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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 13, Issue 01, May 2020, 128-145
DOI: 10.1285/i20705948v13n1p128

A sequential Monte Carlo approach for
the pricing of barrier option under a

stochastic volatility model

S. Cuomo∗a, E. Di Lorenzob, V. Di Sommab, and G. Toraldoa

aDepartment of Mathematics and Applications “R. Caccioppoli”, Naples, Italy
bDepartment of Economics and Statistics, Naples, Italy, University of Naples Federico II

Published: 02 May 2020

In this paper we propose a numerical scheme to estimate the price of a
barrier option in a general framework. More precisely, we extend a classical
Sequential Monte Carlo approach, developed under the hypothesis of deter-
ministic volatility, to Stochastic Volatility models, in order to improve the
efficiency of Standard Monte Carlo techniques in the case of barrier options
whose underlying approaches the barriers. The paper concludes with the
application of our procedure to two case studies under a SABR model.
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1 Introduction

Barrier options are very common exotic options. This popularity is due to two reasons:
they are one of the simplest example of exotic options, which are generally characterized
by a high degree of complexity, and they are less expensive than vanilla options. Barrier
options differ from vanilla options for the presence of numerical constraints, named barri-
ers, which are determined when the contract is concluded and can activate or extinguish
the barrier option if the underlying reaches them. On the basis of the action of barriers
on the barrier options, we can distinguish two kinds of barrier options: knock-out and
knock-in. A knock-out option is extinguished if the underlying hits the barriers, and
in this case its pay-off is null, otherwise its pay-off coincides with the one of a vanilla
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 129

option. A knock-in option is activated if the underlying reaches the barrier, and in this
case its pay-off coincides with the one of a vanilla option, otherwise its pay-off is null.

We are interested in pricing barrier options whose underlying is ruled by a continuous
stochastic process, and the barriers are represented by two deterministic continuous
functions lt and ut, defined in a time interval [0;T ], with lt < ut∀t ∈ [0;T ] (lt is named
lower barrier, ut is named upper barrier) (for a general description of barrier options
see Hull, 2003). In no-arbitrage models, the price P of a barrier option is defined as the
actualized expectation of the pay-off function under the risk-neutral measure:

P = e−rTEQ [h(sT )1It(st)t∈[0;T ]
]
, (1)

where st is the stochastic process describing the underlying; t denotes the time; T
indicates the option maturity; h(x) is the vanilla option pay-off function, i.e. h(x) =
max(x−k; 0) if a call, h(x) = max(k−x; 0) if a put, with k as strike price; 1It(x) denotes
the indicator function of It, where It =]lt;ut[; r indicates the constant risk-free interest
rate; EQ[·] denotes the expectation of a random variable under the risk-neutral measure
Q.

Differently to vanilla options, the existence of solutions in closed form for the (1) holds
only under the strong assumption of the flat structure of market parameters (Merton,
1973; Heynen and Kat, 994b; Rubinstein and Reiner, 1991; Kunitomo and Ikeda, 1992;
Broadie et al., 1997). In the more general Stochastic Volatility Models, barrier options
are generally priced via numerical simulation, based on lattices rules (Hull and White,
1993; Kat and Verdonk, 1995), finite difference schemes (Dewynne and Wilmott, 1993),
Monte Carlo methods (Gobet, 2009; Hammersley, 2013; Jackel, 2002; Giles, 2008; Gobet
and Menozzi, 2010; Glassermann, 2004).

Monte Carlo (MC) methods are the election methods in multi-assets options. This
family of methods finds application in other scientific fields, as statistical parameter
estimation (Shamany et al., 2019; Amusa et al., 2019; Algamal, 2018; Félix and Menezes,
2018). A MC procedure for evaluating (1) works as follows. The time interval [0;T ] is
divided into N subintervals {[tn−1; tn]}Nn=1, with 0 = t0 < ... < tN = T and, for every

n = 1, ..., N , a set of M numbers (s
(m)
n )Mm=1, named particles, are extracted from the

density of the underlying value in tn. The expectation in (1) is approximated by the

sample mean of the M -dimensional vector {h(s
(m)
N )1Itn (s

(m)
n )}Mm=1, called paths. In the

case of a knock-out option, the MC approach suffers from a loss of effectiveness when the
underlying approaches the barriers (Glasserman and Staum, 2001). In this case, many
paths are rejected because they hit the barriers, and this decreases the effective number
of paths used in the MC procedure: this implies an increase of the variance, since it
depends on the inverse of M .

