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Issues of symmetry (or asymmetry) arises naturally in the analysis of
square contingency tables. Because many existing asymmetry models do
not constrain the main diagonal cells, observations on these cells do not con-
tribute to the likelihood ratio chi-squared test statistics. Herein we propose
a model that indicates the asymmetry for the log odds. It can utilize the
information in the main diagonal cells. Additionally, the symmetry model
can be separated into different models, including the proposed model.

keywords: conditional symmetry model, contingency table analysis, sym-
metry model.

1 Introduction

This paper describes a method to handle matched-pairs data. Matched-pairs data occur
in longitudinal studies, case-control studies, etc. For example, a square contingency table
may arise when a sample of pairs of matched individuals (e.g., husbands and wives) are
classified according to a categorical variable. Typically, responses in matched-pairs data
are statistically dependent. That is, the independence model does not hold in a square
contingency table formed from matched-pairs data.
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Contingency tables are analyzed to estimate an unknown probability distribution from
the observed frequencies. Our research aims to devise a model that employs fewer
parameters to describe the data, but provides an estimate with a high confidence level.
To this end, we must consider a statistical model that fits the given dataset and specifies
the structure of association between two categorical responses. For square contingency
tables, the symmetry and asymmetry between two variables are representative patterns
of association. Therefore, we are interested in determining whether the structure in a
square contingency table is symmetric or asymmetric instead of its independence.

Table 1 is a square contingency table, which shows data constructed from a database
on a website (Seiyama, 1995). These data describe the cross-classification of individual’s
income and spouse’s income in Japan, which were examined in 1995. Income was divided
into the following categories: (1) less than 700,000 yen, (2) about 1 million yen, (3) 2 to
4 million yen, and (4) over 5 million yen.

In this study, we are interested in determining whether an individual’s income is
equally likely to the spouse’s income for the data in Table 1. Many statisticians have
proposed various symmetry and asymmetry models (e.g., Bowker, 1948; McCullagh,
1978; Agresti, 1983). However, the parameters on the main diagonal cells are saturated
in these models because these cells are not constrained. Because Fujisawa and Tahata
(2018) were interested in utilizing the information on the main diagonal cells, they
proposed models in which the parameters on the main diagonal cells are not saturated
using the logit transformation. Their models provide an asymmetric structure for cell
probabilities. Here, we consider a new model, which is an extension of Fujisawa and
Tahata’s models. The proposed model may be useful to visualize the structure where
the one cell probability is a location shift of the symmetric cell probability on a logistic
scale.

The symmetry model, which shows a symmetric structure of cell probabilities, can be
decomposed into the symmetry of the odds ratio and the homogeneity of the marginal
distribution (Caussinus, 1965). This may be useful to elucidate the origin when the
symmetry model provides a poor fit for a real dataset. Additionally, Fujisawa and
Tahata (2018) proposed the decomposition of the symmetry model. Similarly, we are
interested in considering the decomposition of symmetry using the proposed model.

This paper is organized as follows. Section 2 describes the proposed model. Section 3
decomposes the symmetry model. Section 4 evaluates the goodness-of-fit of the proposed
model. Section 5 provides a numerical example. Section 6 discusses the result, while
Section 7 concludes the paper.

2 Models

Consider an r × r square contingency table with the same ordinal row and column
classifications. Let πij denote the probability that an observation will fall in the ith
row and the jth column of the table (i = 1, . . . , r; j = 1, . . . , r). Consider the following
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asymmetric structure

πij =

{
δjiψij (i < j),

ψij (i ≥ j),
(1)

where ψij = ψji (Tahata and Tomizawa, 2015). {δji} indicates the ratio between two
symmetric cells. Note that Eq. (1) with {δji = 1}, {δji = δ}, and {δji = δj−i} reduces to
the symmetry (S) model (Bowker, 1948), the conditional symmetry model (McCullagh,
1978), and the linear diagonals-parameter symmetry model (Agresti, 1983), respectively.
In these models, the parameters on the main diagonal cells are saturated.
Let X and Y denote the row and column variables, respectively. Fujisawa and Tahata

(2018) considered an asymmetric structure for cell probabilities defined by

Lij = ∆ji + Lji (i < j), (2)

where

Lij = log
πij

1− πij
and Lji = log

πji
1− πji

.

