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It is well-known that in the presence of multicollinearity, the ridge estima-
tor is an alternative to the ordinary least square (OLS) estimator. General-
ized ridge estimator (GRE) is an generalization of the ridge estimator. How-
ever, the efficiency of GRE depends on appropriately choosing the shrinkage
parameter matrix which is involved in the GRE. In this paper, a Harris hawks
optimization algorithm, which is a metaheuristic continuous algorithm, is
proposed to estimate the shrinkage parameter matrix. The simulation study
and real application results show the superior performance of the proposed
method in terms of prediction error.

keywords: Multicollinearity, shrinkage parameter, generalized ridge esti-
mator, particle swarm optimization.

1 Introduction

Regression modeling is a widely applied strategy for studying several real data prob-
lems. In linear regression model, the response variable is considered as a continuous
and reasonably assumed to follow normal distribution. In linear regression models, it is
assumed that the correlations among the explanatory variables are not high (Alkhamisi
and Shukur, 2007; Asar et al., 2014; Dorugade, 2014; Algamal, 2018b; Alobaidi et al.,
2021; Rashad and Algamal, 2019; Shamany et al., 2019; Algamal, 2018a; Alkhateeb and
Algamal, 2020; Algamal and Asar, 2020; Yahya Algamal, 2019; Algamal and Alanaz,
2018; Algamal, 2018c, 2020; Al-Taweel and Algamal, 2020). However, this assumption is

*Corresponding author: zakariya.algamal@uomosul.edu.iq
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not always hold in practice. In linear regression model, the ordinary least squares (OLS)
estimator is the best estimator among all linear and unbiased estimators. However,
under multicollinearity, OLS estimator becomes unhelpful due to their large variance.
The ridge estimator (RE) (Hoerl and Kennard, 1970) has been consistently demon-

strated to be an attractive and alternative to the OLS, when the multicollinearity exists.
RE can shrink all the regression coefficients toward zero to reduce the large variance
(Batah et al., 2008). Generalized ridge estimator (GRE) has also been considered as a
generalization of the RE. The performance of the GRE is fully depending on the values
of the shrinkage parameter matrix. Accordingly, appropriate choosing of the shrinkage
parameter matrix is an important part of applying GRE. Numerous approaches are avail-
able for estimating the shrinkage parameter in the literature (Asar et al., 2014; Batah
et al., 2008; Hameed et al., 2017).
In recent years, numerous natural-inspired algorithms have been successfully intro-

duced and applied as random search strategies for solving a number of optimization
problems. Harris hawks optimization algorithm is a comparatively recent population-
based algorithm that is inspired by swarm.
In this paper, the Harris hawks optimization algorithm is proposed to estimate the

values of the shrinkage parameter matrix in GRE. Our proposed approach will efficiently
help to find the best values with high prediction accuracy. The superiority of our pro-
posed approach in different simulated examples and a real data application is proved.

2 Generalized ridge estimator

Suppose that we have a data set {(yi, xi)}ni=1 where yi ∈ R is a response variable and xi =
(xi1, xi2, ..., xip) ∈ Rp represents a p-dimensional explanatory variable vector. Without
loss of generality, it is assumed that the response variable is centered and the explanatory
variables are standardized.

Consider the following linear regression model,

y = Xβ + ε, (1)

where y is an n× 1 vector of observations of the response variable, X = (x1, ..., xp) is an
n× p known design matrix of explanatory variables, β = (β1, ..., βp) is a p× 1 vector of
unknown regression coefficients, and ε is an n× 1 vector of random errors with mean 0
and variance σ2. Using OLS method, the parameter estimation of Eq. (1) is given by

β̂OLS = (XTX)−1XT y. (2)

OLS estimator is unbiased and it has minimum variance among all linear unbiased
estimators. However, in the presence of multicollinearity, the XTX matrix is nearly
singular that makes OLS estimator unstable due to their large variance. To reduce the
effects of the multicollinearity, RE , which is the most commonly used method, adds a
positive shrinkage parameter, k, to the main diagonal of the XTX matrix. The RE is
defined as

