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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 12, Issue 02, October 2019, 405-415
DOI: 10.1285/i20705948v12n2p405

What happens when the stock markets
are closed?

Alberto Mulengaa, Marta Faiasb, Pedro Mota∗b, and Joaquim P.
Pinac

aUniversidade Eduardo Mondlane, DMI , Maputo-Mozambique
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The normality of the log-return of stock prices is often assumed by the
market players in order to use some useful results, as for instance, the Black-
Scholes formula for pricing European options. However, several studies re-
garding different indexes have shown that the normality assumption of the
returns usually fails. In this paper we analyse the normality assumption for
intra-day and inter-day log-returns, comparing opening prices and/or clos-
ing prices for a large number of companies quoted in the Nasdaq Composite
index. We use the Pearson’s Chi-Square, Kolmogorov-Smirnov, Anderson-
Darling, Shapiro-Wilks and Jarque-Bera goodness-of-fit tests to study the
normality assumption. We find that the failure rate in the normality as-
sumption for the log-return of stock prices is not the same for intra-day and
inter-day prices, is somewhat test dependent and strongly dependent on some
extreme price observations. To the best of our knowledge, this is the first
study on the normality assumption for the log-return of stock prices dealing
simultaneously with a large number of companies and normality tests, and
at the same time considering various scenarios of intra-day, inter-day prices
and data trimming.
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1 Introduction

The simplicity of the Black-Scholes formula (see Black and Scholes, 1973) for pricing
European options is one of the reasons why the geometric Brownian motion is one of
the most popular processes used in mathematical finance. However, for this process
is assumed that the log-return of the prices are normal distributed random variables,
a condition that many times seems to be not true in practice. In this paper, we test
the normality assumption for different formulations of price returns, namely intra-day
and inter-day log-returns, for a large set of companies data and using five alternative
goodness-of-fit tests. We implement the Pearson’s Chi-Square, Kolmogorov-Smirnov,
Anderson-Darling, Shapiro-Wilks and Jarque-Bera tests for normality and we consider
the log-returns of consecutive closing prices, consecutive closing and opening prices and
also opening and closing prices from the same day. We also repeat the tests when we
remove some of the higher and lower log-returns from the samples. Importantly, when
analyzing cointegration, particularly using Johansen approach in Johansen (1988, 1991),
normality is also required. Furthermore, all the above holds for the various financial
time series, namely for exchange rate analysis.
The paper is organized as follows: in section 2 we introduce the tests for the less famil-
iarized readers; in section 3 we present and discuss the results of the application of the
tests and in section 4 we conclude with some remarks.

2 Goodness-of-fit tests

We apply several goodness-of-fit tests to investigate the normality of the log-returns of
stock prices. We choose to use several goodness-of-fit tests from different kinds since
all the tests have some advantages and disadvantages. From the “area tests” kind we
choose to implement the Pearsons’s Chi-square test that compares the real number of
observations with the expected number of observations in each class, we can say that
compares the data histogram with the histogram of the distribution being tested. Both
the Kolmogorov-Smirnov and the Anderson-Darling tests uses the cumulative distribu-
tion function and the empirical distribution function and are based in a measure of the
discrepancy between those two functions and therefore are considered in the class of
“distance tests”. Some advantages of this kind of tests is that they are easy to compute,
they are more powerful than the Chi-Square test, over a wide range of alternatives, and
they provide consistent tests. The Shapiro-Wilks (or Shapiro-Francia) is a test based in
the regression between the order statistics of the sample and the mean value of the order
statistics from the tested distribution. This test for normality has higher power than
the previous ones. Finally, the Jarque-Bera test, is based in the Lagrange multiplier test
and computes the sample skewness and kurtosis, to tests if they match with the ones
from a normal distribution.
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2.1 Pearson’s Chi-Square test

The Pearson’s Chi-Square test (first introduced in Pearson, 1900), compares the fre-
quency observed in a sample with a particular theoretical distribution, that is, for a
number k of classes C1, ..., Ck, mutually exclusive and of total probability, the number of
observations Oi in class i, i = 1, ..., k is compared with the expect number of observations
Ei, in that same class provided the null hypothesis is true.

