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This paper considers the assessment of longevity risk in the context of a
longevity indexed life annuities. The framework is set up in a way that ac-
commodates a variety of regulatory regimes such as Solvency II as well as
local actuarial practice, attempting to bridge the gap between academia and
practice. In the following the authors compare the results obtained in a Sol-
vency II perspective with those obtained with a partial internal model. The
predictions contained in both models are compared with the real probabilities
in order to evaluate the deviations due to life expectancy improvements.

keywords: Longevity indexed life annuities, Solvency II, Technical provi-
sion, CIR model.

1 Introduction

Longevity risk has become an increasingly important risk facing an increasing proportion
of the worlds population. Individuals would like to insure against this risk by purchas-
ing life annuity products or other products with lifetime income guarantees. Annuity
providers such as life insurance companies are unable to effectively manage aggregate
longevity risk and are limited in capacity. Pension plans have increasingly offered defined
contribution benefits with the risk of longevity remaining with individuals. In the Sol-
vency II directive longevity risk is described as the risk of loss, or of adverse change in
the value of insurance liabilities, resulting from changes in the level, trend, or volatility of
mortality rates, where a decrease in the mortality rate leads to an increase in the value of
insurance liabilities. Hence, the longevity risk is defined as the economic loss stemming
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from an instantaneous, but permanent, decrease in the mortality intensity used for the
calculation of technical provisions. For this reason, actuaries have to employ projected
life tables incorporating a forecast of future trends of mortality. Clearly, the risk is that
the projections of mortality turn out to be incorrect and the annuitants live longer than
expected. Different approaches for the construction of the projected tables have been
developed until now, for a full report on this subject see Pitacco (2004), but no one
turned out to be suitable for the problem solution. The problem is twofold. On the one
hand, insurers have to make the annuities market attractive to the insured. At present,
the risk borne out by insurers for insurance annuities, which is undoubtedly too high, is
reflected in high premiums charged for these products that discourage individuals who
are intending to purchase annuities. On the other hand, Solvency II regulation requires
the constitution of appropriate margins that are difficult to bear for an insurance com-
pany. The Solvency II directive prescribes a standard formula that an insurance business
could use to quantify technical provisions. Solvency II directive allows so called internal
models as an alternative to the standard formula, as long as the internal model follows
the Solvency II principles and is approved by regulator.
To solve the problem of attracting the annuity market and respecting the Solvency II
requirements, many insurance companies and pension funds providers focus in the issue
of sharing the longevity risk. An ordinary way to solve this problem is through rein-
surance, but this method often involves high costs. The securitization provides a viable
alternative (Denuit et al., 2007), but unfortunately the longevity bonds are not a very
attractive business for investors. Denuit et al. in (2011) use the reduction of annuity
periodic payments in a similar way to what happens in the context of securitization. In
this way the risk is shared between insurer and insured, but nevertheless we obtain a
significant reduction of benefits for the insured. Richards et al. 2014 proposed a very
interesting idea based on the quantification of expectation of change in mortality over a
one year horizon. Such an approach lies at the heart of the one year value at risk view
of the actuarial liability and allows for Sovency II regime for insurers in the European
Union. In practice, in a Solvency II perspective, the risk is calibrated using a 99.5%
confidence level (Value at Risk measure) on a one-year time horizon.
We try to develop this concept combining a stochastic model for mortality rates ap-
proach with a quantile simulation procedure for the short period survival probabilities
in order to quantify the risk of the insurance position (Di Lorenzo et al., 2017). Also we
compare the results obtained with those of the standard formula with specific attention
to the risk of under reserving.
The paper is organized as follows. In Section 1 the longevity index and the longevity
indexed life annuity are treated. Section 2 describes the specific features of the Solvency
II directive and introduces a coherent internal model for calculating the insurer risk ex-
posure. In Section 3 the issue of modeling the uncertainty in future mortality is fronted
and a CIR type model for describing the future evolution of hazard rates is described.
Section 4 looks for the conditions that allow to quantify the longevity risk via quantile
analysis. Section 5 concludes.
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2 Longevity index

Let us consider an individual aged x in the calendar year t. His remaining lifetime is
indicated by the notation Tx(t). Therefore, the individual will die at age x+ Tx(t) in the
calendar year t+ Tx(t). Then qx(t) = P (Tx(t) ≤ 1) is the probability that an individual
aged x in the calendar year t dies before reaching the age x+1 and px(t) = 1− qx(t) =
P (Tx(t) > 1) is the probability that the same individual reaches the age x+1.