β̂RE = (XTX + kI)−1XT y, (3)
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where I is the identity matrix with dimension p×p. The estimator β̂RE is biased but more
stable and has less mean square error. The shrinkage parameter, k, controls the shrinkage
of β toward zero. The OLS estimator can be considered as a special estimator from the
RE with k = 0. For larger value of k, the RE yields greater shrinkage approaching zero
(Yang and Emura, 2017). Rewriting Eq.(1) as (Alkhamisi and Shukur, 2007)

y = Zα+ ε (4)

where Z = XW ,where W is a matrix p× p So that Z ′Z = W ′X ′XWwill implies Z ′Z =
Λ = diag(λ1, λ1, ....., λp)where Λ is a diagonal matrix with the Eigen values of X ′Xand
α = W ′β, then OLS estimator of α is given by:

α̂LS = Λ−1Z ′y (5)

Therefore the OLS of β is
β̂ = Wα̂LS (6)

The RE is given by (Hoerl & Kennard, 1970)

β̂RE = (Λ + kI)−1Z ′y = A−1Z ′y (7)

where A = Λ+ kI.
Relating to Eq. (3) and Eq.(5), the mean square error( MSE) is

MSE(β̂RR) = σ̂2
p∑

i=1

λi

(λi + k)2
+ k2

p∑
i=1

α2
i

(λi + k)2
(8)

The GRE is suggested by Hoerl and Kennard (1970) to generalize the ridge estimator.
The difference between RE and GRE is there are ith values of k, such that

β̂GRE = (Λ +K)−1Z ′y = A−1Z ′y (9)

where K = diag(k1, k2, ...., kp). The MSE, which is less than when using the RE and
OLS, is

MSE(β̂GRE) = σ̂2
p∑

i=1

λi

(λi + ki)2
+ k2

p∑
i=1

α2
i

(λi + ki)2
(10)

where σ̂2 = yT y−β̂OLSZy
n−p−1 .

Since the ridge parameter is the key to reduce the multicollinearity, there are multi
ways to determine this value, the researcher suggest several ways to choose the optimal
k such as (Hocking et al., 1976; Nomura, 1988; Troskie and Chalton, 2019; Firinguetti,
1999; Asar et al., 2014; Bhat and Raju, 2017; Alheety and Kibria, 2014; Dorugade and
Kashid, 2010; Bhat, 2016). These methods can be defined as:

k̂i(HK) =
σ̂2

β̂2
i

(11)
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k̂i(N) =
σ̂2

β̂2
i

{
1 +

[
1 + ki(β̂

2
i /σ̂

2)1/2
]}

(12)

k̂i(TC) =
kiσ̂

2

kiβ̂2
i + σ̂2

(13)

k̂i(F ) =
kiσ̂

2

kiβ̂2
i + (n− p)σ̂2

(14)

k̂i(HSL) = σ̂2

∑p
i=1(kiβ̂

2
i )

2

(
∑p

i=1(kiβ̂
2
i ))

2
(15)

k̂i(AH) = σ̂2

∑p
i=1(kiβ̂

2
i )

2

(
∑p

i=1(kiβ̂
2
i ))

2
+

1

λmax
(16)

k̂i(D) =
σ̂2

kmaxβ̂2
i

(17)

k̂i(SB) =
kiσ̂

2

kiβ̂2
i + σ̂2

+
1

kmax
(18)

k̂i(DK) = Max

(
o,

pσ̂2

β̂′β̂
− 1

n(V IFj)Max

)
(19)

k̂i(SV 1) =
pσ̂2

β̂′β̂
+

1

kMaxβ̂′β̂
(20)

k̂i(SV 2) =
pσ̂2

β̂′β̂
+

1

2
(√

kMax/kMin

)2 (21)

k̂i(M) =
1

kMaxβ̂
2
i

(n−p)σ̂2+kMaxβ̂
2
i

(22)

k̂i(AS) =
σ̂2

β̂2
i

+
1

ki
(23)

3 The proposed method

The efficiency of ridge regression model strongly depends on appropriately choosing
the shrinkage parameter. A choice of shrinkage parameter that is too small leads to
overfitting the GRE, while shrinkage parameter that is too large shrinks β by too much,
making a bias-variance tradeoff.
Harris hawks optimization algorithm (HHOA), which was introduced by Heidari et al.