This problem has been analyzed by many authors. In Baldi et al. (1999) the efficiency
of a MC estimator is increased by introducing a correction, represented by the probability
that the underlying does not cross the barrier. In Jasra and Del Moral (2011); Deborshee
et al. (2017); Shevchenko and Del Moral (2016); Cuomo et al. (2016) this result has been
further improved by means of Sequential Monte Carlo (MCse) methods. Sequential
MC methods have been used in several fields of economics, as portfolio management
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(Carmona et al., 2009; Del Moral and Patras, 2011), capital allocation problem (Targino
et al., 2015), and in a more general statistical context, as parameter estimation (Hasan
et al., 2013; Dey and Maiti, 2012; Prakash, 2013) and classification (McCallum et al.,
1998; Rish et al., 2001)1. In Jasra and Del Moral (2011); Deborshee et al. (2017);
Shevchenko and Del Moral (2016); Cuomo et al. (2016) the MCse works as follows. At
every time step, the particles with the lowest probability to be in the barriers interval
are replaced by the ones with the highest probability, while the particles which do not
satisfy the barriers condition are rejected. MCse schemes have been developed under
the Black-Scholes framework, where the volatility of the underlying and the interest rate
are supposed to be deterministic.

This paper presents a novel MCse scheme to evaluate the pricing formula (1). The
contributions of this paper can be summarized as follows: we construct a MCse estimator
for continuous barrier options to solve the problem of high bias and low precision of
a MCst estimator under a stochastic volatility model. More precisely, we generalize
the approach formulated in Baldi et al. (1999), which holds only under non-stochastic
volatility models, by using some more general results illustrated in Baldi et al. (1999),
concerning the expression of the probability of a particle of not crossing the barriers.
Numerical experiments show the improvement in terms of quality of our MCse approach.
Differently to Baldi et al. (1999), who deals with barrier options under deterministic
scenarios, we apply our procedure to the case of single constant barrier options by
assuming as market model a SABR model, introduced by Hagan et al. in 2002 (Hagan
et al., 2002, 2015).

The paper is organized as follows. Section 2 recalls MC estimators in deterministic
scenarios. Section 3 describes our extension of the MCse approach to volatility stochastic
frameworks. In section 4 the results of some numerical experiments show the effectiveness
of our method. Finally, in Section 5 we draw some conclusions.

2 MC estimators in deterministic models

In Shevchenko and Del Moral (2016); Jasra and Del Moral (2011) MC estimators for
(1) are discussed under non-stochastic volatility models. The underling asset price st is
assumed to evolve as a Geometric Brownian motion:

dst = µtstdt+ σtstdwt, (2)

where µt and σt are respectively the drift and the volatility of the underlying, which
are supposed to be piecewise constant functions of time, and wt represents a Brownian
motion.

Let N(0, 1) be a Normal standard random variable, let 0 < t0 < t1 < ... < tN = T be a
fixed time discretization of [0;T ], sn, σn and µn respectively the value of the underlying,
volatility and drift in tn, h the time step defined as T/N . In the MC methodology
(Shevchenko and Del Moral, 2016; Baldi et al., 1999), the continuous stochastic process

1For statistical methods in classification see also Iorio et al. (2018, 2016); Pandolfo et al. (2018).
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(st)t∈[0;T ] is approximated with the N -dimensional discrete stochastic process (sn)Nn=1,
deriving from the application of log-normality discretization scheme to (2):

sn = sn−1exp

[(
µn −

σ2n
2

)
h+ σn

√
hzn

]
, zn ∼ N(0, 1). (3)

At the n−th time step n, a set of M weights

G̃(m)
n = g̃(m)

n 1In(s(m)
n ), m = 1, ...,M (4)

is defined, where

g̃(m)
n = P(s(m)

n ∈ In|s(m)
n−1) (5)

is obtained from the distribution law of the maximum of a Brownian motion, and may
be considered as being the probability of a particle of staying inside the barriers within
the time interval [tn−1, tn]. For the cases of (i) single ( un = ln = bn) and (ii) double
(un 6= ln) barrier option,

(i) g̃
(m)
n = 1− exp

(
− 2
σ2h

(ln(sn/bn) ln(sn−1/bn))
)

;

(ii) g̃
(m)
n = 1−

∑+∞
m=1[Rn(αnm− γn, xn)] +Rn(−αnm+ βn, xn)]+

+
+∞∑
m=1

[Rn(αnm,xn)] +Rn(−αnm,xn)]

xn = ln
sn
sn−1

, αn = 2 ln
un
ln
, βn = 2 ln

un
sn−1

γn = 2 ln
sn−1
Ln

, Rn(z, x) = exp

(
−z(z − 2x)

2σ2nδt

)
.

