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The notion of interpoint depth is applied to spherical spaces by using an
appropriate angular distance function for data lying on the surface of the unit
hypersphere. The traditional multivariate methods, indeed, are not suitable
for the analysis of directional data and this holds true also for distance mea-
sures and related depth-based methods. The interpoint depth for directional
data possesses some nice properties and can be used for high dimensional
data analysis. This notion of depth is particularly useful to investigate lo-
cal features of distribution, such as multimodality, and can be exploited to
deal with many statistical problems. The behavior of the proposed depth
is investigated by means of simulated data. In addition, three interesting
applications are presented.

keywords: Data depth, Spherical distance, Spherical variables, Unifor-
mity.

1 Introduction

Directional data arise when observations are recorded as directions, that is unit vectors,
on the surface of the unit (q − 1)-dimensional hypersphere Sq−1 := {x ∈ Rq : x′x = 1},
for q ≥ 2. Such data can be found in many scientific fields such as geology, meteorology
and biology, just to name a few. Most applications are for q = 2 (circular data) or
q = 3 (spherical data), but applications in higher dimensions can also be found, e.g.
in gene-expression analysis (see Banerjee et al., 2005), text mining (see Buchta et al.,
2012), or image processing as well as pattern recognition (see Wilson et al., 2014).
For a comprehensive overview on such data see Mardia and Jupp (2009) and Ley and
Verdebout (2017).
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Statistical methods, to produce sensible results, must take into account the peculiar
features of directional data, i.e. the lack of a well-defined reference direction, the arbi-
trariness of the sense of rotation and, as it occurs for multivariate data in Rq, the absence
of a natural ordering. In this regard, the approach proposed by Liu and Singh (1992)
provides a coherent depth-based method to non-parametrically analyze directional data.

The concept of statistical data depth plays a very important role in non-parametric
statistics because it leads to a natural center-outward ordering of data (in Rq and Sq−1 as
well) and thus opens the possibility of using non-parametric methods in high dimensions
with no need of distributional assumptions.

The field of applications of depth functions is vast and still growing. Some are non-
parametric location and scatter estimation, outlier detection, classification and cluster-
ing. However, data depth are well suited for unimodal distribution and consequently
unable to capture any local feature such as multimodality. For this reason, Lok and
Lee (2011) introduced and investigated the notion of interpoint depth for multivariate
and functional data. Although this cannot be strictly considered a notion statistical
depth function in Rq as defined by Zuo and Serfling (2000), it can be considered a useful
alternative when the purpose is to get insights into the local features of a distribution
(especially for multimodality). However, it is worth underlying that depth functions do
not do the same job as density functions. Indeed, it is advisable to use them together,
rather than to replace them by a depth function which is sensitive to multimodality.
For instance, in univariate case, the density function might be bimodal and the median
might have low or even zero density, while the depth function is always maximized at
the symmetry center.

Despite some literature exists on the exploitation of depths based on interpoint dis-
tance (see e.g. Lok and Lee, 2011, Liu and Modarres, 2011, and Dong and Lee, 2014),
to the best of the author’s knowledge, the application to hyperspherical data received
no attention even if it can be really meaningful in such framework as well.

Hence, the definition of interpoint depth of Lok and Lee (2011) is applied to directional
data by using a suitable angular distance function in Section 2. Some properties are also
established. The remainder of the paper is organized as follows. The empirical behavior
of the proposed depth is investigated in Section 3. Section 4 presents some possible
applications of such depth for the analysis of directional data. Section 5 reports some
final remarks.

2 Spherical interpoint distance depth

In this section the concept of interpoint depth of Lok and Lee (2011) is applied to direc-
tional data. This notion of depth appears to be really useful to capture multimodality
in Rq and, to the best of the author’s knowledge, its directional version has not been
investigated yet in the literature.

Let X1, X2, . . . , Xn be a spherical random sample independently distributed as a dis-
tribution F on Sq−1. The main idea is considering a set of m < n data points scattered
in a “neighborhood” of a given point x ∈ Sq−1, that is the open set of data points that
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are closer to x according to an appropriate measurable, non-negative and bounded an-
gular distance function dsph (·, ·) (the triangle inequality property is not needed). Then,
the distance matrix between data points can be used to infer the local features of the
distribution. The mean distance from x to its neighborhood is then defined in the usual
way by integration.