Let pmodx+k(t + k) (k = 0, 1, 2, ...., ω) be the predicted one year survival probability
referred to an individual aged x in the calendar year t deducted by some survival model,
where ω denotes the ultimate age. Therefore pmodx+k(t+ k) is the assumption that is made
on the future mortality.

As time passes, the observed values of the one year survival probabilities pobsx+k(t+ k)
(k = 0, 1, 2, ...., ω) become available, so that it is possible to compare the values predicted
on the basis of a given model with the actual ones, by means of the following ratio:

it+k =
k−1∏
j=0

pmodx+j (t+ j)

pobsx+j(t+ j)
(1)

which can be assessed each future calendar year k. The basic idea is that annual payment
due at time k to an individual buying a longevity indexed annuity at age x in calendar
year t, is adjusted by the factor (1). Hence, if the contract specifies an annual payment
of 1, the annuitant receives a stream of payments it+1, it+2, .... as long as he or she
survives. In practice, we consider a basic life annuity contract paying one monetary
unit of currency at the end of each year as long as the annuitant survives. The single
premium is given by:

ax(t) = E

Tx(t)∑
k=1

1x,kv(t, k)

 =

ω−x∑
k=1

v(t, k)kpx(t) (2)

where 1x,k is an indicator which equals one if the individual aging x at time t is alive in
the future year k (k = 1, 2, 3...., ω − x), v(t, k) is the deterministic discounting factor.

At this point, if the predictions contained in the model are chosen such that the
increasein longevity is greater than predicted, then the payments due to the insured are
reduced accordingly. Substantially, the random longevity indexed life annuity, aL.I.x , is
given by:

aL.I.x (t) = E

Tx(t)∑
k=1

1x,kit+kv(t, k)

 =
ω−x∑
k=1

v(t, k)kpx(t)it+k (3)

3 The Solvency II Directives

Solvency II, by relying on the concept of value at risk, implicitly requires a future forecast
in the form of a loss distribution. Further associated concepts such as Market Value
Margin require a minimum level of granularity in this distribution, namely, subdivision
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by calendar period. This directive describes the regulatory requirements to offset the
insurance risk for one year risk horizon. In practice, liabilities shall be valued at the
amount for which they could be transferred (fair value). The risk of under reserving
with respect to longevity is generally captured trough an economic capital model. This
model will rely on the distribution of L1 that is the loss random variable for the first
calendar year. Generally speaking the value of the technical provision can be described
as

C = V ar99.5%(L1)− E(L1) (4)

The value of technical provisions shall be equal to the sum of a best estimate and the
capital charge. In Solvency II regulated jurisdictions, there is a non negligible number
of companies who are using the standard formula for the determination of the capital
charge. The standard formula uses a deterministic shock to the central path of mortality
or a Solvency capital requirement based on the Var. In a Solvency II, it is possible to
use an internal model as long as this model is follows the Solvency II principles. At this
proposal, a coherent structure (Munroe et al., 2015) is given by the following model. The
technical provision is the sum of mean loss and the margin discounted to the present
value:

MVM = (1+i)−1 ·s ·V ar99.5%(L1)BEL = (1+i)−0.5 ·s ·E(L1)TP = MVM+BEL (5)

where:
MVM=Market Value Margin
BEL=Best Estimate of liabilities
TP= Technical provision
s= spread prescribed by the Solvency II Directive

This model assumes a mortality model plus a forecast. In practice, in its simplest
form, a risk model must embody a process that takes as inputs historical data and an
instrument that produces loss distributions as output (Munroe et al., 2015). In this way
we are able to calculate the loss due to longevity that will arise with a probability of
0.5% on a one-year horizon. This can be calculated as the 99.5% percentile in the loss
distribution (due to longevity) obtained from a large number of simulated scenarios for
a stochastic model describing the dynamics of the company.

