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The assumption of carryover effects is unavoidable due to the very nature
of crossover designs. Even in case of crossover design with washout period,
the hypothesis of no carryover effect should be tested and established. On
the other hand, this assumption makes the analysis difficult and potentially
biased or inefficient in case of two treatment two period crossover design.
For a reasonable estimation, experimenters are advocated to employ a two
period three treatment crossover design, or a three period two treatment
crossover design. In this article, we present optional analyses of a uniform
three period three treatment crossover design, consisting of a placebo and
two active treatments. We develop a test for detecting presence of carry-
over effects which directs experimenter for a proper analysis of his crossover
trial. We present ANOVA for each of the three possible carryover models,
that both, single, or none of the active treatments has carryover effect, and
illustrate through an example.

keywords: Repeated measurement design, Carryover effects, Active treat-
ment, Placebo treatment, Test of carryover effects, Analysis of variance.

1 Introduction

Designs with a new therapy, standard therapy and a placebo are sometimes referred as
’gold standard’ trials. There are two kinds of objectives associated with these trials, first,
compare two active treatments and second, compare active treatments with placebo.
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These research objectives are mostly carried out using crossover designs (CODs) because
within subject treatment comparisons are more efficient than between subject treatment
comparisons. For example, Tsoy et al. (1990) used three-period crossover design in three
treatments F12, F100, P as double-blind gold standard trial on patients suffering from
exercise-induced asthma. They used data values of forced expiratory volume (FEV1)
obtained after an exercise challenge for comparing the protective effect of a single dose of
a study therapy formetorol solution aerosol 12 mg (F12), with a single dose of standard
therapy salbutamol suspension aerosol 100 mg (F100) and with a placebo (P).

Since in crossover, each subject is measured according to a treatment sequence over
successive periods of time, the carryover effects are natural and may sustain for different
amounts of time. While Senn (1992) advocated use of adequate washout period, number
of articles have discussed analysis of two and three treatment CODs conducted in two
to four periods under various carryover models. Grizzle (1965) analyzed COD1 {AB,
BA} and advised to use only first period data in presence of carryover. To deal with
carryover COD1 has been modified to COD2 {AA, AB, BA, BB}, COD3 {ABB, BBA},
COD4 {ABA, BAB}, COD5 {ABB, ABA, AAB, BAA, BAB, BBA}, COD6 {ABAB,
BABA}, COD7 {AABB, ABBA, BBAA, BAAB} and COD8 {AABA, ABAA, ABBA,
AAAA, BBAB, BABB, BAAB, BBBB} having self and mixed carryover. A treatment
followed by self is self carryover and a treatment followed by another treatment is a
mixed carryover.

Senn and Lambrou (1998) investigated designs of COD5 type, under simple and steady
state carryover models and concluded that, statisticians cannot provide a general design
and estimation strategy that can be guaranteed to deal with carryover. The simple
carryover model considers self carryover effects equal to mixed carryover, and, a steady
state model considers self carryover as vanished to zero. Afsarinejad and Hedayat (2002)
studied suitability of various two period CODs in more than two treatments assuming
self and mixed carryover effects to be different. Kempton et al. (2001) showed that
COD1 is A-optimal and COD3 is MA-optimal when carryover effects are proportional
to treatment effects. As per Hedayat and Stufken (2003), the best design choices for
optimal treatment comparisons are, COD1 under no carryover model, COD2 and COD3
under mixed carryover model, COD4 and COD8 under self and mixed carryover model
while, COD6 and COD7 under all three models being robust to changes in model. Yang
and Stufken (2008) studied CODs having (t+ 1) treatments for comparing t treatments
with a control and identified them as efficient/robust under number of models including
three period CODs having three treatments. Some discussion on carryover model with
correlated errors is available in literature; it is for two treatment designs in more than
two periods, for example, Kunert (1991) result showed that, COD7 is optimal for both
treatment and carryover effects under correlated observations.