Definition 2.1. (Interpoint spherical distance depth) For any point x ∈ Sq−1,
let η (t|x, F ) = PF (dsph (x,X) ≤ t) for a random variable X ∼ F . The interpoint
distance has distribution function η̄ (t|F ) = PF (dsph (X,Y ) ≤ t) = EF [η (t|X,F )] for
independent X and Y distributed as F . Then the interpoint spherical distance depth
IDdsph is defined as

IDdsph (x, F, δ) :=

[
1 + η−1 (δ|x, F )

η̄−1 (1− ξ|F )

]−1
,

where the parameters δ and ξ ∈ (0, 1) are fixed, and η̄−1 (1− ξ|F ) is a normalization
factor so that IDdsph ∈ [0, 1] with with η−1 denotes the inverse of η and η̄−1 the inverse
of η̄.

This notion of depth measures how close a point x is to the center(s) of a distribution
F on Sq−1 according to a neighborhood containing probability at least equal to δ. De-
creasing δ leads to an increase of the sensitivity of the depth function to local features
of the distribution. A reasonable choice is to take a value of δ that is smaller than 0.5
and ξ very close to zero. The factor η̄−1 (1− ξ|F ) is aimed at providing a range for the
interpoint depth in [0, 1] and at the same time makes it scale-invariant. In principle, it
can be any constant value (it does not not affect the ranking of points provided by the
depth function).

The empirical version is given by

IDdsph (x, Fn, δ) =

 1 + inf
{
t|n−1

∑n
i=1 I (dsph (x,Xi) ≤ t) ≥ δ

}
inf
{
t|
(
n
2

)−1∑
1≤i1<i2≤n I (dsph (Xi1 , Xi2) ≤ t) ≥ 1− ξ

}
−1 .

One important advantage of such depth is its computational ease since it is not based
on geometrical structures such as hemispheres or spherical simplices. Obviously one
important issue concerns the choice of the spherical distance to be adopted. The most
appropriate and natural choice appears to be the arc distance, darc (·, ·), which is defined
as

darc (x, y) = arccos
(
x
′
y
)
, (1)

where x and y are two points on the surface of the (q − 1)-dimensional sphere Sq−1, and
x
′
y is the usual inner product of two points. This is also known as great-circle distance

and measures the length of the shortest arc joining two points on the surface of a sphere,
and ranges between 0 and π. Using the distance measure defined in (1) makes it possible
to define the spherical median µ̃ (Fisher, 1985) of a random sample X1, X2, . . . , Xn as
follows
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µ̃ = arg min
y∈Sq−1

∑n
i=1 arccos

(
X
′
iy
)
.

Liu and Singh (1992) proposed the arc distance depth of a point x ∈ Sq−1 which is
defined as π minus the expected arc distance of x to a distribution on Sq−1. However, this
notion of depth for spherical data is not suitable for analyzing multimodal distributions
and it remains constant in the case of bimodal antipodally symmetric distributions,
that is when the density is such that f (−x) = f (x) (see Liu and Singh, 1992 for more
details). Hence, the adoption of the arc distance measure gives rise to the definition of
the interpoint arc distance depth IDdarc (x, F, δ) which possesses some interesting and
useful properties analyzed in the next section.

2.1 Properties of IDdarc

The interpoint arc distance depth is rotational invariant, that is for a q × q orthogonal
matrix R it holds IDdarc (Rx,FR, δ) = IDdarc (x, F, δ), where FR denotes the image of
F by the transformation x 7→ Rx. This property, which is of great importance in the
spherical setting, is inherited by the arc distance function which is rotational invariant
by definition. In addition, note that for δ = 0.5 (and ξ = 1), the IDdarc deepest point
is the directional least median of squares (DLMS), i.e the midpoint of the shortest arc
which contains in its interior and boundary at least half of the data.

Assume the distribution F on Sq−1 admits density f which is bounded, positive and
continuously differentiable. Let x0 be a point on ∈ Sq−1 and
B(x0,r0) =

{
x ∈ Sq−1 : dsph (x0, y) ≤ r0

}
be the geodesic ball centered at x0 with radius

r0.

Proposition 2.1. The interpoint arc distance depth has a local minimum or maximum
at point x0. Let which x0 ∈ Sq−1 and r0 > 0 satisfy:∫

B(x0,r0)
f (z) dz = δ and

∫
B(x0,r0)

∇f (z) dz = 0.

according to whether
∫
B(x0,r0)

∇2f (z) dz is negative or positive definite, respectively.