We note that Lij is the log odds where (X,Y ) = (i, j) instead of (X,Y ) ̸= (i, j), and Lji

is the log odds where (X,Y ) = (j, i) instead of (X,Y ) ̸= (j, i). {∆ji} indicates the log
odds ratios between two symmetric cells. The S model is a special case of this model
with {∆ji = 0}. Various models have been proposed by changing the structure of {∆ji}.
In the logit conditional symmetry (LoCS) model, Eq. (2) is replaced by {∆ji = ∆}.
That is

Lij = ∆+ Lji (i < j).

The LoCS model indicates that the log odds ratios are constant for i < j. Similarly,
the logit linear diagonals-parameter symmetry (LoLDPS) model refers to a model where
Eq. (2) is replaced by {∆ji = (j − i)∆}. That is

Lij = (j − i)∆ + Lji (i < j).

This model indicates that the log odds ratio is proportional to the difference j−i between
the value of X and the value of Y . For more details of both LoCS and LoLDPS models,
please see Fujisawa and Tahata (2018).
Here, we propose a new model, which is an extended LoLDPS (or LoCS) model. The

extended logit linear diagonals-parameter symmetry (ELoLDPS) model is defined as

Lij = ∆+ (j − i)Θ + Lji (i < j).

This model implies that the log odds ratios are expressed by the sum of constant ∆ and
(j − i)Θ, which depend on the difference j − i between the value of X and the value of
Y .

The ELoLDPS model may appear similar to the two-ratios parameter symmetry model
(Tomizawa, 1987), which is given as

πij = δθj−iπji (i < j).
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However, the log odds in the ELoLDPS model shows an asymmetric structure. Under
this model

πij =
exp(∆ + (j − i)Θ + Lji)

1 + exp(∆ + (j − i)Θ + Lji)
, πji =

exp(Lji)

1 + exp(Lji)
(i < j).

Namely, this model indicates that the one cell probability is a location shift of the
symmetric cell probability on the logistic scale. The shift depends on the difference
between the values of X and Y .
In addition, the ELoLDPS model with ∆ = Θ = 0, ∆ = 0, and Θ = 0 is reduced

to the S model, the LoLDPS model, and the LoCS model, respectively. Therefore, the
proposed model is an extension of these models.

3 Decomposition of the symmetry model

If the S model holds, the ELoLDPS model holds. However, the reverse does not hold
generally. This section considers an additional condition to obtain the S model assuming
that the ELoLDPS model holds.
The global symmetry (GS) model is defined by

δU = δL,

where

δU =
∑∑

i<j

πij and δL =
∑∑

i<j

πji,

(Read, 1977). In addition, the mean equality (ME) model is defined by

E(X) = E(Y ),

where

E(X) =
r∑

i=1

r∑
j=1

iπij and E(Y ) =
r∑

i=1

r∑
j=1

jπij .

This leads to the following theorem:

Theorem 1 The S model holds if and only if the ELoLDPS model, the GS model, and
the ME model all hold.

Proof. If the S model holds, then

δU =
∑∑

i<j

πij =
∑∑

i<j

πji = δL

and
r∑

i=1

r∑
j=1

iπij =
r∑

i=1

r∑
j=1

iπji =
r∑

i=1

r∑
j=1

jπij .
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Namely, the GS model and the ME model hold. As mentioned above, the ELoLDPS
model with ∆ = Θ = 0 is the S model. The necessity is proved.
Next, we show the sufficiency. Assume that the ELoLDPS model, the GS model, and

the ME model all hold. Since the ELoLDPS model holds,

Lij − Lji = ∆+ (j − i)Θ (i < j).

Namely

log
πij

1− πij
− log

πji
1− πji

= ∆+ (j − i)Θ. (3)

The sum of the left-hand side of Eq. (3) multiplied by πij − πji gives∑∑
i<j

(πij − πji)

{
log

πij
1− πij

− log
πji

1− πji

}
.

Similarly, for the right-hand side of Eq. (3),

∆
∑∑

i<j

(πij − πji) + Θ
∑∑

i<j

(j − i)(πij − πji). (4)

From the GS and ME models, we obtain∑∑
i<j

(πij − πji) = 0,

and ∑∑
i<j

(j − i)(πij − πji) = 0.

Consequently, Eq. (4) is equal to zero. Hence,∑∑
i<j

(πij − πji)

{
log

πij
1− πij

− log
πji

1− πji

}
= 0. (5)

In the case of πij > πji, the left-hand side of Eq. (5) is positive since both the difference
πij −πji and the difference log(πij/(1−πij))− log(πji/(1−πji)) are positive. In the case
of πij < πji, the left-hand side of Eq. (5) is positive since both the difference πij − πji
and the difference log(πij/(1− πij))− log(πji/(1− πji)) are negative. Accordingly, Eq.
(5) with πij = πji only holds. That is, the S model holds.

