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For the important role of confidence intervals in statistical inference, we
present in this article the shortest pivotal confidence interval using an entropy
measure called the Resistor-Average distance, two examples are used to show
the application of the proposed technique which include a simulation study.
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1 Introduction

In statistical inference, a Confidence Interval (CI) is an interval estimate of the unknown
parameter of the population, where the degree of confidence refers to a given proportion
of intervals which includes the true value of the parameter, it is usual to use 90% and
95% confidence levels in practice.

An accurate estimate of the unknown parameter is important to avoid uncertainty and
any misleading inferences. In this sense, confidence intervals have the guarantee of cap-
turing the true value of the unknown parameter as it gives a range of values which is
likely (by likely, we mean with a high probability) to contain the population parameter.
Cl is thought of as a tool gives an impression of the precision of the estimate as it depends
on the parameter and the error model, the certainty of the interval estimate is based on
two important measures: (1) coverage probability and (2) interval size. For any interval
estimate of the form [L(X), U(X)] of any unknown parameter 6, the coverage probability
is defined as the probability of covering the true parameter; i.e., Py(6 € [L(X),U(X)]).
The infimum of the coverage probability is known as the confidence coefficient denoted
by «, and the size of the interval estimate is its length, i.e., (U(X) — L(X)).
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To get the most accurate interval estimate, we need to obtain the interval with the
most coverage and the least size or equivalently the shortest length, many researchers
addressed this issue, see; Nakagawa and Cuthill (2007),Casella and Berger (2002), Fer-
entinos and Karakostas (2006), Gao et al. (2012), among many others.

There are different methods for finding interval estimator, such as: inverting a test statis-
tic, pivotal quantities, pivoting a cumulative distribution function and bayesian credible
sets. Different construction methods were studied extensively in literature (for example;
Nakagawa and Cuthill (2007), Casella and Berger (2002),Meeker et al. (2017)), a special
concern of finding the shortest interval can be found in Nakagawa and Cuthill (2007),
Guenther (1969), Hall (1988), Juola (1993) and many others.

As a method of finding confidence intervals, pivotal quantities is a very useful method
and its f interest in this article. For general definitions and examples of pivotal quantities
see Meeker et al. (2017), Casella and Berger (2002).

On the other hand, information theory provides a statistical basis for quantifying
and storing information. In probability theory, the fundamental quantities of informa-
tion theory (entropy, mutual information, and Kullback-Leibler distance) are defined as
functionals of probability distributions.

Kullback-Leibler distance is the measure of the discrepancy between two distributions, it
have many important statistical interpretations in different fields of statistics, especially
in estimation and hypotheses testing.

The motivation of this article is to study the distance between the distributions of the
CI bounds and to minimize this distance under the constriction of coverage probability
to obtain the shortest confidence interval.

The outline of this article is as follows; In section 1 we presented an introduction on
confidence intervals and definitions of entropy measures, we also stated our motivation.
In section 2, we presented the bases of constructing the shortest pivotal confidence
intervals, the classical method and proposed method from entropy point of view. Also,
we introduced our main theorem. In section 3, we applied the proposed methodology
as we studied two examples via a simulation study. Lastly, in section 4, we present our
conclusions and remarks.

2 Shortest Pivotal Confidence Interval

Let X be a real valued random variable with a probability density function (pdf) f(z;6),z €
R, with unknown parameter 6 € ©. A random quantity Q(X;6) is a pivotal quantity if
the distribution of Q(X;#) is independent of all parameters. For a specific value o > 0,
the (1 — «) confidence set for 6 can be presented as

C(x) = {0 : a < Qa3 00) < b}, (1)
with constants a and b satisfies,

Pyla < Q(z;0) <b) > 1 —a, (2)
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which can be converted to ( if 6 is a real valued parameter) to
C(X) = {L(z) <8 < U(2)}, (3)

the (1 — )% confidence interval for . The interval C(z) is considered as the Shortest
Pivotal Confidence Interval (SPCI) if (U(z) — L(z)) is minimum.

Theorem 9.3.2 in Casella and Berger (2002) introduced some requirements that a confi-
dence interval should satisfy in order to be considered as the shortest confidence interval.
A disadvantage of the theorem that one should be careful when dealing with scale fam-
ilies as it may not be applicable, while on the other hand it works well with location
cases.

The end points of the confidence interval presented in equation 3; L(x) and U(x) are
functions of x. As our motivation states, it is tempting to study the distance between
these two functions under the constraint that the coverage probability of the interval
equals 1 — «, and then to look for the bounds that gives the shortest distance.