The Pearsons’s chi-square statistic is,

X2 =
k∑

i=1

(Oi − Ei)
2

Ei
(1)

having a χ2 (chi-square) distribution with k − p − 1 degrees of freedom, where k is the
number of classes and p is the number of estimated parameters. The null hypothesis,
of the sample be from a particular distribution, is rejected if the observed value of the
statistics is bigger than the critical value obtained from the Chi-square distribution.

2.2 Kolmogorov-Smirnov’s test

The Kolmogorov-Smirnov statistic (introduced in Kolmogorov, 1933) allows us to test
if a sample of observations is from some completely specified continuous distribution,
F0, by means of comparing a particular kind of distance between the empirical and the
theoretical cumulative distribution function.

The test statistic, Dn, is given by,

Dn = max
1≤i≤n

[max {F0(Xi:n)− Fn(Xi−1:n), Fn(Xi:n)− F0(Xi:n)}] (2)

where F0 is the distribution function of the theoretical distribution being tested and
Fn is the empirical distribution function. Critical values for this statistic can be found
in Birnbaum (1952) or Massey (1951), however, when some parameters of the distri-
bution, considered in the null hypothesis, have to be estimated from the sample, then
the commonly tabulated critical points can led to conservative results. In this situation,
Lilliefors’s critical values (that can be found in Lilliefors, 1967) should be used.

2.3 Anderson-Darling’s test

The Anderson-Darling test is the third goodness-of-fitness test that we use to test for
normality. More information about this test can be found in Anderson and Darling
(1952, 1954), but again, it compares the observed cumulative distribution function to
the expected cumulative distribution function as the Kolmogorov-Smirnov test.

The statistic A2
n, for the Anderson-Darling’s test, is defined by,

A2
n = −n− 1

n

n∑
i=1

(2i− 1) [ln(F0(Xi:n)) + ln(1− F0(Xn−i+1:n))] , (3)
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where, as before, F0 denotes the distribution function assumed in the null hypothesis. In
Anderson and Darling (1954), asymptotic critical points for significance levels of 1%, 5%
and 10% are presented and more extensive tables of critical points obtained from Monte
Carlo simulation can be found in Lewis (1961). When the distribution to be tested
is normal or exponential and the distribution parameters are unknown and needed to
be estimated, we can find the critical values for the Anderson-Darling’s statistics in
Stephens (1974, 1976).

2.4 Shapiro-Wilk’s test

In the Shapiro-Wilk’s test, presented in the Shapiro and Wilk (1965), the test statis-
tic Wn was constructed through the regression of the order sample statistics against
the expected normal order statistics and is a suitable test when the location and scale
parameters are unknown. The test statistic, Wn, is defined by,

Wn =
(
∑n

i=1 aiXi:n)2∑n
i=1(Xi:n − X̄)2

(4)

where

aT = (a1, a2, ..., an) =
mTV−1(

mTV−1V−1m
) 1

2

(5)

with

mT = (m1,m2, ...,mn), V = [vij ]n×n (6)

represents the vector of expected values of the standard normal order statistics and
the corresponding covariance matrix, respectively. The values for a and the percentage
points of Wn are known up to sample sizes of n = 50 and can be found in the original
paper. For samples of larger dimension an extension of the Shapiro and Wilk’s test
can be found in Royston (1982) or in alternative, the Shapiro-Francia statistic (with
simpler coefficients and about the same overall power) introduced in Shapiro and Francia
(1972) can be used. Percentage points for the Shapiro-Francia statistic can be found in
Shapiro and Francia (1972) for sample sizes n = 35, 50, 51(2)99 and for samples of larger
dimension in Royston (1983). Small values of the statistic are the significant ones, i.e.
indicate non-normality.

2.5 Jarque-Bera’s test

The last test that we implement is the Jarque-Bera’s test, Jarque and Bera (1987).
The Lagrange multipliers method was used to derived an asymptotic efficient test where
the skewness and kurtosis of the sample data are compared to the ones of the normal
distribution.

