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Variable selection is a very helpful procedure for improving computational
speed and prediction accuracy by identifying the most important variables
that related to the response variable. Regression modeling has received much
attention in several science fields. Firefly algorithm is one of the recently ef-
ficient proposed nature-inspired algorithms that can efficiently be employed
for variable selection. In this work, chaotic firefly algorithm is proposed to
perform variable selection for gamma regression model. A real data applica-
tion related to the chemometrics is conducted to evaluate the performance of
the proposed method in terms of prediction accuracy and variable selection
criteria. Further, its performance is compared with other methods. The re-
sults proved the efficiency of our proposed methods and it outperforms other
popular methods.

keywords: Variable selection, gamma regression model, firefly algorithm,
chaotic map).

1 Introduction

Gamma regression is widely applied model for studying several real data problems, such
as automobile insurance claims, healthcare economics, and medical science (De Jong and
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Heller, 2008; Dunder et al., 2018; Malehi et al., 2015). “Specifically, gamma regression
model is used when the response variable under the study is not distributed as normal
distribution or the response variable is positively skewed. Consequently, the gamma
regression assumes that the response variable has a gamma distribution” (Al-Abood
and Young, 1986; Wasef Hattab, 2016).

In many real applications, recent developments in technologies have made the possi-
bility to measure a large number of variables. In the regression modeling, the existence
of huge number has a negative effect by overfitting the regression model. Therefore,
identification of a small subset of important variables from a large number of variables
set for accurate prediction is an important role for building predictive regression mod-
els (Algamal and Lee, 2015). When the number of variables increases, the traditional
variable selection methods, such as stepwise selection, forward selection, and backward
elimination computationally become an exhaustive search and require a long time for
computing.

Recently, the naturally inspired algorithms, such as genetic algorithm, particle swarm
optimization algorithm, firefly algorithm, and crow search algorithm, have a great at-
traction and proved their efficiency as variable selection methods (Sayed et al., 2019).
This is because that the main target in variable selection is to minimize the number of
selected variables while maintaining the maximum accuracy of prediction, and, therefore,
they can be considered as optimization problems (Sindhu et al., 2017).

Several researchers have employed the naturally inspired algorithms for variable selec-
tion in regression models. Broadhurst et al. (1997) employed the genetic algorithm for
variable selection in linear and partial least squares regression models, with application
in chemometrics. Drezner et al. (1999) proposed to use tabu search algorithm in model
selection in the linear regression model. On the other hand, a hybrid algorithm of genetic
algorithm and simulated annealing was proposed as a subset selection method in linear
regression model by Örkcü (2013). Brusco (2014) did a comparison of simulated anneal-
ing algorithms for variable selection in principal component analysis and discriminant
analysis. Besides, the diferential evolution algorithm was used as a variable selection in
linear regression model by Dunder et al. (2018). In generalized linear models, the natural
inspired algorithms for variable selection are also used, such as, logistic regression model
(Unler and Murat, 2010; Pacheco et al., 2009), Poisson regression model (Massaro and
Bozdogan, 2015; Koç et al., 2018), and gamma regression model (Dunder et al., 2018).

The purpose of this paper is to propose chaotic firefly algorithm, which is a swarm
intelligence technique, as an alternative variable selection method for use in gamma
regression model. The proposed algorithm will efficiently help in identifying the most
relevant variables in the count data regression model with a high prediction. The su-
periority of the proposed algorithm is proved though different simulation settings and a
real data application in chemometrics.

The remainder of this paper organizes as follows. Section 2 covers the description
of gamma regression models. The details of the firefly algorithm and the chaotic maps
are illustrated in Sections 3 and 4, respectively. Section 5 is devoted to the real data
application results. The conclusion is covered in Section 6.
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2 Gamma regression model

Positively skewed data often arise in epidemiology, social, and economic studies. This
type of data consists of nonnegative values. Gamma distribution is a well-known dis-
tribution that fits to such type of data. “Gamma regression model (GRM) is used to
model the relationship between the positively skewed response variable and potentially
regressors” (Uusipaikka, 2008).
Let yi be the response variable and follows a gamma distribution with nonnegative

shape parameter ν and nonnegative scale parameter γ, i.e. yi ∼ Gamma(ν, γ), then the
probability density function is defined as:

f (yi) =
γ

Γν
(γyi)

ν−1e−γyi , yi ≥ 0, (1)

with E(y) = ν/γ = θ and var(y) = ν/γ2 = θ2/ν. Given that γ = ν/θ, Eq. (1) can
re-parameterized as a function of the mean (θ) and the shape (ν) parameters and written
depending on the exponential function as:

f (yi) = EXP

{
yi(−1/θ)− log(−1/θ)

1/ν
+ c(yi, ν)

}
, (2)

where the canonical link function is −1/θ, the dispersion parameter is ϕ = 1/ν and
c(yi, ν) = ν log(ν) + ν log(yi)− log(yi)− log(Γ(ν)).

