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R2 measure, which named coefficient of determination, is usually used as
tools for evaluation the predictive power of the regression models. However,
this measure, which is based on deviance for generalized linear models, is
sensitive to the small samples. Therefore, it is necessary to adjust R2 measure
according to the number of covariates. Beta regression model has received
much attention in several science fields in modeling proportions or rates data.
In this paper, several adjusted R2 measures are proposed in beta regression
models. The performance of the proposed measures is evaluated through
simulation and real data application. Results demonstrate the superiority of
the proposed measures compared to others.
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1 Introduction

The R2-type measures, also named explained variation or coefficient of determination
gives information about a regression model that as well the information gave by asso-
ciated P-value and parameter estimates (Heinzl and Mittlböck, 2003). R2 measure is
well-determined and useful tool to assess regression model analysis and becomes more
and more familiar in generalized linear models (Martina and Harald, 2001; Mittlboeck
and Waldhoer, 2000; Ricci and Mart́ınez, 2008).

In recent years, many papers have transacted with R2 measures for Poisson regression
models. The base advantage has often been in the behavior of many R2-type measures
without considering the number of fitted parameters (W et al., 2014; Waldhoer et al.,
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©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 351

1998). Dunn and Smyth (2005) developed a numerical algorithm to assess the densities
for Tweedie models and obtaining maximum likelihood estimators.

14 Oc The beta regression model has received much interest in many science fields
in rates data or modeling proportions (Algamal, 2019; Uraibi et al., 2017). Ferrari and
Cribari-Neto (2004) presented a regression model in which the dependent variable is
beta distribution”. Recently, several studies of this model are considered (Espinheira
et al., 2008; Ferrari and Cribari-Neto, 2004; Cameron and Windmeijer, 1996; Ospina,
2006; Smithson and Verkuilen, 2005).

In this paper, several adjusted R2 measures are proposed in beta regression models.
The performance of the proposed measures is evaluated through simulation and real
data application. The remainder of this paper is organized as follows, section 2 describe
the R2 measures and their adjustments. Section 3, presents the beta regression model.
In Section 4, the R2 measures and adjustments for beta regression model is explained.
Section 5 and 6, presents a real data application and simulation study. The conclusion
is covered by Section 7.

2 R2 measures and Adjustments

The R2 measures are much used in linear regression model and research has condensed on
their application in other generalized linear models (Zheng, 2000). It is well known that
W et al. (2014) and Waldhoer et al. (1998) presented the R2- type measures based on
deviances for regression models. The R2 values are increases and biased as the number
of covariates grows, except when the parameter estimates are zero then the R2 value
unchanged. They have properties that make them a highly useful tool in diagnostics
and model selection, they take values in 0 ≤ R2 ≤ 1 and they are non-decreasing as
regresses are added (Ricci and Mart́ınez, 2008). The R2 measure based on deviance
residuals for regression models defined as

R2
DEV = 1− D(y, µ̂)

D(y, ȳ)
=

logL(y)− logL(µ̂)

logL(y)− logL(ȳ)
(1)

where D(y, µ̂) and D(y, ȳ), are the deviance of the full model and the deviance of
the null model respectively Mittlböck (2002). The Waldhoer et al. (1998) proposed an
adjustment by the degree freedom to the R2 measure adjustment in linear regression
because the inflation of R2- type measures can be considerable when the number of
covariates is major relative to a specific sample size which that defined as

R2
DEV,df = 1− (n− k − 1)−1D(y, µ̂)

(n− 1)−1D(y, ȳ)
(2)

where n and k are the sample size and the number of estimated covariates without inter-
cept (Mittlboeck and Waldhoer, 2000). Mittlböck (2002), were proposed two alternative
adjustments for R2 measures based on deviance residuals, defined as

R2
DEV,adj,1 = 1−

D(y, µ̂) + k
2

D(y, ȳ)
= 1−

logL(y)− logL(µ̂) + k
2

logL(y)− logL(ȳ)
(3)
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R2
DEV,adj,2 = 1−

D(y, µ̂) + (k+1)
2

D(y, ȳ)
= 1−

logL(y)− logL(µ̂) + (k+1)
2

logL(y)− logL(ȳ)
(4)

Clearly, R2
DEV,adj,2 constantly gives values closer to zero than R2

DEV,adj,1”.