Koch et al. (1989) proposed a two period COD in ten sequences, for comparison of two
active treatments in the presence of placebo, so that treatment and carryover effects are
partially orthogonal. This resulted in variance for active treatment contrast remaining
the same under no carryover and carryover models. Jones and Donev (1996) improved
their design into three period design to optimize the active treatments comparison. In
one of their designs, the treatment effects are orthogonal to the carryover effects.
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Apart from design and model modifications, different procedures have been suggested
to handle carryover effects at the analysis stage. Since, a COD is highly suitable for
treatment comparison beyond elimination of carryover effects; the first step in the anal-
ysis of CODs has been the test of equality of carryover effects. In the context of COD1,
Grizzle (1965) developed F -test for testing the equality of carryover effects based on
between sequence sum of squares and within sequence sum of squares, then treatment
comparison is made as per COD only if carryover effects are not significant. Lehmacher
(1991) discussed an alternative approach, consisting of testing multiple tests of hypothe-
sis about equality of treatment effects and /or equality of carryover effects using Hoteling
T 2 test and t-test. Their test statistics were defined in terms of sequence total differ-
ences and within sequence treatment differences. Laird et al. (1992) considered the data
resulting from a COD as representing longitudinal data from number of subjects, and
developed GLS and REML estimators considering two period observations as bivariate
normal observations. They advocated to employ COD2 or COD9 instead of COD1 to
ensure availability of adequate information on carryover effects.

From the above discussion it is clear that, reasonable analysis of COD for carryover
models is discussed for CODs in three / four periods, or CODs in two periods having at
least one subject receiving no active treatments. In this paper, we consider analyzing a
three treatment, three period, uniform, minimum balanced COD in six sequences, COD
(3, 6, 3) as a COD in two treatments and a placebo, under carryover model assuming no
carryover from placebo. As per medical knowledge, when placebo is given to patients, in
patients’ mind the psychology is that drug is given to them, but in reality it is placebo,
so whatsoever psychological effects the patients’ has, get measured as direct effects of
the placebo, and in the next period there are no carryover of the psychological effects.
Therefore it is logical to assume no psychological carryover and obviously, there is no
pharmacological carryover from a placebo treatment.

There are two advantages of using one treatment as placebo. Firstly, carryover effects
are estimated and tested independently prior to embarking upon the least squares anal-
ysis. Secondly, the efficiency of separability of treatment and carryover effects increases.
An individual test for testing the significance of carryover effects prior to analysis is
developed which directs for optional analysis of crossover experiment. For analytical
convenience, we consider subject effects as random during development of the individual
tests and, as fixed while making treatment comparisons with a reasonable restriction
that sum of subject effects across all sequences is nil. We present an estimation of model
terms and ANOVAs for three cases, (i) both active treatments have significant carry-
over, (ii) only one of the active treatments has carryover and, (iii) none of the active
treatments has significant carryover. The paper is divided into three sections, Section
2 provides model and characterization of the COD, Section 3 develops analysis under
three models, and Section 4 illustrates analyses by an example. MATLAB code for the
individual test of the carryover effects and analysis under one of the three models is
available upon request to authors.
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2 The model and characterization of COD(2+1,6,3)

The COD (3, 6, 3) belongs to the series of uniform, minimum balanced COD(t, t(t −
1), t); t > 2; prime power which has been considered by many authors (Martin and Eccle-
ston (1998), Hedayat and Yang (2004), Yang and Stufken (2008), Divecha and Gondaliya
(2015)). We consider this design as COD(2+1,6,3), specially to represent a clinical trial
design in two active treatments, A and B and the third treatment P as a placebo, because
in execution, this design is close to the design consisting of three replications of COD1
and in analysis it is possible to obtain a test for testing significance of carryover effects.
The carryover effect tests have an immediate generalized form for the corresponding se-
ries. The treatment sequences of COD(2+1,6,3) are {ABP,BPA,PAB,APB,BAP,PBA}.