2.1 Entropy Measures of Distance

Entropy is defined as a measure of uncertainty of a single random variable or equivalently
the uncertaninty of its pdf. Kullback-Leibler distance was first defined by Kullback and
Leibler (1951). It is also known as relative entropy, cross entropy, information distance,
and information for discrimination. In recent literature, Kullback-Leibler distance had
some attention to be used and applied in different research fields. Let po(z),p1(z) be
two probability densities, the Kullback-Leibler distance denoted by D(p1||po) is defined
to be

D(p1llpo) = /p1(m)loggégg.

Kullback-Leibler distance have two fundamental properties:
e non-negativity; D(p1||po) > 0, with equality if and only if p; = pp .

e asymmetry; D(p1||po) # D(pol|p1)-

Minimizing D(p1||po) is studied in many fields of statistics; information theory, in

large deviations theory and maximum entropy (see; Csiszar (1967), Kullback (1997),
Good (1963), Akaike (1998), Cover and Thomas (2012), Abbas et al. (2017) and many
others).
Because the asymmetry property of Kullback-Leibler distance it is not a true distance
between distributions as it does not satisfy the triangle inequality. Its often of interest
to find the I-projection p* = argmin D(p1||pg) ; the ”closest” distribution to p; of all
the distributions in Py, the family of the distribution pg. Many work has been done
in finding p* in convex sets (Dykstra (1985), Bhattacharya and Dykstra (1997), and
Bhattacharya and Al-Talib (2017)).

To overcome the disadvantage of Kullback-Leibler distance of being an asymmetric
measure of distance, Johnson and Sinanovic (2001) calculated a symmetric distance that



468 Al-Talib

has many of the properties of Kullback-Leibler distance, called the Resistor-Average
distance denoted by R(pg,p1) and defined as

D(pol|p1)-D(p1||po)
D(pol|p1) + D(p1llpo)’

R(po,p1) = (4)

it arises from geometric considerations similar to those used to derive the Chernoff
distance.

The Kullback-Leibler distance is attractive to be used in the context of finding this
distance as it is easy to evaluate, but lack of symmetry is a key disadvantage, also
we cannot decide on which bound could be considered the true distribution. Hence,
we should look for a measure that is symmetric and have the important properties of
Kullback-Leibler distance in hypothesis testing.

The two Kullback-Leibler distances; D(po||p1) and D(p1||po) are asymmetric but their
average

D +D
T(po.p1) = (p0||101)2 (P1]lpo)

is symmetric.
It can be proved following the definition of arithmetic and harmonic means that,

R(po,p1) < min{D(po||p1), D(p1|lpo)} < J(po,p1) < maxz{D(po||p1), D(p1llpo)}

its interesting to consider Resistor-Average distance as a minimum bound of the distances
D(polipr), Dipnllpo).

Recall that the coverage probability of C(x) = {0 : L(z;a(a1)) < 0 < U(x;b(a2)) :
a=a;+az}is (1 —a), C(x) is considered the shortest if U(x;b(az)) — ( i
the minimum.

The choice of a(a) and b(agz) will be the decisive criterion in choosing the values that
insures minimum length.

The following theorem proves that the confidence interval with the smallest Resistor-
Average distance will be the shortest.

Theorem 1. Let C(z) be a (1—a)100% confidence interval with the smallest Resistor-
Average distance, then C(z) is the shortest confidence interval for 6.

Proof. Suppose that

C*(x)={0: L*(z;a" (1)) <0 <U*(z;0"(a2)) : o« = a1 + aa}
is the confidence interval with the smallest Resistor-Average distance, where,

D(L*||U") - DU]|LY)
D(L¥[|U*) + D(U~||L*)

R(L*,U") =
Assume that,

C'(z) ={0: L' (z;d (1)) <O <U'(z;b (2)) : @ = a1 + s},
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be any interval such that U’(z; b (c2))— L/ (z;b' (1)) is less than U*(z;b*(ag))—L*(x; b* (o).
Now, let

b* * b* *
/a* L logﬁ:Kl and /w'< U IOgF:KQ,

Ki K3
then, R(L*,U*) = KR
If a’ < a*, then,

b’ , I v’ ,
/, LIOgU’:/, g(z)dx ; say K
a a

’
[ otade <g)¥ —a)  i{gla) < )

< g(a)(t —a') {g(V) < g(a")} (5)
< g(a®)(b* —a*) AV —d < b —a* g(a*) >0}
"
< [Cods o) 2 g(a))
hence, K| < Kf.

