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In this study, we propose a robust confidence interval which is adjustment
of the Student-t confidence interval based on the trimmed mean and the
modified trimmed standard deviation for the mean of skewed populations.
The proposed confidence interval is compared with existing confidence in-
tervals in terms of coverage probability and average width. The simulation
study showed that the proposed robust confidence interval performed better
than the others. Also, proposed confidence interval has narrowest average
width in all sample sizes. In addition to the simulation, two real data sets
were analyzed to illustrate the findings of the simulation study and the sim-
ulation results were verified. Consequently, we recommend the confidence
interval based on trimmed mean and modified trimmed standard deviation
to estimate the mean of positively skewed populations.

keywords: average width, confidence interval, coverage probability, modi-
fied trimmed standard deviation, trimmed mean.

1 Introduction

The confidence intervals (CIs) provide much more information than a point estimate
about the population characteristic. The problem of dealing with skewed distributions
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 165

and outliers to estimate population parameter has recently attracted the attention of
researchers. CIs are often used for this purpose. There are various methods in the
literature in which CIs are obtained for the population mean. The most useful CIs are
the classical normal CI and the Student-t CI. The sample size has to be more than
or equal to 30 (n ≥ 30) for the classical CI. In practice, it is often possible to work
with smaller sample sizes. In such cases, Student- t CI can be preferred instead of the
classical CI, but it requires an assumption of normality. In such cases, it is essential to
use robust estimators which are less affected by outliers or small departures from the
model assumptions (Sindhumol et al., 2016).

Johnson (1978) proposed a modification of the Student-t CI for skewed distributions.
Since Johnson (1978), many researchers obtained CIs for population mean (Kleijnen et
al., 1986; Meeden, 1999; Willink, 2005; Kibria, 2006; Shi and Kibria, 2007; AbuShawiesh
et al., 2018). Hui et al. (2005) studied for the regression estimation of the population
mean. Wang (2008) derived the Bayesian credible interval and likelihood ratio interval
for the mean of a normal distribution with general restricted parameter space. Withers
and Nadarajah (2011) proposed the CI for the length of a vector mean.

In this study, we propose a robust CI which is simple adjustment of the Student-t CI,
namely, modified trimmed standard deviation t CI (MST -t CI). The proposed robust CI
uses the modification to trimmed standard deviation given by Sindhumol et al. (2016).
The performance of the proposed robust method to estimate the population mean (µ)
is compared with the existing CIs via a Monte-Carlo simulation study. The coverage
probability (CP) and the average width (AW) are considered as a comparison criterion.
The CPs were determined as the proportion of cases to the number of replications where
the mean was between the lower and upper limits. The AWs were obtained by dividing
the total differences of the lower and upper limits found for each replication to the
number of replications. The smaller AW indicates better CI when CPs are the same.

The rest of this paper is organized as follows: The classical CIs for the population
mean are discussed in Section 2. The robust estimators and sample standard deviation
is given in Section 3. The trimmed mean and modified trimmed standard deviation are
presented in Section 4. In Section 5, the various modifications of the Student-t CI are
detailed. The proposed robust CI is given in Section 6. A Monte-Carlo simulation study
is conducted in Section 7. As an application, some real life data are analyzed in Section
8. Section 9 concludes and summarizes the findings and outcomes of the paper.

2 The classical Student-t confidence intervals for the
population mean

The classical method to construct the (1 – α) 100 % CI for the population mean
is still the most used approach because it is a well understood, simple, and widely
used to construct such CI. Let X1, X2, . . . , Xn be a random sample of size n from
a normal distribution with population mean (µ) and population variance (σ2), that
is,X1, X2, ... , Xn ∼ N(µ , σ2). Then, the (1 – α) 100% CI for the population mean
(µ), can be constructed as follows (Student, 1908):
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C.I. = X̄ ± Z1−α
2

σ√
n

(1)

where σ is the known population standard deviation and Z1−α/2 is the upper (α/2)th
percentile of the standard normal distribution. In real life, however, it is unlikely that
the population standard deviation (σ) is known, and then an estimate of σ is used.
When the sample size n is large (n ≥ 30), we can use the sample standard deviation
instead of σ and apply the normal distribution to construct the (1 – α) 100% CI for the
population mean (µ) as follows:

C.I. = X̄ ± Z1−α
2

S√
n

(2)

whereS =
√

(n− 1)−1
∑n

i=1(Xi − X̄)2, X̄ = n−1
∑n

i=1Xiis the sample mean and

Z1−α/2 is the upper (α/2)th percentile of the standard normal distribution. On the
other hand, for the small sample sizen (n < 30) and unknown population standard
deviation (σ), the (1 – α) 100% CI for the population mean (µ) due to Student (1908)
and known as the Student-t CI can be constructed as follows:

C.I. = X̄ ± t(α2 , n− 1)
S√
n

(3)

where t(α/2 , n−1) is the upper α/2 percentage point of the student-t distribution with(n−
1) degrees of freedom, i.e. P (t > t(α , n−1)) = α. Since the classical Student-t CI
depends on the normality assumption, it may not be the best CI for skewed distributions.
It is well known that if the data are from a normal distribution or the sample size n is large
(n ≥ 30), the CP will be exact or close to 1-α, but when the population distribution
is skewed, the Student-t CI has a poor CP. According to the Boos and Hughes-Oliver
(2000), the classical Student-t CI is not very robust under extreme deviations from
normality.

3 Robust estimators and sample standard deviation

A robust estimator is an estimator that is insensitive to changes in the underlying dis-
tribution and also resistant against the presence of outliers. Also, an estimator is said
to be robust if it is fully efficient or nearly so for an assumed distribution but maintains
high efficiency for plausible alternatives (Tiku and Akkaya, 2004 ).

The sample standard deviation is considered meaningful and efficient measure of vari-
ability only for a normal distribution (AbuShawiesh, 2008). As the calculation of sample
standard deviation based on all data points in a sample, then this makes it non-robust to
slight deviations from normality and can be easily influenced by the presence of outliers.
Therefore, the CIs defined in Equations (1), (2) and (3) would not be reliable and may
give erroneous and misleading results. Thereby, it is necessary to take into account the
non-normality to prevent the loss of resources, money and time in order that the prac-
titioners made an accurate result. In case of non-normal or skewed distributions, there
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are other measures that performed better than the sample standard deviation because of
their robustness properties. Among those robust scale measures is the trimmed standard
deviation (ST ).

4 The trimmed mean and modified trimmed standard
deviation

One problem with the mean is that the tails of a distribution can dominate its value.
In order to reduce the effect of tails of a distribution, it can be simply removed. The
trimmed mean and its standard error are more appealing because of its computational
simplicity. Apart from that, these measures are less affected by departures from normal-
ity than the usual mean and standard deviation, as observations in the tail are removed.
Standard error of trimmed mean is not sufficient to estimate distribution dispersion be-
cause of trimming samples (Dixon and Yuen, 1974). Standard estimator of variance of
trimmed mean is obtained through winsorization (Wilcox, 2012 ). Huber (1981) showed
a jackknife estimator for its variance. Caperaa and Rivest (2000) derived an exact for-
mula for variance of the trimmed mean as a function of order statistics, when trimming
percentage is small. Johnson et al. (1986)compared Bayesian estimator and trimmed
means. As trimming makes a reduction in dispersion, estimating population dispersion
based standard error of trimmed mean will not give a clear picture of actual dispersion.
Variance of trimmed mean which is a function of order statistics or its variance modifi-
cation based on winsorization, are not helping in this regard. Hence trimmed standard
deviation has a limited exposure to applications in literature.

Sindhumol et al. (2016) made a modification to improve the variance of the trimmed
mean by multiplying it with a tuning constant to reduce the effect of loss due to trimming
so that its robust qualities are not much disturbed. In this paper, a robust CI for the
population mean of skewed populations, that is simple adjustment of the Student-t CI, is
developed based on this modified measure, namely, modified trimmed standard deviation
t CI (MST - t CI).