The weights G̃(m)
n measure the chance to stay within the barriers during the

time interval [tn−1; tn] (Shevchenko and Del Moral, 2016). The discrete version
of the barrier option (1) is given by

PN = e−rTEQ

[
h(sN )

N∏
n=1

G̃(m)
n

]
. (6)

We point out that the hypothesis of deterministic volatility guarantees the existence and
uniqueness of the risk-neutral measure.

A Standard Monte Carlo (MCst) scheme (Shevchenko and Del Moral, 2016) to evaluate
an estimator Θ of (6) is characterized by the following steps: a) generation of M particles

(s
(m)
n )Nn=1 according to (3); b) calculation of the weights g̃

(m)
n and G̃(m)

n by using the
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definitions (4−5) and the formula (2); c) evaluation of the estimator Θ, defined as:

Θ =
e−rT

M

M∑
m=1

h(s
(m)
N )

N−1∏
n=0

G̃(m)
n . (7)

In Shevchenko and Del Moral (2016) a MCse estimator Λ for the barrier option has

been introduced. At every time step n, the random vector (s
(m)
n ; G̃(m)

n ) is subject to a

re-sampling procedure according to the normalized weights G̃
(m)
n , given by:

G̃(m)
n =

G̃(m)
n∑M

m=1 G̃
(m)
n

. (8)

The resampling has a twofold goal: firstly, to discard the particles which are outside the
barrier interval; secondly, to replace the particles with the lowest probability of staying in
the interval with the ones with the highest probability. The MCse procedure to evaluate

Λ can be summarized as follows: a) generation of (s
(m)
n )Mm=1 according to (3) at every

time step n; b) computation of g̃
(m)
n and G̃(m)

n ; c) re-sampling from the discrete random

variable (s
(m)
n ;G(m)

n )Mm=1 according to G
(m)
n defined in (8); d) evaluation of the following

estimator Λ:

Λ =
e−rT

MN

(
N−1∏
n=0

G̃(m)
n

)[
M∑
m=1

h
(
s
(m)
N

)]
. (9)

In short, in the MCst the evaluation of the multiple integral in (6) is based on the use

of a set of particles s
(m)
n with Log-Normal distribution, to which the weights G̃(m)

n are
associated. In the MCse the particles and the weights are selected as in the MCst, but

three further steps are taken: the normalization of the weights G̃(m)
m , the implementa-

tion re-sampling procedure, reduction of the multiple integral (6) to a chain of simple
integrals.

3 MC estimators in stochastic volatility models

In the following we assume that the positive underlying st and its volatility σt satisfy
the following stochastic differential system (SDS)

dst = µt(st)dt+ σt(st)dw
(s)
t , (10)

dσt = αt(σt)dt+ βt(σt)dw
(σ)
t (11)

dw
(s)
t dw

(σ)
t = ρdt t ∈ [0;T ],

where µt(·), σt(st), αt(·), βt(·) are real measurable functions defined in [0;T ]×R, w
(s)
t and

w
(σ)
t are Brownian motions with correlation index ρ. Unlike in the case of the Black-

Scholes model, the assumption (11) does not guarantee the uniqueness of the risk.neutral
measure and, as a consequence, the price P in (1) is not uniquely defined. Therefore
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our problem is selecting a particular risk-neutral measure Q from the set (Qn)nN of
possible risk-neutral measures consistent with the absence of arbitrage. As claimed in
Back (2006), a risk-neutral measure Q must be chosen on the basis of the preferences
and endowments of investors and production possibilities (to simplify the notations, in
the (11) and in the following the dependence of αt and βt from Q is omitted).

In this more general scenario the discrete process (sn)Nn=1 is determined by applying
the following Euler scheme to (10−11)

sn = sn−1 + rn−1h+
√
hσn−1zn, zn ∼ N(0, 1), (12)

σn = σn−1 + αn−1h+
√
hβn−1vn, vn ∼ N(0, 1), (13)

n = 1, ..., N.