Gamma regression model is usually modeled using the canonical link function (re-
ciprocal), θi = −1/xTi β which is expressed as a linear combination of covariatesxi =
(xi1, ..., xip)

T . The log link function, θi = exp(xTi β), is alternatively used rather than
the reciprocal link function because it ensures that θi > 0.

The most common method of estimating the coefficients of GRM is to use the max-
imum likelihood method of Eq. (2). Given the assumption that the observations are
independent and θi = −1/xTi β, the log-likelihood function is given by:

ℓ(β) =
n∑

i=1

{
yix

T
i β − log(xTi β)

1/ν
+ c(yi, ν)

}
, (3)

the ML estimator is then obtained by computing the first derivative of the Eq. (3) and
setting it equal to zero, as:

∂ℓ(β)

∂β
=

1

ν

n∑
i=1

[
yi −

1

xTi β

]
xi = 0. (4)

Unfortunately, the first derivative cannot be solved analytically because Eq. (4) is
nonlinear in β. The iteratively weighted least squares (IWLS) algorithm or Fisher-
scoring algorithm can be used to obtain the ML estimators of the gamma regression
parameters. In each iteration, the parameters are updated by:

β(r+1) = β(r) + I−1(β(r))S(β(r)), (5)
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where S(β) = ∂ℓ(β)/∂β and I−1(β) =
(
−E

(
∂2ℓ(β)/∂β∂βT

))−1
. The final step of the

estimated coefficients is defined as:

β̂GR = (XT ŴX)−1XT Ŵ û, (6)

where Ŵ = diag(θ̂2i ) and û is a vector where ith element equals to ûi = θ̂i+((yi− θ̂i)/θ̂
2
i ).

3 Firefly algorithm

In recent years, numerous nature-inspired algorithms have been proposed as powerful
approaches to solve the continuous optimization problems. Minimizing the number of
variables with maximizing the accuracy of prediction is an optimization problem (Sindhu
et al., 2017).
Firefly optimization algorithm (FA) is one of the recently efficient proposed nature-

inspired algorithms, which is firstly introduced by Yang Yang (2013). “The application
of FA is an easy algorithm for solving the optimization problems compared with other
algorithms. FA is inspired by the social behavior of fireflies through flashing lights.
FA enables a swarm of fireflies with low light intensities to move towards the neighbor
brighter fireflies possessing superior search abilities in solving optimization problems”
(Al-Thanoon et al., 2019; Qasim et al., 2020; Kahya et al., 2019; Al-Thanoon et al.,
2018; Algamal, 2019a; Al-Thanoon et al., 2020; Algamal, 2019b).
Three rules are held in FA (Yu et al., 2015). ”The first rule is that all fireflies are

unisex meaning that one firefly will be attracted to other fireflies regardless of their sex.
The second rule is that the degree of the attractiveness of a firefly is proportion to its
brightness, therefore for any two flashing fireflies, the less bright one will move towards
the brighter one and the more brightness. If there is no brighter one than a particular
firefly, it will move randomly. The third rule is that the brightness of a firefly is somehow
related to the analytical form of the fitness function. For a maximization problem, the
brightness of each firefly is proportional to the value of the cost function.”
Let d represents the dimension of the object function that will optimized, nf represents

the number of fireflies, δ refers the light absorption coefficient, Ii is the light intensity,
and r is the distance between any two firefly locations i (si) and j (sj). This Cartesian
distance can be defined as:

r(si, sj) =

√√√√ d∑
c=1

(si,c − sj,c)
2. (7)

Because Ii decreases when the distance from the source increases, the variations of Ii
should be monotonically decreasing function. As a result, in most applications, the Ii
can be approximated as:

I(r) = I0 e
−δr2 , (8)

where I0 is the original light intensity. Because the attractiveness of a firefly is propor-
tional to the Ii, the attractiveness φ of a firefly is defined as:

φ(r) = φ0 e
−δr2 , (9)
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where φ0 represents the attractiveness at r = 0. The movement of any firefly to the best
position will be attracted to another firefly, which is more attractive firefly, by:

s
(t+1)
i = s

(t)
i + φ0 e

−δr2i,j
(
s
(t)
j − s

(t)
i

)
+ α (k1 − 0.5), (10)

where α and k1, respectively, is the randomization parameter and a generated random
number from uniform distribution with [0, 1].
FA originally is proposed to solve continuous optimization problems. However, in

variable selection, the optimization problem is discrete. A binary firefly algorithm (BFA)
is proposed by Zhang, Gao (Zhang et al., 2016) to deal with the problem of variable
selection where the position is binary. Because variable selection problem is to select
a specific variable or not, thus the solution is expressed as a binary vector, where the
value 1 indicates a variable to be selected and 0 otherwise. In BFA, the term

φ0 e
−δr2i,j

(
s
(t)
j − s

(t)
i

)
+ α (k1 − 0.5)

will transfer to probability vector by using the sigmoid (sigm) function as:

sigm =
1

1 + exp
[
φ0 e

−δr2i,j
(
s
(t)
j − s

(t)
i

)
+ α (k1 − 0.5)

] . (11)

Accordingly, the position of a firefly in Eq. (11) will be replaced as follow:

s
(t+1)
i =

{
1 if sigm ≥ k2

0 otherwise,
(12)

where k2 represents a random number generated from uniform distribution with [0, 1].

Table 1: A simple example

x1 x2 x3 . . . .. xρ−1 xρ

1 0 0 1 0

4 The proposed chaotic firefly algorithm

Chaos theory describes erratic behavior in nonlinear systems and for this purpose, it uses
chaotic maps. “Chaotic maps are visualized and can travel as particles in a limited range
of nonlinear, dynamic, and nonlinear systems with no definite regularity-traveling path
of these particles” (Sayed et al., 2018). Chaos strategy is applied to avoid being trapped
in local optima and improve the quality of searching global optimum. Therefore, chaos
has been employed in numerous optimization applications. Considering that the feature
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selection problem is an optimization problem with searching range of [0, 1], chaos can
be used to optimize this problem (Sayed et al., 2018).
In this paper, chaotic maps are considered to improve the performance of the binary

firefly algorithm in terms of avoiding being trapped at the local optima and improving
the convergence speed for variable selection in gamma regression model. Ten chaotic
maps are used in this paper. The description of these maps is explained in Table 2.

Table 2: The description of the ten used maps

Name Definition Range

Chebyshev xk+1 = cos(k cos−1(xk)) (-1,1)

Circle xk+1 = mod(xk + 0.2 −
0.5
2π sin(2πxk), 1)

(0,1)

Guass/mouse xk+1 =

{
1 xk = 0

1
mod(xk,1)

, otherwise
(0,1)

Iterative xk+1 = sin
(
(0.7)π
xk

)
(-1,1)

Logistic xk+1 = 4xk(1− xk) (0,1)

Piecewise xk+1 =


xk
0.4 0 ≤ xk < 0.4

xk−0.4
0.1 0.4 ≤ xk < 0.5

0.6−xk
0.1 0.5 ≤ xk < 0.6

1−xk
0.4 0.6 ≤ xk < 1

(0,1)

Sine xk+1 = sin(πxk) (0,1)

Singer xk+1 = 1.07(7.86xk − 23.31(xk)
2 +

28.75(xk)
3 − 13.302875(xk)

4
(0,1)

Sinusoidal xk+1 = 2.3xk sin(πxk) (0,1)

Tent xk+1 =

{
xk
0.7 xk < 0.7

10
3 (1− xk) xk ≥ 0.7

(0,1)

Consequently, our proposed algorithm setting is as follows:
Step 1: The number of fireflies is nf = 40, φ0 = 1, δ = 0.2, α = 0.1, and the maximum
number of iterations is tmax = 500.
Step 2: The positions of each firefly are randomly generated from uniform distribution
with 0 and 1 for the original binary firefly algorithm. For the proposed chaotic maps,
the maps which are described in Table 1 are used. The representation of the positions
of a firefly is depicted in Figure 1.
Step 3: The fitness function is defined as:

fitness = min

[
1

n

n∑
i=1

(yi − ŷi)
2

]
. (13)
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Step 4: The positions of the fireflies are updated using Eq. (10).

Step 5: Steps 3 and 4 are repeated until a tmax is reached.