LetX(1) ≤ X(2) ≤ ... ≤ X(n) denote an order statistics sample of size n, from a
population having symmetric distribution. The r -times symmetrically trimmed sample
is obtained by dropping both r -lowest and r -highest values. Here r = [αn] is the greatest
integer and trimming is done for α% (0 ≤ α ≤ 0.5) of n. The trimmed mean (X̄T )
can be calculated as follows:

X̄T =
1

n− 2r

n−r∑
i=r+1

X(i) (4)

and the sample standard deviation of observations from the trimmed mean(X̄T ) is de-
noted byST which can be calculated as follows:

ST =

√√√√ 1

n− 2r − 1

n−r∑
i=r+1

(X(i) − X̄T )2 (5)
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and by assuming symmetric trimming and normal distribution, that is, X1, X2, ... , Xn ∼
N(µ , σ2), we get the following modified estimator for the population standard deviation
(Sindhumol et al., 2016):

P

{∣∣∣∣X − µσ

∣∣∣∣ ≤ ST
σ

}
= 1− 2α (6)

Φ

(
−ST
σ

)
= α = 1− Φ

(
ST
σ

)
(7)

σ̂ =

[
1

φ−1(1− α)

]
ST (8)

σ̂T = S∗
T = 1.4826ST (9)

where Φ is the distribution function of standard normal distribution.

5 The various modifications of the student-t confidence
interval

In this section, let X1, X2, . . . , Xn be a random sample of small size n (n < 30) from a
non-normal or skewed distribution with population mean (µ) and unknown population
standard deviation (σ). We will consider various modifications of the Student-t CI that
are the most popular CIs in literature.

5.1 The Johnson’s-t confidence interval

Johnson (1978) proposed the following CI for the population mean (µ) of a skewed
distribution:

C.I. = (X̄ +
µ̂3

6S2n
) ± t(α2 , n− 1)

S√
n

(10)

where µ̂3 = n
(n−1)(n−2)

∑n
i=1

(
Xi − X̄

)
3 is the unbiased estimator of the third central

moment µ3. According to Kibria (2006), it appears that the width of Student’s-t and
Johnson’s-t CIs are same.

5.2 The Median-t confidence interval

When the distribution is skewed or non-normal, the sample median (MD) describes the
center of the distribution better than that of the sample mean which is preferable to
other estimators of center for a distribution that is symmetric or relatively homogeneous.
Therefore, for a skewed distribution, it is reasonable to define the sample standard devi-
ation in terms of the MD than the sample mean. Kibria (2006) proposed the following
CI for the population mean (µ) of a skewed distribution:

C.I. = X̄ ± t(α2 , n− 1)
S̃1√
n

(11)
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where

S̃1 =

√√√√(n− 1)−1

n∑
i=1

(Xi −MD)2

and

MD =

 X(n+1
2

) if n is odd number
X(n2 )+X(n2 +1)

2 if n is evennumber

5.3 The Mad-t confidence interval

In terms of the MD than the sample mean for the defining of the sample standard
deviation, Kibria (2006) proposed another CI for the population mean (µ) of a skewed
distribution given as follows:

C.I. = X̄ ± t(α2 , n− 1)
S̃2√
n

(12)

whereS̃2 = 1
n

∑n
i=1 |Xi −MD | is the sample mean absolute deviation (Mad).

5.4 The AADM-t confidence interval

AbuShawiesh et al. (2018) proposed a modification of the Student-t CI for the population
mean of a skewed distribution called AADM-t CI and given as follows:

C.I. = X̄ ± t(α2 , n− 1)
AADM√

n
(13)

where AADM =

√
π/2

n

∑n
i=1 |Xi −MD | given by Gastwirth (1982) is the average ab-

solute deviation from the sample median. As stated by Gastwirth (1982), the AADM
is asymptotically normally distributed, consistent estimator of σ, and converges to σ
almost surely.

6 The proposed robust confidence interval

The trimmed mean is a more robust measure for describing the center than the mean
and more efficient than the median. We thought that for a skewed distribution with a
longer left or right tail, it is reasonable to define the standard deviation in terms of the
trimmed mean. Therefore, we propose a robust modification of the Student-t CI for the
population mean of skewed populations. It is a simple adjustment of the Student-t CI
developed based on the modified trimmed standard deviation given by Equation (1), we
refer to as MST -t CI.