3 Beta regression model

The beta regression model as proposed by Ferrari and Cribari-Neto (2004) and based on
the assumption that the response (dependent) variable is beta distribution (Bayer and
Cribari-Neto, 2013). ”The probability density function for response variable Y can be
defined as

f(y, µ, φ) =
Γφ

Γ(µφ) Γ((1− µ)φ)
yµφ−1(1− y)((1−µ)φ)−1 0 < y < 1 (5)

where 0 < µ < 1 and φ > 0, Γ denotes the gamma function, φ is a precision
parameter. The mean and the variance of Eq.(5) are defined as

E (Y ) = µ, V ar (Y ) =
µ(1− µ)

1 + φ

For a fixed value ofµ, the higher the value φ, the lower the variance of Y (Aktaş and
Unlu, 2017). Let regression data {(xj , yj)}nj=1 each yj ∼ beta(µφ, (1 − µ)φ), xj =
(xj1, xj2, ...., xjp) is an explanatory variable vector, then in beta regression model, the
mean is related to the explanatory variables as

g(µj) = xTj β = ηj (6)

where β = (β0, β1, ...., βp) is a vector of unknown regression coefficient. Logit, loglog,
probit and Cauchy are the used link function of Eq.(6). The likelihood function can be
written as

L(β, γ) =
∑n

j=1 `j(µj , φ) =
∑n

j=1[log Γ(φ)− log Γ(µjφ)− log Γ((1− µj)φ)

+(µjφ− 1) log yj + {(1− µj)φ− 1} log(1− yj)] (7)

where µj = g−1(ηj) (Magalhães et al., 2013)”.

4 The proposed R2- type measures for beta regression
model

It is well known that Waldhoer et al. (1998) proposed R2 measures for Poisson regression
model, Ferrari and Cribari-Neto (2004) introduced deviance residual which is based on
Espinheira et al. (2008); Espinheira and Cribari-Neto (2014)

rdj = sign(yj − µ̂j)[2{`j(yj , φ̂)− `j(µ̂j , φ̂)}]
1/2 (8)
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Here, sign is the sign function. ”In this section, we proposed four R2 measures for beta
regression model dependent on R2 measures rules known. The deviance of beta regres-
sion model is proportional to twice the difference between the maximum log likelihood
achievable saturated model and that achieved by the model under realization. This is
can be written as

D(y, µ̂, φ̂) =
n∑
j=1

(rdj )
2 =

n∑
j=1

2{`j(yj , φ̂)− `j(µ̂j , φ̂)} (9)

Thus, the R2 measure based on deviance residuals of beta regression model is

R2
DEV = 1− D(y, µ̂, φ̂)

D(y, µ̄, φ̂)
= 1−

∑n
j=1 2{`j(yj , φ̂)− `j(µ̂j , φ̂)}∑n
j=1 2{`j(yj , φ̂)− `j(µ̄, φ̂)}

(10)

such that D(y, µ̄, φ̂) and D(y, µ̂, φ̂) are the deviances under the null model and under
the full model. In addition, we proposed R2 measure adjustment by the degree of freedom
for this model which be defied as

R2
DEV,df = 1− (n− k − 1)−1D(y, µ̂, φ̂)

(n− 1)−1D(y, µ̄, φ̂)
(11)

It has known that n and k are the sample size and the number of estimated covariates
without intercept. It then we proposed two alternative adjustments for R2 measures
based on deviance residual of this model which can be write as follows

R2
DEV,adj,1 = 1−

D(y, µ̂, φ̂) + k
2

D(y, µ̄, φ̂)
(12)

R2
DEV,adj,2 = 1−

D(y, µ̂, φ̂) + (k+1)
2

D(y, µ̄, φ̂)
(13)

5 Application

In this section, a real data application is presented for finding our proposed R2- type
measures for beta regression model to dataset from body fat, which is include 252 ob-
servation for body fat patients on 13 explanatory variables and the response variable.
In this dataset as shown in Table 1
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Table 1: Features of data body fat