In similar fashion, K5 < K3. And hence, R(L',U’) < R(L*,U").
So, one can find a measure with smaller Resistor-Average distance, but does it have
(1 — a) coverage probability? the proof of Theorem 9.3.2 of Casella and Berger (2002)
assures that if the function is unimodal, and if there is a shorter interval,then it has a
coverage probability less than or equal to (1 — «). Hence, The theorem is proved.

In the special case when probability distribution of L(x) (or U (m)) is symmetric, then
the Kullback-Leiber distance is also symmetric. Johnson and Sinanovic (2001) stated,

in such case R(L(z),U(x)) equals to w. This statement draw the following

proposition.

Proposition

If the probability distributions of the lower and the upper bounds of a (1 — «) confi-
dence interval are symmetric, then the smallest Resistor-average distance is found when
splitting o in half.

3 Simulation and Examples

Example 1: The shortest pivotal confidence interval for gamma distribution.

Let X be a random variable with a Gammal(k; 5) pdf, the quantity Y = % is a pivotl
quantity with Y Gamma(k; 1). It is straight forward to state the confidence interval for

8 as,
{B:7<p<2}, (6)

a



470 Al-Talib

with the constraint P(a <Y <b)=1-—«.

The lenght of such interval is proportional to % — % not to b — a, hence Theorem 9.3.2
of Casella and Berger (2002) is not applicable here. The shortest confidence interval is
found by solving the following constrained minimization problem,

b(a)
)

b(a
subject to : / fly)dy =1-«a.

1 1
minimize, with respect to a : —
a a

For o = 0.05, the solution of the above constrained minimization problem for different
k values are presented in Table 1.

Table 1: values of a and b for SPCloyy

k a b

2 0.358 10.448
3 0.818 11.316
4 1.360 12.410
5 1.954 13.588

On the other hand, Theorem 1 will assist in finding the shortest pivotal confidence
interval using the Resistor-Average distance.
Notice that the lower bound in equation 6; L(x) is a random variable that has a Gamma
distribution,

L(z) = % ~ Gamma(ky, =k, B, = %),

similarly,

U(z) = 2 ~ Gamma(ky =k, fu = g)

The Kullback-Leibler distance from L(x) to U(z) is

D(U(x)||L(z)) = / Ulw)log (gg )

= (kv — kp)Y(kv) — logT'(kv) 4+ log T'(kr) + kr(log B — log Bu) + ku

Bu — BL
Br

(Penny, 2001)

= (k = k)¢(k) - log I'(k) + log T'(k) + k(log AL — log fu) + kﬂUB_LﬂL
Bu — Bi

BL

= k(log 8L —log Bu) + k

() 0
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+[ios (3572 ) + 5575 1

a b
Similarly, the Kullback-Leibler distance from U(z) to L(z) is
b a
D(L@)||U(x)) = k[ log (5) +2- 1],
hence, the Resistor-Average distance is

D(L(x)||U(x)) - D(U(x)||L(x))
D(L(@)||U(x)) + D(U(x)[|L(z))”

R(L(az),U(:E)) = (7)
The values of a and b need to satisfy P(a <Y < b) = 1— «. The problem of the shortest
confidence interval problem comes down to find the suitable values of a and b which also
minimizes equation 7.

Let P, be the lower cumulative probability of a, and Q) be the upper cumulative
probability of b. A simulation study is carried out to find R(L(z),U(z)) at a = 0.05,
such that P(a <Y < b) = 1— « or equivalently P, + Q, = «. Table 2, present some
choices of a and b alongside the associated R value, when k = 3. The direct application
of Theorem 1 suggests that the shortest pivotal confidence Interval is

x x
: < g <
{/8 7.94829 — = 0.71250}’

with Resistor-average distance value equals 3.77307, meanwhile the confidence interval
given by constrained minimization (at k = 3) is

x x
: < p <
{6 11.316 — fs 0.818} ’

has Resistor-average distance value equals 4.37050.

Table 3 below, presents the values of a, b and R that insures the shortest confidence
interval using Resistor-average distance and constrained minimization. The bold face
values of R indicates the smaller values. these results gives direct conclusions of The-
orem 1. The SPCI’s (using R and constrained minimization) found in Table 3 share
approximately 93.9% when k = 2, and shares approximately 94%, 93.16%, 93.24% when
k = 3,4 or 5, respectively.
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Table 2: R of some a and b choices

a b P, Qp R
0.19053  6.32342 0.001 0.049 1.62415
0.3?;786 6.43.945 0.605 0.645 5.29.878
0.4?;6()5 6.59.891 0.610 0.640 4.62.644
0.56721 6.9é381 0.620 0.630 4.04413
0.66480 7.51.660 0.0.30 0.620 3.86969
0.76701 7.8é869 0.635 0.615 3.77.364