Baldi et al. (1999) provide a numerical scheme to compute a MCst estimator Π to price
barrier options, which is illustrated in Algorithm MCst. In order to implement this
procedure, at every time step n they consider the conditional probability of a particle of
not crossing the barriers, given the knowledge of the underlying values at the previous

states. Here this probability is denoted with the symbol g
(m)
n , and its expression, for

the cases of (i) single ( un = ln = bn) and (ii) double (un 6= ln) barrier option, is given
respectively by:

(i) g
(m)
n = 1− exp

(
− 2
σ2h

((sn − bn)(sn−1 − bn))
)

;

(ii) g
(m)
n = 1−

∑+∞
m=1[Rn(αnm− γn, xn)] +Rn(−αnm+ βn, xn)]+

+

+∞∑
m=1

[Rn(αnm,xn)] +Rn(−αnm,xn)]

xn = (sn − sn−1), αn = 2(un − ln), βn = 2(un − sn−1),

γn = 2(sn−1 − ln), Rn(z, x) = exp

(
−z(z − 2x)

2σ2nδt

)
.

In the following The MCst procedure proposed by Baldi is sketched.

Algorithm 1: MCst

begin
for n = 1 to N do

1): Generate (s
(m)
n ;σ

(m)
n )Mm=1 according to (12−13).

2): Computation of g
(m)
n by using (3).

3): Evaluation of G(m)
n from (4).

4): Evaluation of the following estimator Π:

Π =
e−rT

M

M∑
m=1

(
h(s

(m)
N )

N−1∏
n=0

G(m)
n

)
. (14)

return Π.
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The rest of this section is devoted to the design of a new MCse scheme whose goal is to
produce in output an estimator with lower variance, bias and mean squared error than
the MCst estimator (14), when the underlying approaches the barriers, which obtained
by using a re-sampling technique (properties of re-sampling techniques in MCse methods
have been studied in Moral (2004)). Similar to what is done in the MCse approach, a set
of normalized weights, to be used in the re-sampling procedure, are defined as follows:

G(m)
n =

G(m)
n∑M

m=1G
(m)
n

. (15)

Figure 1 shows the flow chart of our MCse scheme. Our MCse procedure to price barrier
options is summarized in Algorithm MCse.

Algorithm 2: MCse

begin
for n = 1 to N do

1: Generation of (s
(m)
n ;σ

(m)
n )Mm=1 according to (12−13).

2: Computation of g
(m)
n by using (3).

3: Calculation of G(m) according to (4).

4: Determination of the normalized weights G
(m)
n , defined in (15).

5: Re-sampling of (s
(m)
n ;G(m)

n ) according to weights G
(m)
n .

6: Evaluation of Σ, given by

Σ =
e−rT

MN

(
N−1∏
n=0

G(m)
n

)[
M∑
m=1

h
(
s
(m)
N

)]
. (16)

return Σ.

The key issue of Algorithm MCse is the re-sampling step. In literature many re-
sampling techniques have been developed, as the Multinomial Re-sampling (Efron and
Tibshirani, 1994; Efron, 1992), the Residual Re-sampling (Liu and Chen, 1998; Whitley,
1994), the Stratified Re-samping (Kitagawa, 1996; Douc and Cappé, 2005), the Sys-
tematic Re-sampling (Carpenter et al., 1999). Multinomial resampling is very easy to
implement and has remarkable statistical properties (Douc and Cappé, 2005), which are
sketched in the following. Let Nm,m = 1, ...,M be the number of duplicates of the

particle s
(m)
n for every n = 1, ..., N , Fn the σ-algebra generated by the process s0:n; then:

• at every time step n, the conditional variance of the underlying particles can be
expressed in a closed form as:

V

[
1

n

n∑
i=1

si|Fn

]
=

1

M

 M∑
m=1

G(m)
n (s

(m)
i )2 −

(
M∑
m=1

G(m)
n s

(m)
i

)2
 ;

• at every time step n, the asymptotic consistence of the underlying particles is
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ensured:

nV

[
1

n

n∑
i=1

si

∣∣∣∣Fn
]
−→ V [si];

• The mean and the variance of Nm is given by:

E[Nm] = MG(m)
n V [Nm] = MG(m)

n (1−G(m)
n ).