The test statistic, JBn, is defined by,

JBn = n

(
b21
6

+
(b2 − 3)2

24

)
(7)
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where

b1 =
µ̂3

(µ̂2)
3
2

and b2 =
µ̂4

(µ̂2)2
(8)

are the sample estimators of the skewness and kurtosis, with µ̂j , j = 2, 3, 4 the estimators
of the central moments. The large values of the statistic are the significant ones and
should be compared with the right tail critical values of a Chi-square distribution with
2 degrees of freedom.

3 Data, testing and discussion

In the following, let SOi and SCi be the stock opening and closing prices at day i,
respectively. The considered data are the daily prices from years 2005 to 2016 and in
each year we only consider the companies from the Nasdaq Composite Index that have
more than 220 transactions days and transaction volume of at least 50000 units per day.
We represent by K the number of companies selected in each year and from those we
take count of how many have their prices failing the normality assumption.

Using the log-returns of closing daily prices, namely,

log

(
SCi+1

SCi

)
(9)

and all the normality tests for a level of significance of 1%, we get the results presented
in Table 1.

Table 1: Total (and percentage) of samples rejected by each test for normality at 1%
level of significance (log(SCi+1/SCi))

Year K PCS KS AD SW JB

2005 901 494(54.83%) 658(73.03%) 763(84.68%) 800(88.80%) 814(90.34%)

2006 1018 546(53.63%) 747(73.34%) 850(83.50%) 909(89.29%) 925(90.86%)

2007 1161 691(59.52%) 923(79.50%) 1050(90.44%) 1085(93.45%) 1095(94.32%)

2008 1180 765(64.83%) 1010(85.60%) 1114(94.41%) 1142(96.78%) 1135(96.19%)

2009 1200 642(53.50%) 934(77.83%) 1090(90.83%) 1105(92.08%) 1104(92.00%)

2010 1260 557(44.21%) 812(64.44%) 1000(79.37%) 1028(81.59%) 1047(83.10%)

2011 1374 686(49.93%) 1007(73.29%) 1208(87.92%) 1267(92.21%) 1287(93.67%)

2012 1399 723(51.68%) 974(69.62%) 1129(80.70%) 1198(85.63%) 1218(87.06%)

2013 1586 989(62.36%) 1253(79.00%) 1400(88.27%) 1475(93.00%) 1486(93.69%)

2014 1441 784(54.41%) 1072(74.39%) 1224(84.94%) 1291(89.60%) 1320(91.60%)

2015 1433 775(54.08%) 1042(72.71%) 1203(83.95%) 1275(88.97%) 1301(90.79%)

2016 1443 902(62.51%) 1182(81.91%) 1318(91.34%) 1361(94.32%) 1379(95.56%)
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We can observe that we have normality rejection percentages, ranging from 44% to
near 65% with the Pearson’s Chi-square test (the one with the smaller rejection rates) to
more than 90% if we consider the Jarque-Bera’s test (the one with the higher rejection
rates). Notice that as expected, the year of 2008 (the year of the financial crisis) is the
one with higher normality rejection rate and this for all tests being considered. The year
of 2010 is the one with smaller rejection rate and also for all the tests, from 2008 to 2010
we have a decreasing of the normality rejection rate from near 65% to a little more than
44% for the Pearson’s Chi-square test and from near 96% to near 83% for the Jarque-
Bera’s test. For the Kolmogorov-Smirnov’s, Anderson-Darling’s or Shapiro-Wilk’s tests
we have decreasing rejection rates from 85.6% to 64.44%, 94.41% to 79.37% and 96.78%
to 81.59%, respectively.

Next, we consider closing and opening prices from the same day and the corresponding
log-returns,

log

(
SCi

SOi

)
. (10)

For the same level of significance of 1%, as previously, we get the results presented in
Table 2.