Thus, the (1 – α)100% MST -t CI for the population mean of a skewed distribution is
given as:

C.I. = X̄ ± t(α2 , n− 1)
S∗
T√
n

(14)
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where S∗
T = 1.4826∗ST . In Eq. (5), it was obtained as ST =

√
1

n−2r−1

∑n−r
i=r+1(X(i) − X̄T )2.

Thus, S∗
T is can be obtained as:

S∗
T = 1.4826 ∗ ST = 1.4826 ∗

√√√√ 1

n− 2r − 1

n−r∑
i=r+1

(X(i) − X̄T )2. (15)

When trimming is made on both ends for symmetrical distributions, trimmed mean
is as:

X̄T =
1

n− 2r

n−r∑
i=r+1

X(i) (16)

When trimming is made only on the high end for positively skewed distributions, it is
defined as follows (Tiku and Akkaya, 2004 ; Akyüz et al., 2017):

X̄T =
1

n− r

n−r∑
i=1

X(i) (17)

7 Simulation study

In this section, the performance of the various CIs described in this paper is compared by
a Monte Carlo simulation study. All simulations were performed using programs written
in the MATLAB. The samples are simulated from standard normal, gamma, chisquare
and lognormal distributions.

In order to make the comparisons among various CIs, the following criteria are con-
sidered: CP and AW of the resulting CIs. The most common 95% CI (α =0.05) for the
confidence level is used. The simulation study was designed as:

• Sample sizes n=5, 10, 20, 30, 50, 100 and 500,

• Trimming ratio= 5%, 10%, 20%,

• Replication= 50000,

• Standard normal distribution,

• Gamma (16, 0.0625) with skewness 0.5,

• Gamma (4,0.25) with skewness 1,
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• Gamma (1,1) with skewness 2,

• χ2 (1) with skewness 2.82,

• Lognormal (0,1) with skewness 6.18.

Trimming is made from the high end of the consecutive data in positively skewed
distributions and both ends in symmetric distributions. The performances of the sim-
ulations for each distribution in terms of CP and AW are reported in Table 1- 6. The
first line for each sample size (n) is CP, the second line is AW.

Table 1: Coverage probability (CP) and average width (AW) of 95% CIs for N(0, 1)

n Student-t Johnson-t Median-t Mad-t AADM-t MST - t

5% 10% 20%

5 0.9485 0.9459 0.9475 0.8733 0.9260 0.9418 0.9418 0.8478

2.3339 2.0875 2.4544 1.9978 2.0653 1.9224 1.9224 1.9224

10 0.9725 0.9456 0.9473 0.9046 0.9259 0.9422 0.9422 0.8970

1.8133 1.8305 1.8183 1.7574 1.7513 1.7263 1.7263 1.2492

20 0.9498 0.9442 0.9465 0.9128 0.9409 0.9460 0.9420 0.8437

0.9246 0.9011 0.9897 0.9975 0.9493 0.9006 0.8928 0.6790

30 0.9484 0.9441 0.9441 0.9024 0.9434 0.9483 0.9478 0.8365

0.7410 0.7286 0.7775 0.6518 0.7542 0.6421 0.6025 0.5338

50 0.9516 0.9495 0.9407 0.8955 0.9433 0.9488 0.9476 0.8327

0.5655 0.5599 0.5828 0.5556 0.5710 0.5503 0.5067 0.3998

100 0.9505 0.9493 0.9482 0.8879 0.9498 0.9490 0.9474 0.8264

0.3957 0.3937 0.4020 0.3872 0.3975 0.3677 0.3326 0.2759

500 0.9490 0.9488 0.9485 0.8807 0.9498 0.9490 0.9474 0.8202

0.1756 0.1754 0.1762 0.1602 0.1757 0.1559 0.1426 0.1117

In Table 1, it was obtained CPs and AWs of existing and MST -t CI. Thus, the MST -t
CI performance was comparable to existing CIs. Trimming operation for MST -t CI was
made on both ends of the consecutive data. Random samples produced from standard
normal distribution for sample sizes n= 5, 10, 20, 30, 50, 100 and 500. Trimming ratio
and Type I error were considered as 5%, 10%, 20% and α =0.05, respectively . It
is determined that CPs of the both existing and MST -t CI are close to the nominal
confidence level in all sample sizes. However, as the trimming ratio increased, CPs of
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MST -t CI decreased. Furthermore, MST -t CI have the smallest AW for all sample sizes.
It is observed that the average widths of CIs are reduced as the sample size increases.
When the amount of trimming in the data set increased, AWs also decreased.