Proposition 2.1 ensures that IDdarc attains its maximum or minimum at point x0
within the region with probability density equal to δ. The points at extremes of the
region have the same density.

Proof. The unit (q − 1)-dimensional sphere is a subset of the q-dimensional Euclidean
space, hence the proof is the same of Proposition 1 in Dong and Lee (2014) and thus
omitted.

Proposition 2.2. Let F be a (circularly contoured) non uniform rotationally symmetric
distribution on Sq−1 with unique mode at µ0 that admits density function of the form
Cqf (κx′µ0), where Cq is a normalizing constant, kappa the dispersion parameter and
f : [−1, 1]→ R+ a monotone strictly decreasing function. Assume that dsph is based on
a monotone strictly decreasing function d : [−1; 1]→ R+. Then IDdsph is maximized at
µ0, from which it decreases monotonically along any ray.
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Proof. From the unimodal rotationally symmetry it holds that for any geodesic path
ν → µν from µ0 to µ1 = −µ0 (i.e. the antipodal point to µ0), keeping the parameter
κ fixed, IDdsph depends on the angle between x′i and µ0 for each i = 1, . . . , n. The

monotonicity assumption on f implies that, for any t ∈ [−1; 1], P
[
x
′
iµ0 ≥ t

]
is monotone

decreasing. Then, the proof is the same of Proposition 2 in Dong and Lee (2014) and
thus omitted.

3 Empirical behavior: illustrations

The behavior of the interpoint spherical depth function based on the arc distance function
is investigated by means of simulated data. For this purpose data were generated from
the von Mises-Fisher (vMF ) distribution, that is the directional analog of the Gaussian
distribution, whose density function is given by

f (x, µ, κ) =
κq/2−1

2πq/2Iq/2−1 (κ)
exp

{
κ cos

(
x′µ
)}
,

where Iv (κ) is the modified Bessel function of first kind and order v. The density is
parametrized by the mean direction µ and the concentration parameter κ, that measures
how strongly data are concentrated around the mean direction µ (larger values indicate
stronger concentration of the unit vectors around µ).

For the sake of illustrations only the circular case (q = 2) is considered. Specifically,
data were simulated under an antipodally symmetric distribution obtained by a mixture
of two von Mises-Fisher distributions F1 = 1

2vMF (π/2, 6) + 1
2vMF (3/2π, 6), and a

bimodal directional distributions F2 = 1
2vMF (π/4, 6) + 1

2vMF (3/4π, 6). Finally, a
distribution which consists of a mixture of two uniform distributions such that F3 =
1
2U [π/3, 2/3π] + 1

2U [5/6π, 7/6π] is also considered.

Plots of the IDdarc shape under these settings are depicted in Figure 1 along with
the density of the underlying distribution, for δ ∈ {0.15, 0.30} and ξ = 0.1. In order
to make the visualizations easier to read, some noise was added to avoid depth curves’
over-plotting. As one can see, the multimodality of the distributions is clearly reflected
by IDdarc for δ = 0.15 in each of the considered settings. In the case of antipodally
symmetric and bimodal distributions, it exhibits two centers in correspondence of the
two modes and the constancy in the case of uniformity. It must be noted that when δ
is equal to 0.30, IDdarc becomes more flat, and peaks are less clearly identified. This
underlines the importance of the choice of δ which should be made at hand according to
the specific application situation since there is no optimal rule in general.

In addition, the generalized von Mises (GvM) family of Gatto and Jammalamadaka
(2007) was also considered. Such extension offers an alternative (and flexible) means of
modeling multimodal or asymmetric circular data. The GvM density is given by

f (x, µ1, µ2, κ1, κ2) =
1

2πG0 (δ, κ1, κ2)
exp {κ1 cos (x− µ1) + κ2 cos 2 (x− µ2)} ,
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Figure 1. Plot of the interpoint spherical depth functions based on the arc length dis-
tance for a bimodal distribution (upper-left panel), an antipodally symmetric
distribution (upper-right panel) and a mixture of uniform distributions (lower
panel). Calculation was performed for δ ∈ {0.15, 0.30} and ξ = 0.1.
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where G0 denotes the normalizing constant given by

G0 (δ, κ1, κ2) =
1

2π

∫ 2π

0
exp {κ1 cosx+ κ2 cos 2 (x+ δ)} dx.