2.1 The model and notations

We consider that data from COD(2+1,6,3) follows fixed effect simple carryover model
given by

yijk = µ+ τd(k,j) + γd(k−1,j) + πk + ξij + eijk, (1)

i = 1, . . . , 6; j = 1, . . . , n; k = 1, 2, 3,

where, yijk denotes the response from sequence i, subject j, in period k to which treat-
ment d(k, j) was assigned, µ is the general mean, τd(k,j) is the effect of treatment d(k, j),
γd(k−1,j) is the carryover effect of treatment d(k− 1, j) on the response observed on sub-
ject j in period k, πk is the effect due to period k, ξij is the effect due to subject j having
sequence i, every sequence replicated n times (n ≥ 1) and the eijk are independently
normally distributed error terms with mean 0 and variance σ2. It is obvious that there
is no carryover effect in the first period, i.e. γd(0,j) = 0. We further assume that placebo
does not produce carryover effect, i.e. γd(k−1,j) = 0 if d(k − 1, j) = P .

We use the notation G, TA, TB, TP , RA, RB, Pk and Uij to denote in order, the grand
total, treatment total for A, B, P, residual total for A, B, period total for kth period,
k = 1, 2, 3 and total for jth subject receiving ith sequence, j = 1, . . . , n, i = 1, . . . , 6.

2.2 Characterization of COD(3,6,3) as COD(2+1,6,3)

It is known that, in general in a COD, the treatment effects and carryover effects are not
orthogonal. Every COD must be measured for its ability to separate the treatment and
carryover effects for model 1 because, a design that is poor in separating these effects may
cause treatment effects to be declared significant when it may be due to positive carryover
effects. The ability of separating the effects depends upon the number of observations
free from carryover and the number of ordered pair of treatments occurrences in two
consecutive periods. A measure of separability can be calculated for a COD on the basis
of observed frequencies of carryover and the expected frequencies from an independent
model (Hanford (2005)). The efficiency of separability of COD(2+1,6,3) is 50% greater
than that of COD(3,6,3), the efficiency of separability of former is 63.5% and that of
latter is 42.3%.
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The COD(2+1,6,3) retains all the characteristics of COD(3,6,3) such as uniformity,
minimal balanced and so on. Also, this design is optimal and efficient for five carryover
models (Gondaliya and Divecha (2018, 2019)). An additional characteristic is that there
are 10 observations free from carryover effects in the former design instead of only 6 in
the latter. This facilitates to divide the total 18 observations into three equal size sets
of 6 observations, each complete in occurrence of treatment, period and subject factor
levels. Exploiting this feature, we develop tests of carryover effects based on means of
sets and discuss analysis in the following Section.

3 Analysis

In practice, presence of carryover effects leads to lengthy clinical trials. It has a large im-
pact on the estimation and testing of treatment effects. Few CODs, including COD(t, t(t−
1), t); t prime power with last period repeated, are universally optimal for estimation
of treatment effects, as well as carryover effects of treatments (Martin and Eccleston
(1998)). However, this period addition does not carry any clinical significance. Un-
doubtedly, a COD that allows test of significance of carryover effects prior to its analysis
for treatment effects should be useful in practice.

3.1 Test of carryover effects

To develop test statistics for testing significance of carryover effect of active treatments
of COD(2+1, 6n, 3), we divide the 6n subjects from the above COD in three sets say, f1,
f2 and f3, consisting of specific observations respectively as {U11, . . . , U1n, U51, . . . , U5n},
{U21, . . . , U2n, U61, . . . , U6n} and {U31, . . . , U3n, U41, . . . , U4n}. We define,

Um =
1

2n

∑
l∈fm

Ul; m = 1, 2, 3

s2m =
1

2n− 1

∑
l∈fm

(Ul − Um)2; m = 1, 2, 3

then, under the random effect consideration, and the assumption that subject effects
are independently normally distributed with mean 0 and variance σ2ξ , the sampling

distributions of group means (Um) and variances (s2m) are:

Um ∼ N(µm, σ
2
1/2n); m = 1, 2, 3;

Where σ21 = 3σ2 + 3σ2ξ

U1 − U2 ∼ N(γA, σ
2
1/n)

U1 − U3 ∼ N(γB, σ
2
1/n)

(2n− 1)s2m
σ21

∼ χ2
(2n−1); m = 1, 2, 3
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Here, µm indicates expectation of group mean Um. Consequently, independent two
sample t-tests with null hypothesis H0 : γA = 0 against alternative H1 : γA 6= 0 and
with hypothesis H0 : γB = 0 against H1 : γB 6= 0 provide tests for testing significance of
carryover effects of A and carryover effects of B defined respectively by 2 and 3.