Table 2: Coverage probability (CP) and average width (AW) of 95% CIs for G(16,
0.0625) with Skewness γ1 =0.5

n Student-t Johnson-t Median-t Mad-t AADM-t MST - t

5% 10% 20%

5 0.9466 0.9280 0.9427 0.8710 0.9232 0.9491 0.9491 0.9421

0.5800 0.5188 0.6109 0.5080 0.5113 0.4379 0.4379 0.4379

10 0.9690 0.9622 0.9473 0.9046 0.9259 0.9490 0.9490 0.9421

0.4025 0.3819 1.7382 1.6010 2.0066 0.3929 0.3929 0.2993

20 0.9477 0.9431 0.9465 0.9128 0.9409 0.9499 0.9490 0.9431

0.3304 0.3246 0.9528 0.9003 1.1283 0.3013 0.2759 0.2401

30 0.9499 0.9465 0.9471 0.9024 0.9434 0.9492 0.9490 0.9444

0.2449 0.2818 0.7534 0.7177 0.8995 0.2323 0.2195 0.1912

50 0.9477 0.9455 0.9487 0.8955 0.9433 0.9510 0.9495 0.9440

0.1712 0.1898 0.5691 0.5456 0.6838 0.1384 0.1365 0.1250

100 0.9494 0.9484 0.9482 0.9079 0.9498 0.9510 0.9495 0.9442

0.1389 0.1384 0.3952 0.3807 0.4771 0.1266 0.1158 0.1009

500 0.9505 0.9503 0.9485 0.9087 0.9498 0.9510 0.9495 0.9446

0.0639 0.0638 0.1742 0.1684 0.2111 0.0559 0.0511 0.0446

In Table 2, random samples produced from gamma distribution for parameter α=16
and β=0.0625 with skewness γ1 =0.5. Simulation results in Table 2 showed that MST -t
CI have CP closer to nominal confidence level than existing CIs for small sample sizes (n
= 5, 10, 20). It was seen that AWs were nearly same for very small sample size (n=5).
However, AWs of MST -t CI were narrower than others in all sample sizes. It is obtained
that even if the trimming ratio is large enough (20%), AWs of MST -t CI is narrower
than the other CIs. This result indicates that the MST -t CI is quite robust.
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Table 3: Coverage probability (CP) and average width (AW) of 95% CIs for G(4, 0.25)
with Skewness γ1 =1