Specifically, two cases were considered by setting the parameters as follows:

1. µ1 = 0, µ2 = 0.5, κ1 = 1, κ2 = 0.6,

2. µ1 = 0, µ2 = 1, κ1 = 0.8, κ2 = 3.

The IDdarc under such settings are depicted in Figure 2 along with the density of
the underlying distribution, for δ ∈ {0.15, 0.30} and ξ = 0.1. In order to make the
visualizations easier to read, some noise was added to avoid depth curves’ over-plotting.
As one can see, here again the IDdarc is able to reflect the shape of the considered
distributions, especially for δ = 0.15.
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Figure 2. Plot of the interpoint spherical depth functions based on the arc length dis-
tance for a generalized von Mises with with parameters µ1 = 0, µ2 = 0.5,
κ1 = 1, κ2 = 0.6 (left panel), and a generalized von Mises with parameters
µ1 = 0, µ2 = 1, κ1 = 0.8, κ2 = 3 (right panel). Calculation was performed for
δ ∈ {0.15, 0.30} and ξ = 0.1.

3.1 Real data example

The following example shows the usefulness of the interpoint depth for directional data
in the analysis of real data. The considered data set concerns wind directions in the
Atlantic coast of Galicia (NW Spain) already analyzed by Oliveira et al. (2014) and
freely downloadable from the Spanish Portuary Authority (http://www.puertos.es).
Data contains hourly observations of wind direction in winter season (from November to
February) from 2003 until 2012. A subset of size of n = 200, by taking the observations
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with a lag period of 95 hours, was considered here. As one can see in Figure 3, data
suggest some degree of multimodality and the IDarc for δ = 0.15 appears to correctly
identify the main peaks of the distribution around 1 and some other minor groups
between 3 and 2π. Instead, when δ is set to 0.30 and ξ = 0.1, the IDarc is more flat,
and peaks are less clearly identified. .
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Figure 3. Plot of the interpoint spherical depth functions based on the arc length dis-
tance for the wind directions data in the Atlantic coast of Galicia (NW Spain).
Calculation was performed for δ ∈ {0.15, 0.30} and ξ = 0.1. In order to make
the visualizations easier to read, some noise was added to avoid depth curves’
over-plotting.

4 Applications

In this section three applications, related to the location estimation, graph-based testing
for equal distributions and spherical uniformity testing, are presented.

4.1 Location estimation

Given a notion of data depth, there is a natural choice of location parameter for the un-
derlying distribution, namely the deepest point which is considered as a robust location
estimator. A simulation study was performed to investigate the efficiency and robustness
properties of the deepest points of the interpoint arc distance depth. For each combina-
tion of dimension q ∈ {3, 5, 10}, concentration parameter κ ∈ {3, 5, 10} and sample size
n ∈ {50, 100, 250, 500}, R = 1000 independent random samples of size n from the von
Mises-Fisher distribution (vMF ) with location parameter x∗ were generated. For each
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sample, an estimate x̂∗i of the location parameter x∗ is obtained. The empirical squared
error for each replication is computed as follows:

SE (i) =
∥∥∥x̂∗i − x∗∥∥∥2 = 2

(
1− x̂∗′i x

∗
)
.

The parameter δ and ξ were set equal to 0.5 and 0.1, respectively. Table 1 reports the
resulting empirical mean squared errors which were computed as follows

EMSE =
1

R

R∑
i=1

SE (i) .

As expected, the efficiency of the IDdarc-estimator at the von Mises-Fisher distribution
generally increases as the concentration of the data increases along with larger sample
size n. This is true for all the considered dimensions even if it is worth noting that the
efficiency is higher in the three dimensional space.