Table 2: Total (and percentage) of samples rejected by each test for normality at 1%
level of significance (log(SCi/SOi))

Year K PCS KS AD SW JB

2005 901 218(24.20%) 411(45.62%) 551(61.15%) 635(70.48%) 672(74.58%)

2006 1018 256(25.15%) 460(45.19%) 607(59.63%) 697(68.47%) 739(72.60%)

2007 1161 449(38.67%) 745(64.17%) 924(79.59%) 980(84.41%) 996(85.79%)

2008 1180 642(54.41%) 909(77.03%) 1058(89.66%) 1095(92.80%) 1096(92.88%)

2009 1200 504(42.00%) 808(67.33%) 980(81.67%) 1023(85.25%) 1028(85.67%)

2010 1260 299(23.73%) 530(42.06%) 727(57.70%) 845(67.06%) 895(71.03%)

2011 1374 471(34.28%) 800(58.22%) 1034(75.25%) 1141(83.04%) 1179(85.81%)

2012 1399 457(32.67%) 752(53.75%) 937(67.00%) 1066(76.20%) 1100(78.63%)

2013 1586 664(41.87%) 1021(64.38%) 1197(75.47%) 1314(82.85%) 1365(86.07%)

2014 1441 510(35.39%) 834(57.88%) 1046(72.59%) 1156(80.22%) 1187(82.37%)

2015 1433 563(39.29%) 902(62.94%) 1123(78.37%) 1220(85.14%) 1255(87.58%)

2016 1443 643(44.56%) 960(66.53%) 1180(81.77%) 1251(86.69%) 1288(89.26%)

The main difference from Table 1 to Table 2 is the overall decreasing of the normality
rejection rate in all years and for all considered tests. That decreasing is more notorious
in the years of 2005-2006 (with changes as higher as 30% for the Pearson’s Chi-square
test) and less obvious in the crisis year of 2008 (decreasing at most 10%). Again, the
year of 2008 (followed by the 2016 year) is the one with higher percentage of companies
with log-returns of stock prices far away from normality and, as before, the year of 2010
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is the one with the smaller percentages of normality rejection, decreasing from 54.41%
in 2008 to 23.73% for the Pearson’s Chi-square test in 2010 and from 92.88% to 71% for
the Jarque-Bera’s test, the tests with smaller/higher rejection rates, respectively.

Finally, we select the closing prices at day i and opening prices at day i + 1 and the
corresponding log-returns,

log

(
SOi+1

SCi

)
. (11)

Again the five normality tests are executed for the same 1% significance level and the
results can be found in Table 3.

Table 3: Total (and percentage) of samples rejected by each test for normality at 1%
level of significance (log(SOi+1/SCi))

Year K PCS KS AD SW JB

2005 901 820(91.01%) 838(93.01%) 851(94.45%) 869(96.45%) 865(96.00%)

2006 1018 955(93.81%) 964(94.70%) 982(96.46%) 999(98.13%) 1000(98.23%)

2007 1161 1098(94.57%) 1132(97.50%) 1149(98.97%) 1153(99.31%) 1156(99.57%)

2008 1180 1147(97.20%) 1172(99.32%) 1179(99.92%) 1179(99.92%) 1178(99.83%)

2009 1200 1012(84.33%) 1116(93.00%) 1164(97.00%) 1168(97.33%) 1168(97.33%)

2010 1260 1027(81.51%) 1121(88.97%) 1190(94.44%) 1229(97.54%) 1236(98.10%)

2011 1374 1248(90.83%) 1344(97.82%) 1370(99.71%) 1368(99.56%) 1367(99.49%)

2012 1399 1243(88.85%) 1329(95.00%) 1360(97.21%) 1362(97.36%) 1370(97.93%)

2013 1586 1459(91.99%) 1526(96.22%) 1549(97.67%) 1556(98.11%) 1553(97.92%)

2014 1441 1340(92.99%) 1382(95.91%) 1408(97.71%) 1422(98.68%) 1423(98.75%)

2015 1433 1342(93.65%) 1396(97.42%) 1418(98.95%) 1422(99.23%) 1421(99.16%)

2016 1443 1393(96.54%) 1425(98.75%) 1438(99.65%) 1442(99.93%) 1441(99.86%)

From the observation of Table 3 is obvious that for this data the results are of almost
complete rejection of the normality assumption. In fact, even for the most favorable test
in not rejecting the normality assumption (the Pearson’s Chi-square test), we have more
than 80% of rejection rate, in the most favorable year of 2010.