(2019), is designed based on simulation of the behaviors of Harris Hawks during the
process of search and catching the rabbit in natural space. The optimization process
of the HHOA is explained by three phases to find the optimal solution for any given
problem. These phases are exploration, transition from exploration to exploitation, and
exploitation.
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3.1 Exploration phase

The exploration phase mimics the process where a Harris hawk is no able to properly
track the prey. When it occurs, the hawks take a break to monitor and identify new
preys. In the HHOA, the candidate solutions are the hawks and the best so far solution
at each step is the prey. The hawks then perch randomly in a different location and wait
for a prey using two operators that are selected based on a probability q.
Mathematically, this process is modeled as

x(t+1) =

{
xtrand − r1|xtrand − 2r2x

t q ≥ 0.5

(xtprey − xtm)− r3(Lb + r4(Ub − Lb)) q < 0.5,
(24)

where x(??) is the position vector of hawks in the next iteration, xtprey represents the
position of intended rabbit, and xtrand is the position of a hawk which is chosen randomly
from current team. r1, r2, r3 and r4 are random numbers. Lb and Ubare the upper and
lower bounds of search space. xtm is the average position of the current population of
hawks which is calculated by the following equation

xtm =
1

nh

nh∑
i=1

xti, (25)

where xti is the position of each hawk in team and nh indicates the total number of
team members.

3.2 Transition phase

According to the energy level of the prey (escape energy), E, the HHO algorithm goes
from the exploration phase to the exploitation phase. The energy reduction of the prey
is defined as

E = 2E0(1−
t

tmax
) , (26)

where tmax indicates the maximum number of iterations and E0is the initial energy which
is randomly changing inside (−1, 1)at each iteration. This value is used to indicate either
the physically flagging of the prey for −1 ≤ E0 < 0 or its strengthening 0 ≤ E0 < 1.
Furthermore, in the case |E| ≥ 1 then HHOA will explore the search space otherwise,
HHOA will change its status to the exploitation phase.

3.3 Exploitation phase

During the exploitation phase, the |E|is considered to choose the type of besiege to catch
the prey. Accordingly, a soft one is taken when |E| ≥ 0.5, and the hard one is taken
when |E| < 0.5. This process is stimulated by the following two strategies: Soft besiege
and hard besiege.

x(t+1) = ∆xt − E
∣∣J xtprey − xt

∣∣ , (27)
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where ∆xt = xtprey − xt , J = 2 (1− r5) , which is standing for jump severity of the
prey in the stage of escaping, and r5 is a random number in the range [0,1].

On the other hand, in hard besiege strategy, the r ≥ 0.5and |E| < 0.5, which means
that the prey is tired and does not have sufficient energy to escape. The updated position
of the Harris’ hawk is defined as

x(t+1) = xtprey − E
∣∣∆xt

∣∣ , (28)

In case of r < 0.5and |E| ≥ 0.5, which is called soft besiege with progressive rapid
dives, the Harris’ hawk progressively selects the best possible dive to catch the prey
competitively. Then, the new position of the hawk is mathematically modeled as

Υ = xtprey − E
∣∣J xtprey − xt

∣∣ . (29)

The Harris’ hawk can dive by

Z= Υ + S × Levy(D), (30)

In this paper, a HHOA algorithm is proposed to determine the shrinkage parameter
matrix. The proposed method will efficiently help to reduce the MSE. The parameter
configurations for our proposed method are presented as follows.

1. The positions of each hawks are randomly determined. The position of a hawk
represents the shrinkage parameters, ki. Here the dimension of each hawk is the
number of explanatory variables. The initial positions of the hawks are generated
from a uniform distribution within the range [0,100].