(U1 − U2)− γA√
(s21 + s22)/2n

∼ t(4n−2) (2)

(U1 − U3)− γB√
(s21 + s23)/2n

∼ t(4n−2) (3)

Although this test is developed using a heuristic approach, and carries less power, it is
useful as a confirmatory test with say 10 or more % level of significance.

In practice, clinical trial data from a COD may result in, both carryover effects of A as
well as B are significant, or carryover from either A or B is significant, or carryover from
neither A nor B is significant. Accordingly three cases of analysis of above COD arise.
We present analyses under fixed effects model with varying assumptions of presence or
absence of carryover effects.

3.2 Estimation in fixed effect carryover models

We present estimation of parameters given by model 1 in three cases about the two
active treatments as: both treatments, only one treatment and none of the treatments
possess significant carryover effects.

Table 1: Estimates of model parameters.

Parameter model 1 model 4

µ G/18n G/18n

γA (3(RA − RB) + (TA − TB) +
∑
U2j +

∑
U6j −

∑
U3j −

∑
U4j)/16n -

γB (3(RB − RA) + (TB − TA) +
∑
U3j +

∑
U4j −

∑
U2j −

∑
U6j)/16n -

τA TA/6n−G/18n− γ̂B/3 TA/6n−G/18n
τB TB/6n−G/18n− γ̂A/3 TB/6n−G/18n
τP TP /6n−G/18n TP /6n−G/18n
π1 P1/6n−G/18n P1/6n−G/18n
π2 P2/6n−G/18n P2/6n−G/18n
π3 P3/6n−G/18n P3/6n−G/18n
ξ1j U1j/3−G/18n U1j/3−G/18n
ξ2j U2j/3−G/18n− γ̂B/3 U2j/3−G/18n
ξ3j U3j/3−G/18n− γ̂A/3 U3j/3−G/18n
ξ4j U4j/3−G/18n− γ̂A/3 U4j/3−G/18n
ξ5j U5j/3−G/18n U5j/3−G/18n
ξ6j U6j/3−G/18n− γ̂B/3 U6j/3−G/18n

3.2.1 Estimation when both active treatments have significant carryover
effects

The normal equations are:
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18nµ+ 6n(τA + τB + τP ) + 4n(γA + γB) + 6n(π1 + π2 + π3) + 3

6∑
i=1

n∑
j=1

ξij = G

6nµ+ 6nτA + 2nγB + 2n(π1 + π2 + π3) +

6∑
i=1

n∑
j=1

ξij = TA

6nµ+ 6nτB + 2nγA + 2n(π1 + π2 + π3) +

6∑
i=1

n∑
j=1

ξij = TB

6nµ+ 6nτP + 2n(γA + γB) + 2n(π1 + π2 + π3) +

6∑
i=1

n∑
j=1

ξij = TP

4nµ+ 2n(τB + τP ) + 4nγA + 2n(π2 + π3) +

n∑
j=1

ξ1j +

n∑
j=1

ξ3j +

n∑
j=1

ξ4j +

n∑
j=1

ξ5j = RA

4nµ+ 2n(τA + τP ) + 4nγB + 2n(π2 + π3) +
n∑
j=1

ξ1j +
n∑
j=1

ξ2j +
n∑
j=1

ξ5j +

n∑
j=1

ξ6j = RB

6nµ+ 2n(τA + τB + τP ) + 6nπ1 +
6∑
i=1

n∑
j=1

ξij = P1

6nµ+ 2n(τA + τB + τP ) + 2n(γA + γB) + 6nπ2 +
6∑
i=1

n∑
j=1

ξij = P2

6nµ+ 2n(τA + τB + τP ) + 2n(γA + γB) + 6nπ3 +
6∑
i=1

n∑
j=1

ξij = P3

3µ+ (τA + τB + τP ) + (γA + γB) + (π1 + π2 + π3) + 3ξ1j = U1j

3µ+ (τA + τB + τP ) + γB + (π1 + π2 + π3) + 3ξ2j = U2j

3µ+ (τA + τB + τP ) + γA + (π1 + π2 + π3) + 3ξ3j = U3j

3µ+ (τA + τB + τP ) + γA + (π1 + π2 + π3) + 3ξ4j = U4j

3µ+ (τA + τB + τP ) + (γA + γB) + (π1 + π2 + π3) + 3ξ5j = U5j

3µ+ (τA + τB + τP ) + γB + (π1 + π2 + π3) + 3ξ6j = U6j

The solutions of the normal equations with restrictions
∑6

i=1

∑n
j=1 ξij = 0, τA + τB +

τP = 0, γA + γB = 0 and π1 + π2 + π3 = 0 are shown in Table 1.