4 The mortality model

Let us consider an individual aged x in the calendar year t. If we consider the hazard
rate for an individual aged x+ t in the year t µx+t we have (Bhattacharjee, Misrea):

kpx(t) = E[e−
∫ k
0 µx+sds] (6)

We describe the evolution in time of mortality by a widely used stochastic mortality
model (Biffis, 2005; Dahl and Moller, 2004), supposing that the force of mortality at
timet for an individual aged x+ t is given by
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dµx+t = κ(γ − µx+t)dt+ σ
√
µx+tdBt (7)

κ and sigma are positive constants, γ is the long term mean and Bt is a Standard
Brownian Motion. This model, referred to as the CIR mortality model has the property
that the mortality rates are continuous and remain positive.

For convenience, we now introduce the centered version of the model. Let us consider
the shifted µ∗x+t = µx+t − γ . The process is then centred around γ and the long term
mean converges almost everywhere to zero:

dµ∗x+t = κµ∗x+tdt+ σ
√
µ∗x+t + γdBt (8)

with initial condition given by the known value of µx+t. Its solution is given by

E[µ∗x+t] = e−κtµ∗x+0 (9)

cov(µ∗x+t, µ
∗
x+s) = σ2

e−κt − e−κ(s+t)

κ
µ∗x+0 + σ2

e−κ(t−s) − e−κ(s+t)

2κ
γ, s ≤ t (10)

lim
t→∞

V ar[µ∗x+t] =
γσ2

2κ
(11)

4.1 Parameter estimation procedure

Estimating the parameters of the stochastic mortality model requires the discrete rep-
resentation of the model. To this aim, we refer to the covariance equivalence principle
which requires that the expected values and the stationary variances of the continuous
and discrete processes to be equal. The discrete model representation is given by the
following equation:

µ∗x+t = φµx+t−1 + σa

√
2φ

1 + φ
µx+t−1 + γat (12)

The expected value, the covariance and stationary variance functions of the previous
equation are:

E[µ∗x+t] = φtµ∗x+0 (13)

cov(µ∗x+t, µ
∗
x+s) = 2φtσ2aµ

∗
x+0

1− φs

1− φ2
+ φt−sσ2aγ

1− φ2s

1− φ2
(14)

lim
t→∞

V ar[µ∗x+t] =
σ2aγ

1− φ2
(15)

The estimation procedure starts by finding the value of φ that minimizes the residual
sum of squares function:

RSS =
N∑
t=1

(µ∗x+t − φµ∗x+t−1)2
2φ
1+φµ

∗
x+t + γ

(16)
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The least squares estimate of σ2a is given by RSS/N-1. Finally the continuous model
parameters are obtained by means of the parametric relationships between continuous
and discrete models, derived by applying the covariance equivalence principle:

φ = e−κ (17)

σ2a = σ2
1− e−2κ

2κ
(18)

At this point, using the formula proposed by Pitman et al. (1982), we can compute the
survival probability

kpx(t) = E[e−
∫ k
0 µx+sds] =

exp(− x
σ2w

1+ k
w
coth(wk/2)

coth(wk/2) + (k/w)

(coth(wt/2) + (k/w)sinhcoth(wk/2))2kγ
σ2

(19)

where x = µ0 e w =
√
k2 + sσ2.

Applying the described estimation procedure, the significant parameters of the mortality-
CIR model are obtained and therefore the survival probabilities for each specific calendar
year. Our set of data relates to the Italian male population with annual age-specific death
counts ranging from ages 64 to 89 over the period 1954 to 2008 (data source: Human
mortality database www.mortality.org). We refer to the class of the forward mortality
models. These models study changes in the mortality rate curve for a specific age cohorts
and capture dynamics of each age cohort over time for all ages greater than x in a specific
year t (for example age x in the year t, x+1 in the year t+1 and so on). In this case,
the mortality curves are modeled diagonally (Dahl and Moller, 2004; Cairns et al., 2006;
Bauer et al., 2009). In practice, on the basis of data available for the previous 25 years,
we can estimate the model parameters for the year t and, as a result, it is possible to get
the forecasted survival probabilities. For example, with the data of the period 1954-1978
it is possible to obtain the column of the survival probabilities for the year 1979. This
procedure is repeated thirty times in order to obtain the annual survival probabilities
over the period 1979 to 2008 and ranging from ages 64 to 89. These probabilities can be
compared with the corresponding survival rates obtained from the tables of the Human
Mortality Database.
Regarding the choice of fixing the extreme age at 89, recent studies have shown that the
most damaging effects in terms of annuities present values for the provider are in the
age range 73 to 80.
Clearly this happens because the number of survival is still large at these ages. As a
consequence, even modest improvements in the level of survival probabilities with respect
to those used for pricing and reserving, result in large additional costs for the annuity
provider.
The results of the estimation procedure are summarized in the following table (Tab.1).
The parameters κ and σ2 are obtained, for each year, by means of the relations (7), after
the estimation of the discrete parameters in (17)and (18).
We choose to calculate the long term mean γ as the simple mean of each historical series
used to estimate the parameters. κ takes the same value for each calendar year. The
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reason can be found in the high autoregressive parameter of the discrete model φ = 0.999
, which is the same each year explaining the high correlation of each data of each series
with the preceding one.