We note that Theorem 1 includes the results of Fujisawa and Tahata (2018).

4 Goodness-of-fit test

For the r×r contingency tables, let nij denote the observed frequency in the (i, j)th cell
of the table with n =

∑∑
nij and mij denote the corresponding expected frequency.

Assuming that {nij} has a multinomial distribution, m̂ij denotes the maximum likelihood
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estimate (MLE) of mij . The MLE for a model is obtained by the Newton-Raphson
method for log-likelihood equations.

For the ELoLDPS model, the Lagrangian must be maximized with respect to {πij},
λ, {λij}, ∆, and Θ, which is given as

L =
r∑

i=1

r∑
j=1

nij log πij + λ

 r∑
i=1

r∑
j=1

πij − 1

+
∑∑

i<j

λij

(
log πij

− log
∑∑
(k,l)̸=(i,j)

πkl −∆− (j − i)Θ− log πji + log
∑∑
(k,l) ̸=(i,j)

πlk

 .

Setting the partial derivatives of L to zero gives

nst
πst

+ λ+
λst
πst

−
∑∑

i<j
(i,j)̸=(s,t)

λij∑∑
(k,l)̸=(i,j)

πkl
+
∑∑

i<j

λij∑∑
(k,l) ̸=(i,j)

πlk
= 0 (s < t),

nss
πss

+ λ−
∑∑

i<j

λij

 1∑∑
(k,l)̸=(i,j)

πkl
− 1∑∑

(k,l) ̸=(i,j)

πlk

 = 0 (s = 1, ..., r),

nts
πts

+ λ− λst
πts

+
∑∑

i<j
(i,j)̸=(s,t)

λij∑∑
(k,l)̸=(i,j)

πlk
−
∑∑

i<j

λij∑∑
(k,l) ̸=(i,j)

πkl
= 0 (s < t),

as well as ∑
i

∑
j

πij = 1,
∑∑

i<j

λij = 0,
∑∑

i<j

(j − i)λij = 0,

and

log πij − log
∑∑
(k,l)̸=(i,j)

πkl −∆− (j − i)Θ− log πji + log
∑∑
(k,l)̸=(i,j)

πlk = 0 (i < j).

The Newton-Raphson method can be used to solve these equations.

For the goodness-of-fit test, we can use test statistics such as the likelihood ratio
chi-squared statistic, which is defined by

G2 = 2
r∑

i=1

r∑
j=1

nij log
nij
m̂ij

.

Under the ELoLDPS model, G2 has a chi-square distribution with r(r−1)/2−2 degrees
of freedom.
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5 Numerical example

The models described herein are used to analyze the data in Table 1. Table 2 shows the
value of G2 for each model applied to the data in Table 1.
The S model has a poor fit. We infer that the cell probabilities lack a symmetry

structure. Furthermore, the LoCS and LoLDPS models also fit poorly. On the other
hand, the ELoLDPS model fits well. The MLE of ∆ is ∆̂ = 0.48 and the MLE of
Θ is Θ̂ = −0.20 in the ELoLDPS model. Therefore, we infer that the log odds ratio
Lij − Lji is 0.48 − 0.20(j − i) for all i < j. Namely, (1) spouse’s income tends to be
higher than individual’s income for j − i = 1, (2) spouse’s income tends to be slightly
higher than individual’s income for j − i = 2, and (3) spouse’s income tends to be lower
than individual’s income for j − i = 3.

6 Discussion

We propose the ELoLDPS model and decompose the S model using the ELoLDPS model.
In particular, we are interested in applying a more generalized model such that for a
fixed k (k = 1, . . . , r − 1),

Lij = ∆+

k∑
l=1

(jl − il)Θl + Lji (i < j).

Similarly, we decompose the S model using this model. Assuming that the generalized
ELoLDPS model holds, we can consider an additional condition to obtain the S model.
For a fixed k (k = 1, . . . , r − 1), the MEk model is defined by

E(X l) = E(Y l) (l = 1, ..., k),

where

E(X l) =
r∑

i=1

r∑
j=1

ilπij and E(Y l) =
r∑

i=1

r∑
j=1

jlπij .

This leads to the following theorem:

Theorem 2 The S model holds if and only if the generalized ELoLDPS model, the GS
model, and the MEk model all hold.

Proof. If the S model holds, then

δU =
∑∑

i<j

πij =
∑∑

i<j

πji = δL

and
r∑

i=1

r∑
j=1

ilπij =

r∑
i=1

r∑
j=1

ilπji =

r∑
i=1

r∑
j=1

jlπij .
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Namely, the GS model and the MEk model hold. Additionally, the generalized ELoLDPS
model with ∆ = Θ1 = · · · = Θk = 0 is the S model. The necessity is proved.