3.2.2 Estimation when only one active treatment has significant carryover
effect

When only one active treatment has carryover effect, the normality restriction on car-
ryover effects is unavailable and hence, the normal equations containing the non-zero
carryover effects parameter cannot be solved. The only way to analyze the model 1 is
to substitute the non-zero carryover effect terms by the empirical estimates. Define,
four sets h1, h2, h3 and h4 consisting of model observations {y1j2, y2j1, y3j3, y4j2, y5j3, y6j1},
{y1j3, y2j2, y3j1, y4j3, y5j1, y6j2}, {y1j3, y2j2, y3j1, y4j1, y5j2, y6j3} and {y1j1, y2j3, y3j2, y4j2, y5j3, y6j1} and hav-
ing means y1, y2, y3 and y4 respectively. When 2 results in γA to be non-zero, use sets
h1 and h2 to estimate γA, γ̂A = 1.5(y1 − y2). Similarly, when 3 results in γB to be
non-zero, use sets h3 and h4, and obtain γ̂B = 1.5(y3 − y4). Without loss of generality
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let us assume, γA is significant. Then model 1 can be transformed into a no carryover
effects model given by,

y′ijk =

{
yijk − γ̂A, if d(k − 1, j) = A;

yijk, otherwise.

where,

y
′
ijk = µ+ τd(k,j) + πk + ξij + eijk, i = 1, . . . , 6; j = 1, . . . , n; k = 1, 2, 3, (4)

Then estimates of model 4 parameters are as shown in Table 1. Note that G, τd(k,j), pk,
and Uij are calculated using observation y′ijk in place of yijk.

3.2.3 Estimation when none of the active treatments have significant
carryover effect

When carryover effects are present, they are confounded with the treatment period
interaction effects, therefore the treatment period interaction terms was ignored in above
two cases. Now, in the absence of carryover effects, there is an opportunity to analyze
the following model,

yijk = µ+ τd(k,j) + πk + ξij + (τπ)d(k,j)k + eijk, (5)

i = 1, . . . , 6; j = 1, . . . , n; k = 1, 2, 3,

where, (τπ)d(k,j)k is treatment period interaction effects due to treatment d(k, j) and
period k and the remaining terms are as defined in 1. Under the side conditions,∑

d(k,j)(τπ)d(k,j)k = 0 and
∑

k(τπ)d(k,j)k = 0, estimate of (τπ)d(k,j)k is [3(TP )d(k,j)k −
Td(k,j) − Pk − Vd(k,j)k + 2G/3]/6n, where (TP )d(k,j)k is sum of observations receiving
treatment d(k, j) in period k and Vd(k,j)k is the sum of subjects who receive treatment
d(k, j) in period k. Estimates of the remaining model terms are same as model 4 shown
in Table 1.

3.3 Testing

3.3.1 Testing when both active treatments have significant carryover effects

Analysis of COD1 cannot test hypothesis about equality of treatment effects eliminating
carryover. Grizzle (1965) has suggested to use only first period data to test treatment
effects under carryover model. Lehmacher (1991) made a detailed study of all possible
hypotheses about treatment and carryover effects and recommended that COD1 can be
useful for crossover trial, if no or if only positive carryover is assumed. He suggested to
test following set of hypothesis to conclude about treatment effects when carryover effects
are present, H0 : (τA−τB)−(λA−λB) = 0, H1 : τA−τB = 0 (no treatment effects in first
period), H2 : (τA− τB)− (λA−λB)/2 = 0, H3 : λA−λB = 0 and H4 : (τA− τB)− (λA−
λB) = 0 (no second period difference). Then, subject to rejection of H0, if H1 is rejected,
treatment effects are concluded as significant, however if it fails to reject H1 but H3 and
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Table 2: Analysis of variance of model 1 for treatment effects.