n

50 100 250 500

q=3

κ = 3 0.866 0.688 0.348 0.524

κ = 5 0.765 0.364 0.347 0.268

κ = 10 0.239 0.242 0.125 0.093

q=5

κ = 3 1.107 1.00 1.084 0.989

κ = 5 0.726 0.875 0.595 0.782

κ = 10 0.456 0.451 0.281 0.354

q=10

κ = 3 1.339 1.333 1.082 1.324

κ = 5 1.105 0.983 0.936 0.918

κ = 10 0.642 0.731 0.663 0.658

Table 1: Empirical mean squared error of IDdarc deepest point as location estimator from
R = 1000 independent random samples for dimension q ∈ {3, 5, 10}, sample size
n ∈ {50, 100, 250, 500} and concentration parameter κ ∈ {3, 5, 10} under von
Mises-Fisher distribution.
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Moving to the investigation of the robustness, the simulations were run considering
the contaminated von Mises-Fisher model vMFε = (1− ε) vMF (µ, κ) + ε∆xc , where
∆xc denotes the point mass contamination at the point xc, with ε = 10% and 20% in
dimension d = 3. Again, R = 1000 samples for different sample sizes n ∈ {100, 250, 500}
and concentration parameter κ ∈ {5, 10} for dimension q = 3 were generated from
vMFε. Because of the boundness of the spherical space, where contamination cannot be
put at infinity, two different types of contamination were chosen. Specifically, antipodal
and orthogonal to µ point mass contaminations were considered. In each sample, the
IDdarc-deepest point was computed. The resulting empirical mean squared errors are
provided in Table 2. The results show that the estimator associated with IDdarc enjoys
good robustness properties for both types of contamination. However, the orthogonal
contamination seems to have less impact on the IDdarc-based location estimator.

Contamination

Antipodal Orthogonal

ε = 10% ε = 20% ε = 10% ε = 20%

n κ = 5 κ = 10 κ = 5 κ = 10 κ = 5 κ = 10 κ = 5 κ = 10

100 0.615 0.203 0.788 0.412 0.353 0.171 0.364 0.181

250 0.470 0.196 0.740 0.353 0.337 0.150 0.358 0.133

500 0.396 0.208 0.625 0.241 0.259 0.125 0.325 0.110

Table 2: The empirical squared errors of IDdarc-estimator of location obtained from
R = 1000 independent random samples of size n ∈ {100, 250, 500} from the
contaminated distribution vMFε = (1− ε) vMF (µ, κ) + ε∆xc , where ∆xc de-
notes the point mass contamination (antipodal and orthogonal) at the point xc,
with ε = 10% and 20%. In each case, the corresponding empirical mean square
error is provided.

4.2 Depth-based graphical tool to test for equal distributions on
spheres

Here, the proposal is to adopt a simple graphical tool by exploiting the properties of
IDdarc , which is able to detect multimodality, and the so called depth vs. depth (DD)
plot introduced by Liu et al. (1999). The DD-plot was introduced to graphically compare
two multivariate distributions or samples through data depth and then further investi-
gated by Li and Liu (2004) and also by Chavan and Shirke (2016). This is always a
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two-dimensional plot regardless of the dimensions of the data. Distributional differences
such as location, scale or skewness lead to different graphical patterns in the DD-space.
This tool was also adopted to perform supervised depth-based classification of multivari-
ate data in Li et al. (2012) and later extended to directional objects by Pandolfo et al.
(2018) and Pandolfo and Porzio (2018). Specifically, the DD-plot displays the values
of the depth function of the combined sample under the two corresponding empirical
distributions. If these are identical, then the plot is a diagonal line from (0, 0) to (1, 1)
in Rd. This works also for spherical distributions if an appropriate rotational invariant
data depth for directional data is adopted.

Let F and G be two distributions on Sq−1 and AD (·, ·) be a rotational invariant
depth for directional data. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} be two random
sample drawn from F and G, respectively. Then, the empirical angular depth of each
point z ∈ X ∪ Y with respect to F and G are computed

AD (z, Fm) and AD (z,Gn) ,

which are used as coordinates to plot data points on the DD-space. If F = G, then
AD (z, Fm) = AD (z,Gn) for all points.

To illustrate, samples from F and G with size n = 1000 for each one were generated,
and IDdarc was adopted by setting δ = 0.3 and ξ = 0.1. The upper-left panel of Figure
4 displays the DD-plot of two samples drawn from a von Mises-Fisher distributions in
dimension q = 3 with mean direction (0, 0, 1)′ and concentration parameter κ = 3. As
one can see the data points are concentrated around the diagonal line. In the upper-
right panel of Figure 4 the pattern deviates from the diagonal line because samples
are drawn from two von Mises-Fisher distribution with different location and equal
concentration. More in detail, the data cloud is symmetrically displayed around the
diagonal line. Finally, the lower panel of Figure 4 displays the DD-plot of two samples
drawn from two von Mises-Fisher distributions which differ in location and concentration
(dispersion). Here, the data points’ shape is not symmetric about the diagonal line and
the observations seem to move towards the x-axis.