2. The fitness function is the MSE

3. The positions are updated using Eq. (27).

4. Steps 3 and 4 are repeated until a tmax is reached.

4 Monte Carlo simulation results

In this section, a comprehensive simulation study was conducted to evaluate the perfor-
mance of the proposed method. Following Asar et al. (2014), the explanatory variables
with different degree of multicollinearity are generated by

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, p = 1, 2, ..., p, (31)

where ρ2 represents the correlation between the explanatory variables and wij ’s are inde-
pendent standard normal pseudo-random numbers. The response variable is generated
by

yi = β0 + β1xi1 + ...+ βpxip + εi, (32)
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where εi is independent and identically normal distributed pseudo-random numbers with
zero mean and variance σ2. Because the sample size has direct impact on the prediction
accuracy, three representative values of the sample size are considered: 30, 50 and 150.
In addition, the number of the explanatory variables are considered as p ∈ {4, 8, 12}.
Further, because we are interested in the effect of multicollinearity, in which the degrees
of correlation considered more important, three values of the pairwise correlation are
considered with ρ = {0.90, 0.95, 0.99}. Besides, the values of σ2 is 1.

For a combination of these different values of n, p, ρ, the generated data is repeated
5000 times and the averaged MSE is calculated as

MSE(β̂) =
1

5000

5000∑
i=1

(β̂ − β)T (β̂ − β), (33)

where β̂ is the obtained ridge estimator by the methods. The MSE values from the
Monte Carlo simulation study are reported in Tables 1 – 3. Several observations can be
obtained as follows:

1. The simulation results indicate that the HHOA method of selecting K is superior
to the other used selection methods for all combinations of n, p, and ρ in terms
of MSE. We can see that HHOA method has smaller MSE and significantly lower
MSE than others.

2. It is seen from Tables 1 -3 that β̂HHOA estimator using HHOA method is usually
more efficient than the OLS estimator for all values of n, p and when multicollinear-
ity is high or severe.

3. In terms of ρ values, there is increasing in the MSE values when the correlation
degree increases regardless the value of n and p.

4. Regarding the number of explanatory variables, it is easily seen that there is a neg-
ative impact MSE, where there are increasing in their values when the p increasing
from four explanatory variables to twelve explanatory variables.

5. With respect to the value of n, the MSE values decrease when n increases, regard-
less the value of ρand p.

6. All the selection methods of Kare superior to the OLS estimator in terms of MSE.

5 Real application results

To evaluate the predictive performance of the proposed method and to compare its
performance with the other used methods in a real data application, the Portland cement
dataset is employed. Portland cement dataset became a standard dataset to examine
and to remedy the multicollinearity. It was widely used by numerous researchers. This
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dataset comes from an experimental investigation of heat evolved during the setting
and hardening of Portland cements of varied composition and the dependence of this
heat on the percentages of four compounds in the clinkers from which the cement was
produced. There are 13 observations of heat evolved in calories per gram of cement (y),
tricalcium aluminate (x1), tetracalcium silicate (x2), tetracalcium alumino ferrite (x3),
and dicalcium silicate (x4).

It is apparent from Table 4 that there is an improvement of the predictive capability
of the HHOA comparing with the other used methods, where HHOA significantly re-
duced the MSE. The reduction of MSE using HHOA was 11.350%, 10.892%, 10.625%,
10.552%, 10.007%, 10.888%, 9.842%, 11.101%, 9.842%, 11.101%, 9.843%, 10.969%,
9.945%, 10.056%, 10.431%, and 10.213% compared with OLS, HK, KN, TC, f, HSL,
AH, D, SB, DK, SV1, SV2, AS , and M, respectively.

Table 3: Real application results for the used methods

Method MSE

OLS 9303.049

HHOA 8247.127

HK 9255.305

KN 9227.561

TC 9220.055

f 9164.227

HSL 9254.874

AH 9147.469

D 9277.002

SB 9147.553

DK 9263.284

SV1 9157.882

SV2 9169.254

AS 9207.598

M 9185.278

6 Conclusion

In this paper, a new shrinkage parameter selection of the generalized ridge estimator,
which is depending on employing the Harris hawks optimization algorithm , was pro-
posed. This proposed method allows us to handle multicollinearity with decreasing the
variability of shrinkage parameter selection. Simulation and results demonstrate that the
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proposed method is outperformed several classical methods. Furthermore, the results
proved that the proposed method is more efficient than Hoerl and Kennard (1970).
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