At every time step n, the multinomial resampling can be summarized as follows:

(i) an uniform M -dimensional random vector u on [0; 1] is generated;

(ii) the quantities Si =
∑i

m=1 G
(m)
n are computed, where the G

(m)
n are defined in 8;

(iii) the index i is determined such that Si−1 ≤ u ≤ Si;

(iv) (s
(j)
n ,G(j)

n ) = (s
(i)
n ,G(i)

n ) for j = 1 to M and i found at the previous step;

In the next section we provide some numerical experiments, in which we show that our
MCse estimator has better performances than the MCst one in terms of variance, bias
and mean squared error.

4 Numerical Experiments

In Baldi et al. (1999), the MCst algorithm is applied to the case of constant barrier
puts under non-stochastic volatility models. In this section we compare MCst to MCse
to price a barrier option under a SABR dynamic (Hagan et al., 2002). We assume that
the stochastic differential system (10−11) takes the form:

dst = rstdt+ σts
β
t dw

s
t (17)

dσt = ασtdw
σ
t . (18)

We consider three data sets (T1 with high volatility−of−volatility, T2 with zero corre-
lation, T3 with low initial volatility and zero correlation), whose parameter values are
reported in Table 1. For each data set three different test problems were generated vary-
ing the value of b, 2, 1.3 and 0.7 for T1, and 2, 1.7 an 0.7 for T2 and T3, in order to check
how the closeness of such parameter to the barrier impacts the algorithms behaviour.
Finally, the number of time steps varied from 10 to 80.
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Table 1: Test parameters (iV and rP stand for implicit Volatility and real Price, respec-
tively)

r s0 k σ0 T test α β ρ M b iV rP

T1 0.02 0.4 1 0.2 5 years 0.3 1 -0.5 103 2 0.1843 0.5067

T1 0.02 0.4 1 0.2 5 years 0.3 1 -0.5 103 1.3 0.1843 0.5067

T1 0.02 0.4 1 0.2 5 years 0.3 1 -0.5 103 0.7 0.1843 0.4614

T2 0.02 0.5 1 0.5 4 years 0.4 0.5 0 103 2 0.6372 0.5675

T2 0.02 0.5 1 0.5 4 years 0.4 0.5 0 103 1.7 0.6372 0.5548

T2 0.02 0.5 1 0.5 4 years 0.4 0.5 0 103 0.7 0.6372 0.5492

T3 0.02 0.6 1 0.08 3 years 0.4 0.5 0 103 2 0.12 0.5234

T3 0.02 0.6 1 0.08 3 years 0.4 0.5 0 103 1.7 0.12 0.5121

T3 0.02 0.6 1 0.08 3 years 0.4 0.5 0 103 0.7 0.6372 0.5021

For each test problem, MCst was compared to MCse by analyzing the variance, the
mean squared error (MSE) and the bias over 1000 independent runs, computed with
respect to PN , which was evaluated through the following steps: a) calculation of the
implicit volatility via the Hagan Formula (Hagan et al., 2002); b) computation of the
price of the new barrier option with constant volatility set equal to the implicit volatility
found at the previous point, via the Kunimoto-Ikeda Formula (Kunitomo and Ikeda,
1992).

Tables (2−4) reports the results for the T1 test problems. We observe that the dis-
tance of the initial underlying from the barrier has a rather meaningful impact on the
algorithms. Table 2 shows that MCse performs just slightly better than MCst when
b = 2; in this case, at the beginning the option starts with an initial underlying value
which is sufficiently far from the barrier. Because of that, the probability that the par-
ticles generated at the following steps hit the barrier is quite low, and the resambling
strategy in the MCse has a very limited effect with respect to MCst.

The improvement of the MCse respect to the MCst can be also justified as follows. At
every step, the MCse makes use of more information than the MCst: in fact, differently
to the MCst case, in the MCse we condition on the past underlying and volatility values.

The picture dramatically changes when the initial underlying approaches the barrier
(b = 1.3, Table 3). In this case, as expected, the behaviour of both algorithms de-
teriorates, However, the worsening of the results appears much more dramatic for the
MCst. Looking at the variance and bias, they appear that MCse is much less erratic in
its behaviour with respect to MCst. For the MCst, MSE is about twice (respectively)
larger than the corresponding values for the MCse. This lives up our expectations about
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the validity of the resampling strategy adopted in MCse to tackle the drawback of the
loss of effectiveness of MCst when the underlying gets close to the barrier. When the
initial underlying is very close to the barrier (b = .7, Table 4) the performance deterio-
ration of the two pricing strategies is even more evident, but still MCse seems to clearly
outperform MCst.