Although being test depending, the overall result is that the normality assumption is
largely rejected for all tests in most years but in higher percentages when we consider
prices from one trading day to another (inter-day prices) as we observe in Tables 1 or 3
and lower percentages when we consider the opening and closing prices from the same
day (intra-day prices, as in Table 2). This emphasises the idea that the non-normality
of the log-returns of the stock prices seems to be more dependent from what happens
when the markets are closed (see Table 3).

Since the rejection rates are higher when we apply the Jarque-Bera’s test and because
this particular test is more sensitive to extremal data it seems reasonable that some
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of the reason for the normality assumption failure is due to that specific observations.
In fact, we observe that if we remove some of the more extreme observations from the
log-returns data and we perform the same normality tests we get very different results.
Repeating the normality tests for trimmed samples, with the higher five and lower five
log-returns removed, we get the results presented in Tables 4, 5 and 6. Notice that,
when we remove 10 observations from the sample with approximately 250 entries, we
are removing about 4% of the observations.

Table 4: Total (and percentage) of samples rejected by each test for normality at 1%
level of significance, when the data is trimmed (log(SCi+1/SCi))

Year K PCS KS AD SW JB

2005 901 113(12.54%) 184(20.42%) 187(20.75%) 194(21.53%) 86(9.54%)

2006 1018 110(10.81%) 198(19.45%) 218(21.41%) 216(21.22%) 85(8.35%)

2007 1161 152(13.09%) 244(21.02%) 291(25.06%) 265(22.83%) 120(10.34%)

2008 1180 225(19.07%) 356(30.17%) 472(40.00%) 411(34.83%) 238(20.17%)

2009 1200 196(16.33%) 310(25.83%) 369(30.75%) 311(25.92%) 144(12.00%)

2010 1260 161(12.78%) 218(17.30%) 221(17.54%) 176(13.97%) 72(5.71%)

2011 1374 172(12.52%) 251(18.27%) 289(21.03%) 218(15.87%) 87(6.33%)

2012 1399 193(13.80%) 270(19.30%) 256(18.30%) 243(17.37%) 122(8.72%)

2013 1586 310(19.55%) 408(25.73%) 419(26.42%) 408(25.73%) 224(14.12%)

2014 1441 199(13.81%) 276(19.15%) 292(20.26%) 275(19.08%) 141(9.78%)

2015 1433 189(13.19%) 258(18.00%) 245(17.10%) 243(16.96%) 120(8.37%)

2016 1443 293(20.30%) 348(24.12%) 349(24.19%) 311(21.55%) 167(11.57%)

Again, we can observe that the normality assumption is more times rejected when
we consider inter-day prices, just as before (see Tables 4 and 6). However, in this new
framework, the normality assumption is not rejected so many times as before. In fact,
the percentage of normality rejections decreases substantially, in the case of Shapiro-
Wilk’s and Jarque-Bera’s tests, from values above the 80% to values below 25% for the
log(SCi+1/SCi) data (Table 1 vs Table 4) and from values above 90% to values ranging
40%-50% for the log(SOi+1/SCi) data (Table 3 vs Table 6). The same reduction in the
rejection rate is also observed for the remaining tests and for all the years.

If we compare the normality rejection percentage for intra-day prices (log(SCi/SOi)),
the decreasing is from more than 75% to less than 20% (Shapiro-Wilk’s, Tables 2 and
5). The reduction is also evident for the other tests and, in particular, notice that the
Jarque-Bera’s test in the previous framework gives the higher rates of rejection but for the
trimmed data with the more extreme observations removed, is the test with lower rates
os rejection. This outcome was somewhat expected because as already said, the more
extreme observations will condition the skewness and the kurtosis of the distribution,
meaning that some tests supposed to be more affected by those parameters are indeed



Electronic Journal of Applied Statistical Analysis 413

Table 5: Total (and percentage) of samples rejected by each test for normality at 1%
level of significance, when the data is trimmed (log(SCi/SOi))