Figure 1: Annual survival probabilities px(t) with x ∈ (64, 89) for each calendar year t
ranging from 1979 to 1988. Comparison between CIR model (blue line) and
real data (red line).

Figures 1, 2 and 3 show the comparison between the estimated annual survival prob-
abilities obtained by means of the CIR model and the corresponding probabilities of the
Italian male population. The results are shown year by year over the period 1979-2008.
At this point we model the future uncertainty about mortality by means of the CIR type
stochastic process. In practice, the longevity index (1) is computed as:

iCIRt+k =

k−1∏
j=0

pCIRx+j (t+ j)

pobsx+j(t+ j)
(20)
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Figure 2: Annual survival probabilities px(t) with x ∈ (64, 89) for each calendar year t
ranging from 1989 to 1998. Comparison between CIR model (blue line) and
real data (red line).

where:
pCIRx+j (t+ j) is a forecast of the annual survival probability of a male aged 64 in 1983.

The forecasted probabilities are obtained by means of the CIR type stochastic process on
the basis of the parameters estimated; pobsx+j(t+j) are the actual values of the annual sur-
vival probabilities deducted from the Italian male mortality tables for the period 1983-
2008. In formula (13), pCIRx+j (t+ j) are calculated by means of (12), using the estimated
parameters for the year 1983, based on the mortality experience of the years 1958-1982.
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Figure 3: Annual survival probabilities px(t) with x ∈ (64, 89) for each calendar year t
ranging from 1999 to 2008. Comparison between CIR model (blue line) and
real data (red line).

Fig. 4 shows the comparison between the survival curve estimated by the model and
the table available for the year 1983. The choice of the year 1983 can be explained as
follows: an indivudual aged 64 in 1983 gets 89 in 2008. Knowing the real data until
2008, the estimated CIR probabilities can be compared with the real data. Now, on the
basis of mortality data for the last 25 years, the model is able to provide a good fit to the
real survival probabilites of the next year but, unfortunately, fails in projection. In other
word, it is not able to capture the decrease in time of the parameters κ and γ because
of the well known phenomena of rectangularization and expansion of the Lexis point.
For this reason, we try to combine a stochastic model for the evolution of mortality
rates with quantile analysis for the mortality distribution in order to capture the trend
component of longevity.
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Figure 4: Force of mortality and survival probabilities for an individual aged 64 in 1983
computed by means of the CIR type stochastic mortality model and Italian
male mortality table referred to the period 1983− 2008.

5 The quantile analysis

The quantile estimation gives an important information to the insurer by quantifying the
tail events. In our analysis we refer to a tail event as the event of a survival probability
higher than the expected one. This is crucial for the insurer. As well as the uncertain
phenomena on the life expectancy, it is necessary to quantify the effects due to possible
unexpected tail events. Only the awareness of the additional element can help to fully
address the longevity risk. We consider the survival probabilities derived by the stochas-
tic model described in the previous section. Fixing the age x we resort to a stochastic
simulation procedure and derive, in a one year horizon, a set of cumulative probabilities.
Then we estimate the related quantiles. We simulate a large number N of sample paths,
each of one producing a simulated set of tp

s
x(S = 1, , N). We set N=10000. The mortal-

ity risk measure we refer to is the quantile MRM = qα where α is the confidence level
chosen, in our case the 99.5 per cent. In order to perform the simulation procedure it
is necessary to consider the discrete time equation for the chosen Stochastic Differential
Equation describing the evolution in time of the mortality rates. On the basis of the
first order Euler discretization of equation (8), with a time interval [x+ t, x+ t+ 1] we
have:

µx+tk+1 = µx+tk + κ(λ− µx+tk)∆ + σ
√
µx+tk∆εk, k = 1, 2, 3, ...., n− 1 (21)

where∆ = 1/n is the sampling interval , with εk being the increment ∆Bk of the Wiener
process between tk = k∆ and tk+1 = (k + 1)∆. The increments ∆Bk are N(0,∆)
distributed random variables. The discretized process is then represented by the sequence
[µt1 , µt2 , ...., µtn ]. By means of (6), we obtain the corresponding survival probabilities.
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5.1 Longevity risk management via quantile analysis.