5 Real data application

To demonstrate the usefulness of the proposed method in real application, we present
here a chemistry dataset with (n, p) = (60, 4032), where n represents the number of
chemical compounds. “While p denotes the number of molecular descriptors, which are
treated as explanatory variables” (Algamal et al., 2015). The response of interest is the
melting point. Quantitative structure-property relationship (QSPR) study has become
a great deal of importance in chemometrics. The principle of QSPR is to model several
physical activities over a collection of chemical compounds in terms of their structural
properties (Algamal and Lee, 2017). Consequently, using of regression model is one of
the most important tools for constructing the QSPR model.

The experimental values for the melting point (MP) in Kelvin (K) of 60 energetic car-
bocyclic nitroaromatic compounds were obtained from (Al-Fakih et al., 2018). The MP
range of the compounds used is between 260.9 K and 489.1 K. The data were randomly
divided into 42 compounds (70%) as a training dataset and 18 (30%) compounds as a
test dataset. The molecular structures of the compounds were sketched using Chem3D
software (CambridgeSoft Corporation, Cambridge, MA). The structures were optimized
using the molecular mechanics (MM2) method implemented in the Chem3D software,
and then using the molecular orbital package (MOPAC) module implemented in the same
Chem3D software at the semi-empirical AM1 method, applying a minimum root mean
square (RMS) gradient of 0.100 as a stopping criterion. DRAGON software (version
6.0) was used to generate 4885 molecular descriptors based on the optimized molecular
structures.

To include consistent and useful descriptors, preprocessing steps were performed as
follows. First, descriptors that had constant or zero values for all compounds were
excluded (311 descriptors). Second, the remaining descriptors were further refned by
removing those in which 70% of their values were zeros (255 descriptors). After that,
descriptors with a relative standard deviation of less than 0.001 were removed (189
descriptors). In addition, the correlation of the remaining descriptors was examined to
omit multicollinearity by removing those that were highly correlated (rij ≥ 0.90) (98
descriptors). Finally, 4032 descriptors remained for constructing the QSPR model.

The performance of our proposed chaotic firefly algorithm maps is tested. Further,
the performance of is compared with the original BFA. The performance is evaluated
using the mean-squared error (MSE) of both train and test datasets, in addition, to the
number of selected variables. The results are reported in Tables 2 and 3.

As it can be observed from Table 2, the binary firefly algorithm with different chaotic
maps overtakes the BFA. In terms of the number of selected variables, most the chaotic
maps selected few variables than the BFA. However, the Logistic map selected variables
as same as the BFA. The best chaotic map is the Tent map, where it selected 9 variables
out of 4032 compared to the other chaotic maps.
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Moreover, it can be noticed that in the Tent map obtains the lowest MSE comparing
with the other used chaotic maps. It can be seen that the MSE of the Tent map was
about 25.509%, 23.428%, 26.208%, 31.981%, 31.002%, 18.116%, 5.916%, 2.478%, and
13.402% lower than that of Chebyshev, Circle , Guass, Iterative, Logistic, Piecewise,
Sine, Singer, respectively. Additionally, comparing with the BFA, the Tent map was
about 27.292% lower than BFA. It can be seen also that Singer map is the second
best method. Regarding the test data (Table 3), it is obvious that the Tent map has
the superiority of the results in term of MSE. The MSE of the Tent map was about
23.710%, 21.699%, 24.728%, 30.002%, 29.046%, 16.595%, 5.159%, 1.800%, and 12.100%
lower than that of Chebyshev, Circle , Guass, Iterative, Logistic, Piecewise, Sine, Singer,
respectively.

Table 3: The performance of the used methods for the train data

Method # selected variables MSE

BFA 24 4.221

Chebyshev 22 4.120

Circle 21 4.008

Guass 22 4.159

Iterative 23 4.512

Logistic 24 4.448

Piecewise 18 3.748

Sine 13 3.262

Singer 12 3.147

Sinusoidal 15 3.544

Tent 9 3.069
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Table 4: The performance of the used methods for the test data

Method MSE

BFA 4.465

Chebyshev 4.361

Circle 4.249

Guass/mouse 4.420

Iterative 4.753

Logistic 4.689

Piecewise 3.989

Sine 3.508

Singer 3.388

Sinusoidal 3.785

Tent 3.327

6 Conclusion

In this paper, the problem of selecting variables in gamma regression models is con-
sidered. A chaotic firefly algorithm with ten maps was proposed as a variable selection
method. The results obtained from real data applications in chemometrics demonstrated
the superiority of the chaotic firefly algorithm in terms of MSE for both the train and
test data, and in addition, in terms of selected variables.
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