4.3 Test of uniformity on spheres

Testing uniformity of data on spheres is a fundamental hypothesis in directional statis-
tics. The most known test of uniformity for directional data the are Rayleigh test (which
rejects uniformity if the resultant of a sample is too large) and the Watson test (which is
an adaptation for the circle of the Cramer-von Mises test). Numerous other uniformity
tests have been proposed.

One alternative non-parametric approach is to exploit the properties of data depth for
directional data when uniform distributions on Sq−1 are considered. Specifically, in such
case, the deepest point may not be unique and any rotational invariant depth function
based on distances, such as IDdarc , turns out to be constant over Sq−1. This is a relevant
difference between depths for directional data and depths for data in Rq.

Theorem 4.1. (Constancy of IDarc on Sq−1) Let F be a continuous uniform distribu-
tion on Sq−1 with density f (·), then ID (x, F ) = c with δ = 0.5 and ξ = 1, for a positive
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Figure 4. DD-plots based on IDdarc of two samples drawn from identical von Mises-
Fisher distributions (upper-left panel), from von Mises-Fisher distribution
with different location and equal concentration (upper-right panel), and from
two von Mises-Fisher distributions with different location and concentration
(lower panel). In each case n = 1000 for each generated sample and IDdarc

was adopted with δ = 0.3 and ξ = 0.1.
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constant c and all x ∈ Sq−1. Moreover, the constant c is then equal to π
2+π .

Proof. The proof follows from:

i) in the case of uniform distribution F on Sq−1 the 50th quantile of the interpoint
arc distance from x to the sample Xi is equal to π

2 irrespective of the dimension q,
and

ii) the expected arc interpoint distance between uniformly distributed vectors on Sq−1

is equal to π
2 irrespective of the dimension d.

The result follows from simple algebraic calculations.

Then, a statistical depth-based test uniformity of n i.i.d. random vectors X =
{X1, . . . , Xn} from a distribution F on the sphere can be defined and the following
test statistic can be used:

Tn = sup
x
|IDdarc (x, Fn)− c| , (2)

where the constant c is independent of the dimension q and is equal to 2π
2+π (c ≈ 0.61).

Large values of Tn indicate that the distribution is unlikely to be uniform on Sq−1. The
implementation of this test would require the knowledge of the exact distribution of the
test statistic. Indeed, for testing the null hypothesis of spherical uniformity, the null
hypothesis is rejected when Tn > pn, where pn is a percentile (according to the test
level) of the distribution of Tn under the null hypothesis.

An approximation of the distribution of Tn under the null hypothesis can be obtained

through the bootstrap resampling method. Hence, for R bootstrap replicates T
(i)
n , i ∈

{1, . . . , R} are obtained. Then, the critical values are obtained by computing the order-α
quantile of the bootstrap distribution of Tn. A similar approach was followed by Dutta
et al. (2011) and Paindaveine and Van Bever (2013) to evaluate data depth-based test
of symmetry for data in Rq.

A simulation study was conducted in order to investigate the finite-sample behavior
of this test. The data were generated under the null hypothesis of uniformity on the
(q − 1)-dimensional unit sphere. Conversely, under the alternative hypothesis, data
were generated from a von Mises-Fisher distribution with location µ = (1, 0, 0)′ and
concentration κ = 1.5. Specifically, the following setups were considered:

Setup 1: X ∼ U (θ, φ), where θ ∼ Unif(0, 2π) and φ ∼ Unif(0, π);

Setup 2: X ∼ vMF
(
(1, 0, 0)′ , 1.5

)
.

Simulations were run by generating samples of size n ∈ {100, 250, 500}. For each com-
bination, the observed significance level was computed 1000 times, according to the
resampling procedure above described from R = 1000 bootstrap samples. Table 3 re-
ports the proportion of cases where the null hypothesis was rejected for the nominal
value of α ∈ {0.01, 0.05, 0.10}. This table clearly shows good level as well as power
properties of the proposed test procedure.
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Setup 1 Setup 2

Nominal level (α) → 1% 5% 10% 1% 5% 10%

n = 100 0.095 0.055 0.014 0.997 0.996 0.989

n = 250 0.099 0.049 0.014 1.000 1.000 1.000

n = 500 0.105 0.054 0.012 1.000 1.000 1.000

Table 3: Proportion of cases where the null hypothesis of spherical uniformity was re-
jected for three nominal values of α, namely, 0.01, 0.05 and 0.10 under unimodal
symmetric alternative.