The number of time steps has not a significative impact on the performance of the
MCst estimator thanks to the re-sampling procedure, which lets us substitute the reject
paths with the survival ones.

Table 2: Bias, Variance and MSE of MC estimators for b=2e(data set T1)
.

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.0346 0.0332 0.0140 0.0139 0.0152 0.0150

N=20 0.0374 0.0332 0.0161 0.0142 0.0175 0.0153

N=30 -0.0379 -0.0335 0.0173 0.0146 0.0187 0.0157

N=40 0.0383 0.0338 0.0180 0.0149 0.018 0.0160

N=50 -0.0389 -0.0342 0.0184 0.0152 0.0199 0.0164

N=60 0.0392 0.0347 0.0189 0.0157 0.0204 0.0169

N=70 0.0399 0.0351 0.0193 0.0158 0.0209 0.0170

N=80 -0.0405 -0.0355 0.0197 0.0161 0.0213 0.0174

Table 3: Bias, Variance and MSE of MC estimators for b=1.3e(data set T1)

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.0495 0.0440 0.0295 0.0160 0.0320 0.0179

N=20 -0.0509 -0.0453 0.0307 0.0176 0.0333 0.0197

N=30 -0.0515 -0.0459 0.0319 0.0184 0.0346 0.0205

N=40 0.0528 0.0471 0.0331 0.0190 0.0359 0.0212

N=50 0.0542 0.0482 0.0343 0.0199 0.0372 0.0222

N=60 0.0552 0.0496 0.0358 0.0205 0.0388 0.0230

N=70 0.0571 0.0506 0.0370 0.0213 0.0403 0.0239

N=80 0.0579 0.0515 0.0381 0.0246 0.0415 0.0273



138 Cuomo et al.

Table 4: Bias, Variance and MSE of MC estimators for b=0.7e(data set T1)
.

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.0807 0.0615 0.0629 0.0471 0.0694 0.0509

N=20 -0.0823 -0.0625 0.0648 0.0499 0.0716 0.0538

N=30 0.0846 0.0641 0.0669 0.0503 0.0741 0.0544

N=40 0.0879 0.0678 0.0695 0.0537 0.0772 0.0583

N=50 -0.0901 -0.0696 0.0723 0.0579 0.0804 0.0627

N=60 0.0953 0.0743 0.0786 0.0614 0.0877 0.0669

N=70 -0.1003 -0.0797 0.0849 0.0691 0.0950 0.0755

N=80 -0.1084 -0.0825 0.0953 0.0758 0.1071 0.0826

The same considerations as above apply to numerical experiments for the data set
T2, whose results are reported in Tables 5-7. In general, varying the data set parameter
we obtained different scenarios (whose results are not reported here for the sake of
space), but for which MCse shown to be clearly superior to MCst when the underlying
approaches the barrier.
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Table 5: Bias, Variance and MSE of MC estimators for b=2e
(data set T2)

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.0446 0.0433 0.0246 0.0238 0.0266 0.0257

N=20 0.0475 0.0439 0.0268 0.0240 0.0291 0.0259

N=30 -0.0480 -0.0450 0.0273 0.0246 0.0296 0.0266

N=40 0.0493 0.0490 0.0280 0.0262 0.0304 0.0286

N=50 -0.0503 -0.0498 0.0284 0.0270 0.0309 0.0295

N=60 0.0525 0.0504 0.0289 0.0286 0.0204 0.0169

N=70 0.0548 0.0531 0.0299 0.0293 0.0329 0.0321

N=80 -0.0561 -0.0555 0.0322 0.0306 0.0353 0.0337

Table 6: Bias, Variance and MSE of MC estimators for b=1.7e(data set T2).