n Student-t Johnson-t Median-t Mad-t AADM-t MST - t

5% 10% 20%

5 0.9321 0.9137 0.9393 0.8572 0.9086 0.9207 0.9207 0.9207

1.1828 1.2221 1.2096 0.7976 0.9997 1.1627 1.1627 1.1627

10 0.9611 0.9549 0.9495 0.9488 0.9497 0.9468 0.9468 0.9244

0.9972 0.9563 1.7380 1.5168 1.9011 0.9221 0.9221 0.7725

20 0.9399 0.9355 0.9488 0.9470 0.9494 0.9469 0.9426 0.9249

0.5581 0.6465 0.9444 0.8409 1.0539 0.5249 0.4923 0.4276

30 0.9429 0.9401 0.9493 0.9481 0.9498 0.9427 0.9424 0.9246

0.3681 0.3619 0.7438 0.6663 0.8351 0.3377 0.3063 0.2886

50 0.9453 0.9429 0.9493 0.9483 0.9496 0.9465 0.9433 0.9228

0.2817 0.2788 0.5617 0.5058 0.6339 0.2364 0.2071 0.2060

100 0.9473 0.9465 0.9495 0.9488 0.9499 0.9496 0.9432 0.9211

0.2074 0.2064 0.3893 0.3518 0.4409 0.1999 0.1934 0.1779

500 0.9496 0.9493 0.9498 0.9494 0.9499 0.9497 0.9433 0.9296

0.1277 0.1276 0.1714 0.1553 0.1946 0.1057 0.0940 0.0784

In Table 3 was obtained the simulation results with random samples from gamma
distribution for parameter α=4 and β=0.25 with skewness γ1 =1. CPs and AWs of
CIs have good results, even if the value of skewness coefficient increases. CPs are close
to nominal level and increase as sample size increases. However, MST -t CI have the
narrowest AWs in all sample sizes.
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Table 4: Coverage probability (CP) and average width (AW) of 95% CIs for G(1, 1) with
Skewness γ1 =2

n Student-t Johnson-t Median-t Mad-t AADM-t MST - t

5% 10% 20%

5 0.8827 0.8667 0.8928 0.8046 0.8559 0.8372 0.8372 0.8372

2.1489 1.9220 2.3192 1.8479 1.8447 1.8216 1.8216 1.8216

10 0.9244 0.9198 0.9488 0.9337 0.9418 0.9285 0.9285 0.8732

1.5541 1.5553 1.8986 1.5684 1.9281 1.5506 1.5506 1.1732

20 0.9158 0.9130 0.9480 0.9344 0.9431 0.9440 0.9103 0.8225

0.8961 0.8934 1.0373 0.8509 1.0665 0.8925 0.8532 0.6378

30 0.9267 0.9258 0.9526 0.9378 0.9483 0.9489 0.9143 0.8188

0.7545 0.7593 0.8185 0.7743 0.8451 0.7573 0.6729 0.5015

50 0.9356 0.9345 0.9525 0.9490 0.9425 0.9476 0.9146 0.8117

0.5585 0.5529 0.6177 0.5094 0.6384 0.5454 0.5061 0.3764

100 0.9419 0.9418 0.9529 0.9475 0.9464 0.9477 0.9140 0.8036

0.3928 0.3909 0.4278 0.3534 0.4429 0.3218 0.3097 0.2598

500 0.9493 0.9495 0.9529 0.9472 0.9468 0.9475 0.9148 0.7999

0.1753 0.1752 0.1886 0.1559 0.1954 0.1551 0.1404 0.1081

In Table 4, we wanted to examine the effect of the degree of skewness on CPs and AWs
of CIs. CPs and AWs were obtained from gamma distribution for parameter α=1 and
β=1 with skewness γ1 =2. In this case, CPs were closer to nominal confidence level but
slightly less high than previous case. Also, MST -t CI have narrower AWs than others.
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Table 5: Coverage probability (CP) and average width (AW) of 95% CIs for χ2(1) with
Skewness γ1 =2.82