Source of Variation Sum of Squares Expression Degrees of Freedom

Treatments τ̂AQA + τ̂BQB + τ̂PQP 2

(eliminating carryover)

Active Treatments (5(TA − TB) + 3(RA − RB) +
∑

j U2j +
∑

j U6j 1

(eliminating carryover) −
∑

j U3j −
∑

j U4j)
2/240n

Carryover of treatments 3[(RA + P1/3 +
∑
U2j/3 +

∑
U6j/3− 4G/9)2 1

(ignoring treatments) +(RB + P1/3 +
∑
U3j/3 +

∑
U4j/3− 4G/9)2]/10n

(eliminating subjects)

Periods
∑3

i=1 P
2
i /6n−G

2/18n 2

Subjects
∑6

i=1

∑n
j=1 U

2
ij/3−G

2/18n 6n− 1

(ignoring carryover)

Error By Subtraction 12n− 5

Total
∑
y2ijk −G

2/18n 18n− 1

Where QA = TA −G/3− 2nγ̂B ; QB = TB −G/3− 2nγ̂A; QP = TP −G/3

H4 are rejected, it implies either treatment effects are significantly positive or carryover
effects are significantly negative. These set of hypothesis give proper conclusion when
λA = λB and are erroneous otherwise. It is desirable to obtain test of treatment effects
based on treatment effect estimates that have been adjusted for carryover effects. Such
estimates of treatment effects for two treatment crossover designs have been discussed by
Lucas (1957) for COD3, Ebbutt (1984) for COD{ABB,ABA}, Senn and Lambrou (1998)
for COD5 type, etc., but all have been limited to estimation. We provide analysis
of variance for COD(2+1,6n,3) to test treatment effects eliminating carryover effects
as shown in Table 2. Here, primary interest is to compare active treatments. Under
H0 : τA = τB, the sum of squares due to active treatments (5(TA− TB) + 3(RA−RB) +∑

j U2j+
∑

j U6j−
∑

j U3j−
∑

j U4j)
2/240n normed by σ2 follows chi-square distribution

with one degree of freedom. As a result, active treatment effects adjusted for carryover
effects are also tested by analysis of variance shown in Table 2.

Subject effects may be significantly different because different sequences of treatments
are received or due to biological variation. In the second analysis of variance shown in
Table 3, we test hypothesis about subject effects to get some idea about the cause of
variation when they are significant. Here, G1 and G2 are the grand total of first and
second Latin squares which include sequences {ABP,BPA,PAB} and {APB,BAP,PBA}
respectively.

3.3.2 Testing when any one active treatment has significant carryover effect

When any one active treatment has significant carryover effect, the test procedures
suggested in literature, specifically Grizzle (1965), Lehmacher (1991), etc. are not useful
because of the assumption that carryover of all treatments should be equal. Here it is
better to transform model 1 into the form 4 according to the procedure suggested in
Section 3.2.2. Model 4 is free from carryover and hence the hypothesis H0 : τA = τB =
τP gets tested using analysis of variance shown in Table 4. Note that, here primary
objective is to compare active treatments. Under null hypothesis H0 : τA = τB, the test
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Table 3: Analysis of variance of model 1 for subject effects.

Source of Variation Sum of Squares Expression Degrees of Freedom

Subjects 6n− 1

(ignoring carryover)

Groups (G2
1 +G2

2)/9n−G
2/18n 1

Subjects within group
∑3

i=1

∑n
j=1 U

2
ij/3−G

2
1/9n+

∑6
i=3

∑n
j=1 U

2
ij/3−G

2
2/9n 6n− 2

Periods
∑3

i=1 P
2
i /6n−G

2/18n 2

Treatments (T2
A + T2

B + T2
P )/6n−G2/18n 2

(ignoring carryover)

Carryover of treatments γ̂AR
′
A + γ̂BR

′
B 1

(eliminating treatments)

(eliminating subjects)

Error By Subtraction 12− 5

Total
∑
y2ijk −G

2/18n 18n− 1

Where R
′
A = 3(RA − RB) + (TA − TB) +

∑
U2j +

∑
U6j −

∑
U3j −

∑
U4j ;

R
′
B = 3(RB − RA) + (TB − TA) +

∑
U3j +

∑
U4j −

∑
U2j −

∑
U6j

Table 4: Analysis of variance of model 4.