Year K PCS KS AD SW JB

2005 901 79(8.77%) 113(12.54%) 124(13.76%) 132(14.65%) 37(4.11%)

2006 1018 91(8.94%) 134(13.16%) 128(12.57%) 131(12.87%) 49(4.81%)

2007 1161 124(10.68%) 203(17.48%) 235(20.24%) 199(17.14%) 88(7.58%)

2008 1180 178(15.08%) 316(26.78%) 423(35.85%) 373(31.61%) 213(18.05%)

2009 1200 188(15.67%) 284(23.67%) 308(25.67%) 261(21.75%) 102(8.50%)

2010 1260 129(10.24%) 147(11.67%) 132(10.48%) 124(9.84%) 37(2.94%)

2011 1374 150(10.92%) 209(15.21%) 214(15.58%) 180(13.10%) 62(4.51%)

2012 1399 179(12.79%) 225(16.08%) 192(13.72%) 187(13.37%) 62(4.43%)

2013 1586 253(15.95%) 330(20.81%) 299(18.85%) 288(18.16%) 126(7.94%)

2014 1441 165(11.45%) 222(15.41%) 213(14.78%) 196(13.60%) 89(6.18%)

2015 1433 179(12.49%) 243(16.96%) 219(15.28%) 208(14.52%) 69(4.82%)

2016 1443 252(17.46%) 290(20.10%) 279(19.33%) 245(16.98%) 100(6.93%)

strongly affected.
In this framework is also obvious that the departure from normality is stronger and

seems more dependent to what happens during the closing periods of the financial mar-
kets, see Tables 4 and 6. Even in this set up of trimmed data, we observe that the 2008
year (the year of the financial crisis) and for almost all tests, is again the year with the
higher rates of normality rejection, as expected.

4 Final remarks

The results of the data testing allows us to discuss two questions: The normality as-
sumption of the log-returns of the stock prices is still a reasonable assumption? There
are differences in the normality assumption of the log-returns in intra-day and inter-
day prices? Regarding the first question we can observe that when we remove some of
the more extreme observations the normality assumption is reasonable for most of the
companies stock prices. That is, some trimming ensures normality, validating the ap-
plications of several models, of pricing and multivariate time series, including volatility
analysis. On the other hand, it seems reasonable to say that what affects more strongly
the non-normality of the logarithm of returns for the stock prices are the “things” that
happens when the markets are closed. The focus and results in the paper are also
relevant, with due differences, for all kinds of financial times series, e.g., bonds and
currencies, validating pricing and forecasting models, including volatility analysis.
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Table 6: Total (and percentage) of samples rejected by each test for normality at 1%
level of significance, when the data is trimmed (log(SOi+1/SCi))

Year K PCS KS AD SW JB

2005 901 500(55.49%) 493(54.72%) 442(49.06%) 468(51.94%) 276(30.63%)

2006 1018 555(54.52%) 549(53.93%) 515(50.59%) 535(52.55%) 341(33.50%)

2007 1161 555(47.80%) 678(58.40%) 694(59.78%) 656(56.50%) 516(44.44%)

2008 1180 592(50.17%) 784(66.44%) 912(77.29%) 831(70.42%) 611(51.78%)

2009 1200 477(39.75%) 621(51.75%) 608(50.67%) 567(47.25%) 336(28.00%)

2010 1260 499(39.60%) 522(41.43%) 425(33.73%) 392(31.11%) 279(22.14%)

2011 1374 594(43.23%) 795(57.86%) 931(67.76%) 824(59.97%) 561(40.83%)

2012 1399 618(44.17%) 686(49.04%) 563(40.24%) 524(37.46%) 362(25.88%)

2013 1586 806(50.82%) 881(55.55%) 780(49.18%) 734(46.28%) 487(30.71%)

2014 1441 627(43.51%) 699(48.51%) 682(47.33%) 678(47.05%) 561(38.93%)

2015 1433 596(41.59%) 679(47.38%) 665(46.41%) 676(47.17%) 521(36.36%)

2016 1443 734(50.87%) 861(59.67%) 864(59.88%) 885(61.33%) 708(49.06%)
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