n Student-t Johnson-t Median-t Mad-t AADM-t MST - t

5% 10% 20%

5 0.8627 0.8667 0.8628 0.8346 0.8259 0.8252 0.8252 0.8252

4.8416 4.3305 5.5160 2.4661 3.0908 1.0583 1.0583 1.0583

10 0.9144 0.9098 0.9188 0.9137 0.9118 0.9185 0.9185 0.8232

4.011 3.8059 4.3542 1.6512 2.0695 1.5287 1.5287 0.4594

20 0.9158 0.9130 0.9480 0.9344 0.9431 0.9440 0.9103 0.8225

2.7059 2.6374 2.8734 0.9312 1.1672 1.5480 0.7116 0.1661

30 0.9267 0.9258 0.9526 0.9378 0.9483 0.9489 0.9143 0.8388

2.3531 2.3135 2.4766 0.7462 0.9352 0.8784 0.5058 0.1037

50 0.9356 0.9345 0.9525 0.9490 0.9425 0.9476 0.9146 0.8417

1.9310 1.9116 2.0176 0.5682 0.7121 0.6953 0.3420 0.0622

100 0.9419 0.9418 0.9529 0.9475 0.9464 0.9477 0.9140 0.8436

1.4476 1.4404 1.5032 0.3968 0.4974 0.5438 0.2120 0.0348

500 0.9493 0.9495 0.9529 0.9472 0.9468 0.9475 0.9148 0.8499

0.6873 0.6866 0.7096 0.1755 0.2200 0.2226 0.0832 0.0121

In Table 5, it is obtain that CPs of CIs for α = 0.05 are especially close to nominal
confidence levels except where the trimming ratio is high. AWs reduced with increasing
sample size for type I error levels. Comparing CIs with similar CPs, the MST -t CI
exhibited the smallest AW for all sample sizes. Thus, it produced good results for
chisquare distribution.
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Table 6: Coverage probability (CP) and average width (AW) of 95% CIs for Lognormal
(0,1) with Skewness γ1 =6.18

n Student-t Johnson-t Median-t Mad-t AADM-t MST - t

5% 10% 20%

5 0.8527 0.8567 0.8528 0.8546 0.8559 0.8189 0.8189 0.8189

8.6998 8.6628 8.5478 8.0010 8.6542 3.5687 3.5687 3.5687

10 0.8944 0.8998 0.8988 0.8937 0.8918 0.8585 0.8585 0.8132

6.2546 6.2045 6.2525 6.1042 6.2269 2.5536 2.5536 2.0034

20 0.9058 0.9030 0.9080 0.9044 0.9031 0.9240 0.9003 0.8125

4.5986 4.2479 4.2888 4.0708 4.2201 2.0027 1.6378 1.4826

30 0.9067 0.9058 0.9026 0.9078 0.9083 0.9389 0.9143 0.8288

3.5968 3.5578 3.5963 3.1185 3.4698 1.5721 1.0269 0.1647

50 0.9256 0.9245 0.9225 0.9290 0.9225 0.9276 0.9146 0.8417

1.9697 1.9423 1.9524 1.9402 1.9287 0.9645 0.4100 0.0836

100 0.9319 0.9318 0.9329 0.9375 0.9364 0.9377 0.9140 0.8536

0.8654 0.8325 0.8523 0.8241 0.8596 0.3547 0.2045 0.0498

500 0.9393 0.9395 0.9329 0.9372 0.9368 0.9375 0.9148 0.8599

0.3145 0.3095 0.3177 0.3125 0.3199 0.1104 0.0627 0.0289

Table 6 shows the CIs based on data generated from the Lognormal (0,1) distribution.
In this table, we have reviewed again the effect of skewness coefficient. It is obtained
that even if the skewness coefficient is large, the MST -t CI has performed better in terms
of CP and AW.

8 Real data analysis

In this section. we provide two real-life examples in order to illustrate and compare
the performance of MST -t CI in relation to the existing popular alternatives which have
been considered in this paper, when the samples are assumed to come from normal and
positively skewed distributions.

8.1 Real data I: Load at failure data

The first data set was obtained from Montgomery and Runger (2003 ). The data de-
scribes the results of tensile adhesion tests (in megapascals) on 22 U-700 alloy specimens.

We are interested to determine the 95% CI for the population mean for load specimen
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failure. A summary with descriptive statistics, Box-and-Whisker plot, the histogram,
density plot, and normal probability plot for the data was obtained using Minitab and
the results are shown in Figure 1.

Figure 1: Descriptive statistics for real data I

As can be observed, the Kolmogorov-Smirnov (K-S) goodness-of-fittest for normality
have a p-value (p-value>0.150) greater than α= 0.05. We conclude that the data are
in excellent agreement with a normal distribution. Additionally, the histogram, the
box plot and the normal probability plot of the tensile adhesion test data provide good
support for the assumption that the population is normally distributed.
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Table 7: The 95% confidence intervals for real data I

Method Confidence Interval Limits

Lower Limit Upper Limit Width

Student-t 12.1380 15.2892 3.1512

Johnson-t 12.1738 15.2525 3.0787

Median-t 7.1738 20.2534 13.0796

Mad-t 7.5124 19.9148 12.4024

AADM-t 5.9415 21.4856 15.5441

MST -t 5 % 11.9508 15.4764 3.0256

10 % 12.2418 15.1854 2.9436

20 % 12.5797 14.8475 2.2679

Table 7 shows lower and upper limits for existing CIs and MST -t CI. With this infor-
mation, we obtained widths of CIs. It is seen that, MST -t CI AWs have narrower than
all others CIs which are consistent with the simulation results.