Source of Variation(SS) Sum of Squares Expression DF

Treatments(SST) (T2
A + T2

B + T2
P )/6n−G2/18n 2

Active Treatments (SSAT) (TA − TB)2/8n 1

Periods (SSP)
∑3

i=1 P
2
i /6n−G

2/18n 2

Subjects (SSS)
∑6

i=1

∑n
j=1 U

2
ij/3−G

2/18n 6n− 1

Error TSS-SST-SSP-SSS 4(3n− 1)

Total (TSS)
∑
y2ijk −G

2/18n 18n− 1

statistics (TA − TB)2/8n normed by σ2 follows chi-square distribution with one degree
of freedom. Therefore, H0 : τA = τB gets tested by SSAT as shown in Table 4. Also
one more advantage due to model transformation is that period and subject effects are
now orthogonal with the treatment effects and hence, period and subject effects are also
tested using analysis of variance shown in Table 4.

3.3.3 Testing when none of the active treatments has significant carryover
effect

In absence of significant carryover of active treatments, sum of squares due to treatment
period interaction can also be split from the total sum of squares. We split the total
sum of squares of model into sum of squares due to treatments, periods, subjects and
treatment period interaction. Also active treatments are tested by the test statistics
(TA − TB)2/8n. The analysis of variance of the model 5 for testing hypothesis about
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Table 5: Analysis of variance of model 5.

Source of Variation(SS) Sum of Squares Expression Degrees of Freedom

Treatments (SST) (T2
A + T2

B + T2
P )/6n−G2/18n 2

Active Treatments (SSAT) (TA − TB)2/8n 1

Periods (SSP)
∑3

i=1 P
2
i /6n−G

2/18n 2

Treatments × Periods (SSTP)
∑

d(k,j)

∑
k(TP )2d(k,j)k/2n−G

2/18n−SST−SSP 4

Subjects (SSS)
∑6

i=1

∑n
j=1 U

2
ij/3−G

2/18n 6n− 1

Error TSS-SST-SSP-SSTP-SSS 3(4n− 3)

Total (TSS)
∑
y2ijk −G

2/18n 18n− 2

treatments, active treatments, periods, treatment period interaction and subjects is
shown in Table 5.

4 Conclusion

A uniform three period three treatment crossover design, consisting of a placebo and two
active treatments is presented. The COD is preferable in practice because, the design is
not only more ethical, but also provides adequate flexibility to experimenters in analyzing
their crossover experiment data. Experimenter can test the individual carryover effects
prior to analysis of crossover design. This individual test lead the experimenter to choose
proper analysis from all three possible cases as both, single and none of the two active
treatments has carryover effect. We recommend that, when experimenter is not sure
about the nature of carryover effect, this design should be selected because this design
is not only uniform but also gives complete and proper analysis.
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Supplementary Material

We use simulated data shown in Table 6 to illustrate computations involved in estimating
effects and performing analysis of variance for the case, both active treatments have
significant carryover effects.

Table 6: Simulated Data from COD(3,12,3).

Period Treatment Subject Treatment Subject Treatment Subject

Sequence U11 U12 Sequence U21 U22 Sequence U31 U32

1 A 18 18 B 16 16 P 15 15

2 B 18 18 P 18 18 A 18 18

3 P 18 18 A 18 18 B 18 18

Period Treatment Subject Treatment Subject Treatment Subject

Sequence U41 U42 Sequence U51 U52 Sequence U61 U62

1 A 18 18 B 16 16 P 15 15

2 P 17 17 A 21 21 B 16 16

3 B 16 16 P 17 18 A 21 21

Here f1 = {54, 54, 54, 55}, f2 = {52, 52, 52, 52} and f3 = {51, 51, 51, 51}. According
to f1, f2 and f3 the numerical values of the statistics Ū1, Ū2, Ū3, s