Variables Features Variables Features

y Percentage of body
fat

x7 Hip circumference

x1 Age (year) x8 Thigh circumference

x2 Weight (pounds) x9 Knee circumference

x3 Height (inches) x10 Ankle circumference

x4 Neck circumference x11 Extended biceps cir-
cumference

x5 Chest circumfer-
ence

x12 Forearm circumference

x6 Abdomen circum-
ference

x13 Wrist circumference

We used four models for the beta regression model to this data. Model 1, includes five
explanatory variables. Model 2, includes eight explanatory variables. Model 6, includes
tens explanatory variables. Model 4 includes thirteen explanatory variables. The results
of the proposed R2 measures for the four models are summarized in Table 2. It can be
seen from Table 2 that the R2 measures clearly increases when the covariates added to
model and all R2

DEV,adj,2 values yields lower than R2
DEV,adj,1 values.

Table 2: Estimated R2 measures and their adjustments

Models k R2
DEV R2

DEV,d f R2
DEV,adj,1 R2

DEV,adj,2

Model 1 5 0.5512 0.5421 0.5418 0.5407

Model 2 8 o.7042 0.6944 0.6943 0.6935

Model 3 10 0.7051 0.6929 0.6929 0.6920

Model 4 13 0.7191 0.7037 0.7040 0.7031

6 Simulation Study

In this section, the performance of the four R2 measures is compared under various
conditions for the beta regression model. The sample size is considered with n =
{50, 100, 200, 300} and precision parameterφ = {20, 50}. The response variable was gen-
erated from the beta distribution yj ∼ beta(µjφ, (1 − µj)φ), such that µj is generated
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according to the logit link function which is defined as

µj =
exp

(
xTj β

)
1 + exp

(
xTj β

) (14)

The variables xj is generated from the uniform distribution [0, 1]. The true parameter
vector is β = {1,−1, 1, 0, 0, 0} and the number of covariates isk = {3, 4, 6}. The results
for the four R2- type measures are shown in Table 3

Table 3: Simulation results for the proposed measures

φ k n R2
DEV R2

DEV,d f R2
DEV,adj,1 R2

DEV,adj,2

20 3 50 0.8731 0.8648 0.8649 0.8625

100 0.9261 0.9238 0.9236 0.9228

200 0.9115 0.9101 0.9100 0.9096

300 0.8900 0.8889 0.8888 0.8885

4 50 0.8743 0.8631 0.8638 0.8615

100 0.9223 0.9191 0.9187 0.9179

200 0.8883 0.8860 0.8857 0.8851

300 0.8902 0.8887 0.8886 0.8883

6 50 0.8727 0.8549 0.8572 0.8550

100 0.8972 0.8906 0.8906 0.8896

200 0.8992 0.8961 0.8958 0.8953

300 0.9010 0.8989 0.8988 0.8984

50 3 50 0.9569 0.9541 0.9543 0.9534

100 0.9304 0.9282 0.9283 0.9276

200 0.9547 0.9540 0.9540 0.9537

300 0.9413 0.9407 0.9407 0.9406

4 50 0.9418 0.9367 0.9371 0.9359

100 0.9439 0.9415 0.9416 0.9410

200 0.9542 0.9532 0.9532 0.9530

300 0.9559 0.9553 0.9553 0.9552

6 50 0.9397 0.9313 0.9324 0.9312

100 0.9453 0.9418 0.9419 0.9414

200 0.9488 0.9472 0.9472 0.9469

300 0.9510 0.9500 0.9500 0.9499
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From Table 3, it can be seen that the adjusted R2 measures give less than the R2

measures unadjusted and always the R2
DEV,adj,2 gives values lower than the R2

DEV,adj,1.

The R2 measures increases with φ.

7 Conclusions

In this work, the problem of adjusting the R2 measures in beta regression model is
investigated. Several adjusting were proposed. Simulation and real data application are
carried out. The obtained results prove the dominance of the proposed adjusting R2

measures against the unadjusted measure.
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Heinzl, H. and Mittlböck, M. (2003). Pseudo r-squared measures for poisson regression
models with over- or underdispersion. Computational Statistics & Data Analysis,
44(1-2):253–271.
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