R̂

∂x∂y

)
p+j,1:p+j−1

=

(
∂R̂

∂x

)
t,1:p+j−1

.

However since t ∈ {1 : p+ j − 1} then using theorem 2,

(
∂R̂

∂x

)
t,1:p+j−1

=

0.

iii. From the symmetry of
∂2R̂

∂x∂y
it comes

(
∂2R̂

∂x∂y

)
1:p+j−1,p+j

= 0.

iv.

(
∂2R̂

∂x∂y

)
p+j,p+j

=
∂2

∂x∂y
(1) = 0

As a consequence

(
∂2R̂

∂x∂y

)
1:p+j,1:p+j

= 0..
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b) Using for now the same process as in point 5 of theorem 3, we obtain(
∂2R̂

∂x∂y

)
1:p+j′ ,1:p+j′

= 0, ∀j′ ∈ {j + 1 : q}

2. If j = q then the proof stops at point a).
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