Some tests of spherical uniformity fail when the alternative hypothesis concerns two
antipodal mean directions (i.e. for antipodally symmetric distributions). This is, for
instance, the case of the well known Rayleigh test of (hyper)spherical uniformity. The
IDarc can be really useful and satisfactorily responding when such case needs to be
considered. In order to adopt the test statistic defined in (2) and to allow IDarc to
better capture the antipodally symmetric of the distribution, it is advisable to choose a
value of the tuning parameter δ ≈ 0.25. However, in this case the value of the constant
c varies according to the dimension of the data. Indeed, as shown in Cai et al. (2013),
the distribution of the density of the arc distance between pairs of vectors uniformly
distributed on Sq−1 is unimodal with mode around π/2, and as the dimension increases
the concentration of angles around π/2 gets stronger and stronger. Hence, the density
varies according to the dimension q:

fq (θ) =
1√
π

Γ
( q
2

)
Γ
(
q−1
2

) (cos
θ

q − 2

)q−2
, θ ∈ [0, π] , (3)

where Γ denotes the gamma function.
Now, it is simple to compute the inverse function of (3) and the get any th-order

quantile of the arc distance distribution of uniformly distributed vectors on Sq−1 for
a fixed dimension q. Below some numerical examples are presented to illustrate its
applications in the case of antipodal symmetry as alternative hypothesis in dimension
q = 3.

Hence, if X = {X1, . . . , Xn} is a random sample of vectors uniformly distributed on
S2, then ID (x, F ) = c with δ = 0.25 and ξ = 1, for a positive constant c and all x ∈ S2.
Moreover, c = 3π

6+2π (c ≈ 0.76).
To evaluate how the proposed test performs the antipodally symmetric Bingham dis-

tribution (Bing(A)) introduced by Bingham (1974) is considered. Its density function is
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given by

f (x,A) =
1

cBing (A)
exp

{
−x′Ax

}
, (4)

where A = MZM ′ denotes a q×q matrix with M ∈ Rq×q an orthogonal matrix (MM ′ =
M ′M = Iq×q) and Z is a diagonal concentration matrix. The normalizing constant
cBing (A) is expressed as a hyper-geometric function of A. The density is symmetric
(f (x) = f (−x)) and the exponent is quadratic in x.

The following setups with increasing concentration (actually a low concentration value
leads to a uniform distribution) around the two modes were considered:

Setup 3: X ∼Bing(A), with A = diag (1, 0,−1)

Setup 4: X ∼Bing(A), with A = diag (2, 0,−2).

Again, R = 1000 bootstrap samples of size n ∈ {100, 250, 500} were generated, and the
null hypothesis was rejected for three nominal values of α, namely, 0.01, 0.05 and 0.10
(with δ set equal to 0.25). The rejection frequencies are reported in Table 4. In the first
case, with data less concentration around the two modes, the proposed test performs
well when for n = 250 and 500 (rejection frequencies are slightly different), while for
n = 100 it shows worse results and thus it should be used with more caution.

Setup 3 Setup 4

Nominal level (α) → 1% 5% 10% 1% 5% 10%

n = 100 0.849 0.772 0.550 0.997 0.997 0.997

n = 250 0.994 0.993 0.976 1.000 1.000 1.000

n = 500 0.996 0.996 0.996 1.000 1.000 1.000

Table 4: Proportion of cases, out of 1000, where the null hypothesis of spherical unifor-
mity was rejected for three nominal values of α, namely, 0.01, 0.05 and 0.10
under antipodally symmetric alternative.

5 Concluding remarks

In this article, a notion interpoint data depth function for directional data has been pro-
posed and investigated. This is based on the arc distance, and hence called “interpoint
arc distance depth” (IDarc), and turns out to be useful in case of multimodality on
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spherical spaces and thus really useful for analyzing local features of data on the hyper-
spheres, where standard notions of depth function are not informative. Some theoretical
properties are established and several interesting applications in location estimation,
graphical test of equal distributions and test of spherical uniformity are shown through
several simulated examples. Results show the efficiency and robustness of IDarc, and the
powerful of the statistics based on it to test spherical uniformity. In addition, this notion
of data depth has the important advantage to be not computational expensive. Further
research could concern the use of other alternative distance measure for directional data
and additional applications where depths based on interpoint distance for directional
data may be of some interest.
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