8.2 Real data II: Failure times of air conditioning data

The second data set was obtained from Shi and Kibria (2007). The data represents the
times (in hours) between successive failures of air conditioning (AC) equipment in a
Boeing 720 airplane for a random sample of 18ACs equipment (Proschan, 1963).



Electronic Journal of Applied Statistical Analysis 179

Figure 2: Descriptive statistics for real data II

We are interested to determine the 95% CI for the population mean (µ) of the times
between successive failures of air conditioning (AC) equipment in a Boeing 720 airplane.
A summary with descriptive statistics is shown in Figure 2. As can be observed, the
Kolmogorov-Smirnov (K-S) goodness-of-fit test for normality have a p-value (p-value <
0.010) less than α=0.05. We can say that the data comes from a non-normal distri-
bution. Additionally, the histogram, the box plot, and the normal probability plot of
the times between successive failures of air conditioning (AC) equipment in a Boeing
720 airplane data provide good support for the assumption that the population is not
normally distributed and the data comes from a positively skewed distribution.
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Table 8: The 95% confidence intervals for real data II

Method Confidence Interval Limits

Lower Limit Upper Limit Width

Student-t 44.8188 212.3811 167.5623

Johnson-t 50.6552 212.5358 167.8806

Median-t 35.8046 221.3953 185.5907

Mad-t 77.0613 180.1386 103.0773

AADM-t 64.0059 193.1940 129.1881

MST -t 5 % 34.4211 222.7788 100.3577

10 % 59.8470 197.3529 97.5059

20 % 94.8121 162.3878 67.5757

Table 8 shows that AWs of MST -t CI are smaller than all the others considered, which
are consistent with the simulation results.

9 Conclusion

Trimmed mean is more convenient for non-normal populations than the sample mean,
because it is more robust. Student-t, Johnson-t, Median-t, Mad-t and AADM-t CIs are
the most popular methods to estimate mean. However, CPs of MST –t CI are closer
to nominal than others. In small sample sizes (n = 5, 10, 20), MST –t CI performed
especially better than existing CIs. Also, as the trimming ratio increased, CPs decreased.
It did not perform well for large trimming ratio (20%). MST-t CI has the smaller AW
than the others. It is observed that the AWs of CIs are reduced as the sample size
increases. When the amount of trimming in the data set increased, CPs and AWs
decreased, as expected. Even if the trimming ratio is large enough (20%), AWs of MST-
t CI is narrower than the other CIs. CPs and AWs of MST-t CI still have good results
when the value of skewness coefficient increases for gamma distribution. Two real data
sets are analysed to illustrate the findings of the study and the simulation results are
verified. In conclusion, we propose to use MST-t CI for the mean of positively skewed
populations.
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182 Akyüz, Abu-Shawiesh

Sindhumol, MR., Srinivasan, MR., and Gallo, M. (2016). A robust dispersion control
chart based on modified trimmed standard deviation. Electronic Journal of Applied
Statistical Analysis, 9(1): 111-121.

Student. (1908). The probable error of a mean. Biometrika, 6(1): 1-25.

Tiku, ML., and Akkaya, AD. (2004). Robust estimation and hypothesis testing. New
Delhi: New Age International (P) Limited.

Wang, H. (2008). Confidence intervals for the mean of a normal distribution with re-
stricted parameter space. ournal of Statistical Computation and Simulation, 78(9):
829-841.

Wilcox, RR. (2012). Introduction to robust estimation and hypothesis testing. Elsevier
Academic Press, Burlington, MA.

Willink, R. (2008). A confidence interval and test for the mean of an asymmetric distri-
bution. Communications in Statistics- Theory and Methods, 34(4): 753-766.

Withers, CS., and Nadarajah, S. (2011). Confidence intervals for the length of a vector
mean. ournal of Statistical Computation and Simulation, 81(5): 591-605.