Next, we demonstrate the sufficiency. Assume that the generalized ELoLDPS model,
the GS model, and the MEk model all hold. Since the generalized ELoLDPS model
holds, then

Lij − Lji = ∆+
k∑

l=1

(jl − il)Θl (i < j).

Namely

log
πij

1− πij
− log

πji
1− πji

= ∆+

k∑
l=1

(jl − il)Θl. (6)

Multiplying the sum of the left-hand side of Eq. (6) by πij − πji gives

∑∑
i<j

(πij − πji)

{
log

πij
1− πij

− log
πji

1− πji

}
.

Similarly, for the right-hand side of Eq. (6),

∆
∑∑

i<j

(πij − πji) +

k∑
l=1

Θl

∑∑
i<j

(jl − il)(πij − πji). (7)

From the GS and MEk models, we can obtain∑∑
i<j

(πij − πji) = 0,

and ∑∑
i<j

(jl − il)(πij − πji) = 0 (l = 1, ..., k).

Consequently, Eq. (7) is equal to zero. Hence,

∑∑
i<j

(πij − πji)

{
log

πij
1− πij

− log
πji

1− πji

}
= 0. (8)

Therefore, Eq. (8) with πij = πji only holds. That is, the S model holds.

Note that the MEr−1 model is the marginal homogeneity (MH) model (Stuart, 1955;
Tahata and Tomizawa, 2015, 2008). We can obtain the following corollary:

Corollary 1 The S model holds if and only if the generalized ELoLDPS model with
k = r − 1, the GS model, and the MH model all hold.
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7 Concluding remarks

We propose the ELoLDPS model, which is based on a logit transformation. This model
indicates that a cell probability is a location shift of the symmetric cell probability on
the logistic scale. To visualize the asymmetric structure of two symmetric cells on the
logistic scale, the proposed model should be applied instead of the model in Eq. (1).

The proposed model constrains the main diagonal cells since many observations tend
to concentrate along these cells. In this model, the observed frequencies on the main
diagonal cells affect the likelihood ratio chi-squared statistic. That is, this model utilizes
information in the main diagonal cells.

The proposed model can decompose the S model. When the S model has a poor fit,
this decomposition may determine the reason.
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Table 1: Individual’s income and spouse’s income data in Japan (Seiyama, 1995)

Individual’s Spouse’s income

income (1) (2) (3) (4) Total

(1) 27 22 168 269 486

(27.000)a (19.500) (176.000) (271.500) (494.000)

(26.997)b (20.359) (183.146) (281.863) (512.365)

(26.999)c (19.623) (178.041) (275.940) (500.603)

(26.998)d (22.257) (183.422) (259.764) (492.441)

(2) 17 12 87 106 222

(19.500) (12.000) (77.000) (103.500) (212.000)

(18.636) (11.999) (80.272) (107.853) (218.759)

(19.376) (12.000) (77.467) (104.745) (213.588)

(16.741) (11.999) (87.543) (108.021) (224.304)

(3) 184 67 151 134 536

(176.000) (77.000) (151.000) (110.000) (514.000)

(168.951) (73.687) (150.985) (114.548) (508.171)

(173.976) (76.524) (150.997) (110.649) (512.146)

(168.690) (66.452) (150.988) (124.682) (510.812)

(4) 274 101 86 93 554

(271.500) (103.500) (110.000) (93.000) (578.000)

(261.255) (99.136) (105.324) (92.991) (558.705)

(267.088) (102.248) (109.328) (92.998) (571.662)

(283.337) (98.974) (95.140) (92.993) (570.444)

Total 502 202 492 602 1798

(494.000) (212.000) (514.000) (578.000)

(475.839) (205.180) (519.726) (597.255)

(487.440) (210.395) (515.833) (584.333)

(495.766) (199.682) (517.093) (585.459)

Notes: aEstimated expected frequencies by the S model.
bEstimated expected frequencies by the LoCS model.
cEstimated expected frequencies by the LoLDPS model.
dEstimated expected frequencies by the ELoLDPS model.
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Table 2: Likelihood-ratio chi-square values G2 for models to the data in Table 1

Model Degree of freedom G2

S 6 14.70∗

LoCS 5 12.23∗

LoLDPS 5 14.46∗

ELoLDPS 4 5.00

ME 1 0.17

GS 1 2.15

Note: *Significant at the 0.05 level