2
1, s

2
2 and s23 are

respectively as 54.25, 52, 51, 0.25, 0 and 0. Calculated values of test statistics 2 and 3
are, respectively 9 and 13. Both test statistics 2 and 3 show that carryover effect of active
treatments are significant at 5% as well as 1% level of significance. Estimates of the model
parameters in this case follows from Table 1 and are shown in Table 7. It shows that
active treatment A has 2.0625 unit more effects than B (i.e., τ̂A− τ̂B = 2.0625). Similarly

Table 7: Estimates of model 1 for data in Table 6.

Parameter Estimates

µ 17.4722

γA -0.4062

γB 0.4062

τA 1.3924

τB -0.6701

τP -0.7222

π1 -1.1389

π2 0.5278

π3 0.6111

analysis of variance in this case for treatments, active treatments and carryover effects
follows from Table 2, is shown in Table 8. All three effects in this table are significant,
specifically active treatment effects, as simulated in the data.

Further, when we perform computations involved in estimating effects and analysis
of variance for the case in which one active treatment has significant carryover effect
on simulated data we get results as shown in Table 9. Here, calculated values of test
statistics 2 and 3 are respectively 1 and 13. Test statistics 3 shows that carryover
effect of active treatment B is significant whereas, that of A is insignificant at 5%
as well as 1% level of significance. The empirical estimate of γ̂B from the sets h3 =
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Table 8: Analysis of variance of model 1 for data in Table 6.

Source of Variation SS DF MS F

Treatments 34.9123 2 17.4562 22.9959

(eliminating carryover)

Active Treatments 20.4185 1 20.4185 26.8987

(eliminating carryover)

Carryover of treatments 16.6093 1 16.6093 21.8803

(ignoring treatments)

(eliminating subjects)

Periods 23.3889 2 11.6944

Subjects 7.6389 11 0.6944

(ignoring carryover)

Error 14.4229 19 0.7591

Total 96.9722 35

{18, 18, 15, 18, 21, 21, 18, 18, 15, 18, 21, 21} and h4 = {18, 18, 18, 15, 15, 15, 18, 18, 18, 15, 16, 15}
is 1.5× (18.5− 16.583) = 2.875. Now we transform the observations which are affected
by carryover effects of treatment B. Transformed observations are shown in parenthesis
beside original values in Table 9. The corresponding estimates of model parameters and
analysis of variance for the model 4 are shown in Table 10 and Table 11 respectively.
Active treatment A has 2.0417 unit more effects than B (i.e., τ̂A − τ̂B = 2.0417). Also
analysis of variance shows that treatment effects and the active treatment effects are
significant whereas periods and subject effects are insignificant.

Table 9: Simulated Data from COD(3,12,3) when active treatment B has carryover effect.

Period Treatment Subject Treatment Subject Treatment Subject

Sequence U11 U12 Sequence U21 U22 Sequence U31 U32

1 A 18 18 B 16 16 P 15 15

2 B 16 16 P 18(15.125) 18(15.125) A 18 18

3 P 18(15.125) 18(15.125) A 18 18 B 16 16

Period Treatment Subject Treatment Subject Treatment Subject

Sequence U41 U42 Sequence U51 U52 Sequence U61 U62

1 A 18 18 B 16 16 P 15 15

2 P 15 15 A 21(18.125) 21(18.125) B 16 16

3 B 16 16 P 15 16 A 21(18.125) 21(18.125)
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Table 10: Estimates of model 4 under γB 6= 0 for data in Table 9.

Parameter Estimates

µ 16.3889

τA 1.6528

τB -0.3839

τP -1.2639

π1 -0.0556

π2 -0.0139

π3 0.0694

Table 11: Analysis of variance under γB 6= 0 for data in Table 9.

Source of Variation SS DF MS F

Treatments 53.7639 2 26.8819 1138.5294

Active Treatments 37.5156 1 37.5156 1588.8971

Periods 0.0972 2 0.04861 2.0589

Subjects 0.3472 11 0.3157 1.3369

Error 0.4722 20 0.0236

Total 54.6806 35