0.71250 7.94829 0.03568 0.01432 3.77307

0.71506
0.74618
0.78293

0.81088

7.97728 0.036
8.40595 0.04
9.27379 0.045

11.22887 0.049

0.014
0.01
0.005

0.001

3.77320

3.79973

3.93716

4.37336

Table 3: R for the some a and b choices, o = 0.05.

k a b R a b R

2 0.30351 6.40146 3.73333 0.358 10.448 4.38977
3 0.71250 7.94829 3.77307 0.818 11.316 4.37051
4 1.20701 9.43059 3.79170 1.360 12.410 4.31817
5 1.75803 10.86417 3.80242 1.954 13.588 4.26492



Electronic Journal of Applied Statistical Analysis 473

Example 2: The shortest pivotal confidence interval for Normal distribution.

Let X1, Xo, ..., X, be did from N(u,0?), where o2 in known, its quite straight forward
to get, B
X _
z=="F
o/\/n
a pivotal quantity with standard normal. Then, the pivotal (1 — «)100% confidence
interval is given by,

where a and b need to satisfy P(a < Z <b)=1-—a.

To obtain the Shortest Pivotal confidence interval, we need to find the values a and b
that minimizes b — a and to satisfy P(a < Z < b) = 1 — a.. (the interval length is
(b — a)o/y/n, but since the factor o/4/n is common in the interval bounds, it can be
ignored).

It is easy to show that the values a = —zg and b = za is optimal for minimum length.
Hence, the SPCI is

{M:$_23\jﬁ Sugx—l—z%\;ﬁ}.

To apply the resistor-average distance here. Note that, the lower bound L(z) =
Z —b-o/+y/n has a normal distribution with mean p — b-o/y/n and standard deviation
o/\/n.

Similarly, the upper bound; U(x) ~ N(iu — a - o /\/n,0%/n).
Now, the Kullback-Leibler distance from L(z) to U(z) is,

D(U@)||L(x)) Z/U(””) lo <Z((g>

2 2 2

— 1 (o o

:W+{g_1ogg_1}
20 2 o7 7

el b o (S )

202 /n a?/n °8 a?/n
RERIN I RING:
202 /n
(o) ) _ (b—a)?
202 /n 2

Similarly, D (L(z)||U(z)) = (b_;)Q. Hence, the Resistor-Average distance is R(L(x), U(a:)) =

DL@IVE) (pyoposition 2.1).

Equivalently,

D(L@)||U(@) - DU@)IL@) S5 O (h—a)?

D(L(x)||[U(z)) + D(U(@)[[L(x)) ~ (- 4 G-a)® 1

R(L(x), U(x)) -
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The shortest confidence interval is obtained by minimizing % subject to P(a < Z <
b)=1-a.

A simulation study is carried out to find R(L(z),U(z)) at o = 0.05, the results are given
in Table 4. The results in bold face presents the values associated with the smallest R,

Table 4: R for the some a and b choices, a = 0.05.
a b P, Qp R

-1.654  3.090 0.0490 0.0010  5.628425
—1.685 2.5‘76 0.0;150 0.0650 4.566845
—1..751 2.?;26 0.0;LOO 0.0‘100 4.15;’)551
—1.é81 2.654 0.0‘300 0.0‘200 3.876156
-1.;)60 1.9‘60 0.0‘250 0.0‘250 3.84i459
—2.654 1.é81 0.0‘200 0.0‘300 3.876156
—2.326 1.7‘51 0.0‘100 0.0;LOO 4.155551

-3.719  1.646  0.0050  0.0450  4.560845

the resistor-average distance technique gives the optimal values of @ and b, as the classical
way did.

4 Conclusions and Remarks

This article aimed to present the shortest confidence interval using the Resistor-Average
distance based on the belief that entropy measures hold information and reduce uncer-
tainty in making inferences. We do not believe that classical methods of finding the
shortest pivotal confidence intervals give less accurate estimates or misleading infereces,
but when the classical methods are not applicable, we suggest the entropy based measure
for obtaining such intervals. Theorem 1 and Proposition 2.1 gives the requirements of
the interval bounds that insures shortest distance between them, without affecting the
coverage probability of the interval.

Two examples were introduced in section 4, we applied a classical method and the en-
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tropy based method and the results were compared in Tables 3 and 4. We found that the
Resistor-Average distance performed better (in the sense of uncertainty, see Example 1)
or it will be as good as the classical method (see, Example 2).
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