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.2131 0.1398 0.6352 0.4120 0.5811 0.3814

N=20 0.2127 0.1340 0.6214 0.4110 0.5713 0.3490

N=30 0.2105 0.1375 0.6130 0.4108 0.5704 0.3459

N=40 0.2102 0.1372 0.6159 0.4103 0.5700 0.3408

N=50 0.2100 0.1369 0.6160 0.4101 0.5683 0.3401

N=60 0.1984 0.1360 0.6156 0.4100 0.5674 0.3396

N=70 0.1980 0.1359 0.6140 0.4097 0.5638 0.3372

N=80 0.1973 0.1357 0.6139 0.4092 0.5601 0.3321

The considerations relative to the previous cases are also valid for the data set T3,
whose results are reported in Tables 8-10.
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Table 7: Bias, Variance and MSE of MC estimators for b=0.7e(data set T2)

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.2927 0.1725 0.6739 0.4581 0.7600 0.4879

N=20 -0.2933 -0.1735 0.6758 0.4598 0.7618 0.4899

N=30 0.2962 0.1751 0.6789 0.4613 0.7666 0.4920

N=40 0.2979 0.1878 0.6795 0.4637 0.7682 0.4990

N=50 -0.3011 -0.1802 0.6823 0.4679 0.7730 0.5003

N=60 0.3163 0.1863 0.6896 0.4724 0.7897 0.5071

N=70 -0.3192 -0.1901 0.6959 0.4791 0.7978 0.5152

N=80 -0.3284 -0.1948 0.6981 0.4827 0.8059 0.5207

Table 8: Bias, Variance and MSE of MC estimators for b=2e
(data set T3)

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.0356 0.0342 0.0176 0.0140 0.0189 0.0152

N=20 0.0374 0.0357 0.0183 0.0142 0.0200 0.0155

N=30 -0.0375 -0.0341 0.0193 0.0146 0.0207 0.0158

N=40 0.0382 0.0361 0.0201 0.0155 0.0216 0.0168

N=50 -0.0413 -0.0381 0.0225 0.0176 0.0272 0.0191

N=60 0.0431 0.0400 0.0241 0.0199 0.0280 0.0022

N=70 0.0458 0.0421 0.0276 0.0230 0.0293 0.0248

N=80 -0.0430 -0.0436 0.0301 0.0258 0.0320 0.0278

5 Conclusions

In this paper we have presented a numerical scheme to estimate a barrier option
price in Stochastic Volatility Models. Our approach extends a classical MCse proce-
dure, developed under the assumption of deterministic volatility, in order to improve
the efficiency of MC methods in the case of an option whose underlying approaches the
barriers. At every time step, a set of particles are generated and re-sampled according
to their probability of not hitting the barriers; finally, this values are used to estimate
the integral in barrier option pricing formula via MC approach. In order to test the
validity of our method, our framework has been applied to two single knock-out puts.
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Table 9: Bias, Variance and MSE of MC estimators for b=1.7e(data set T3).

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.1812 0.1278 0.5287 0.3410 0.5606 0.3573

N=20 0.1838 0.1281 0.5534 0.3480 0.5872 0.3639

N=30 0.1867 0.1285 0.5731 0.3499 0.6080 0.3664

N=40 0.1893 0.1292 0.5969 0.3518 0.6327 0.3685

N=50 0.1902 0.1299 0.6060 0.3528 0.6422 0.3700

N=60 0.1947 0.1306 0.6086 0.3557 0.6465 0.3728

N=70 0.1988 0.1318 0.6101 0.3585 0.6500 0.3759

N=80 0.2135 0.1327 0.6118 0.3599 0.6574 0.3775

Table 10: Bias, Variance and MSE of MC estimators for b=0.7e(data set T3)

Bias Variance MSE

Time Steps Standard Sequential Standard Sequential Standard Sequential

N=10 0.1937 0.0736 0.5724 0.3581 0.6099 0.3635

N=20 -0.1938 -0.0740 0.5758 0.3598 0.6173 0.3653

N=30 0.1962 0.0752 0.5788 0.3613 0.6173 0.3670

N=40 0.1979 0.0778 0.5798 0.3637 0.6190 0.3699

N=50 -0.2011 -0.0823 0.5813 0.3679 0.6217 0.3747

N=60 0.2163 0.0853 0.5872 0.3724 0.6340 0.3797

N=70 -0.2192 -0.0914 0.5939 0.3791 0.6420 0.3875

N=80 -0.2284 -0.0956 0.5971 0.3827 0.6493 0.3919

Our experiments provided evidence that the increase of the information, resulting from
the conditioning respect to the past underlying and volatility values, and our proposed
resampling strategy embedded in the MCst indeed improved in a rather meaningful way
towards enhancing the overall pricing strategy robustness.
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Figure 1: Flow chart of the MCse procedure