The above analysis shows that the model fails to capture the trend of longevity. Al-
though there is a good fit to the data in a year to year perspective, using the probability
of the model and comparing them with those available on the tables ex post, you get
ratios that are significantly less than one, in the sense that the probability provided by
the model are lower than those observed in reality. At this point, we combine the model
chosen for the evolution of mortality with a quantile analysis for the mortality distribu-
tion. Referring to equation (7), a large number of paths for the force of mortality are
simulated. Each path allows to compute a simulated set of probabilities, that is with
x=64, t=1979, 1980, 1981, 1982, and j=0,1,2,,24. For each simulated set, we study the
longevity index between the simulated survival probability and the true probability, that
is the probability detected ex post by the life table.
As one can see, the response of the model is good in the medium term. For all the years
considered the results of the reports are quite close to 1 up to age 78. The probability
of underestimating the survival probabilities is negligible. The situation is different for
age greater than 78. In this case the probability of underestimating grows up to 24%.
Around this level the probability of underestimation stabilizes even for higher age.

In terms of technical provision for our longevity indexed life annuity, the increase
achieved by effect of longevity is at about 23 per cent with respect to the total actuarial
liability for the internal model and is at about 21 per cent for the capital charge model.
As we can see from the figure the two trends are quite similar. There is also a con-
siderable reduction of 13% in the technical provision with respect to to the case of the
20% deterministic deterioration. These results remains almost constant throughout the
period considered are obviously dependent on the insured individuals over the age of 80.
At this point it is possible to draw some conclusions. The first is that the combination
between a stochastic model for the evolution of the force of mortality and a quantile
approach allows to control the deviations of mortality from its expected trend due to
the longevity and to limit the probability of underestimation within precise limits. So in
our case an increase of the 23 percent reserve limits to 0.5 percent the probability of in-
curring loss. A reduction can also be noted of the technical provision with respect to the
deterministic case. Clearly, if the reserves are used for prudential purposes, the benefits
for the insured and the remuneration for the shareholders are limited. Furthermore, in
our opinion, the introduction of a single threshold to describe uncontrolled deviations of
mortality from its trend looks wrong. The constitutions of the funds by the insurance
company should be more responsive to its risk profile. In fact, we see that the effect
of longevity is evident in the advanced ages and then it depends effectively on the age
classes of the insured.
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Figure 5: Year 2004. Simulated annual survival probabilities and longevity index. Age
ranging from 64 to 89
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Table 1: CIR estimated mortality parameters. Data source: Human Mortality Database:
Italian male population

year κ σ2 λ

1979 0.0010005 0.02154137 0.09879589

1980 0.0010005 0.02218555 0.09870146

1981 0.0010005 0.02196340 0.09855553

1982 0.0010005 0.02125207 0.09849015

1983 0.0010005 0.02006831 0.09848095

1984 0.0010005 0.02260864 0.09951799

1985 0.0010005 0.02051935 0.09773577

1986 0.0010005 0.02120267 0.09732236

1987 0.0010005 0.01981772 0.09758413

1988 0.0010005 0.01874663 0.09654774

1989 0.0010005 0.01883434 0.09567750

1990 0.0010005 0.01846146 0.09354197

1991 0.0010005 0.01880755 0.09122329

1992 0.0010005 0.01876966 0.09087511

1993 0.0010005 0.01765508 0.09013384

1994 0.0010005 0.01824302 0.08918243

1995 0.0010005 0.01765857 0.08768303

1996 0.0010005 0.01786665 0.08616861

1997 0.0010005 0.01748889 0.08443631

1998 0.0010005 0.01756343 0.08338616

1999 0.0010005 0.0182456 0.08166418

2000 0.0010005 0.01765565 0.07982632

2001 0.0010005 0.0170472 0.07782871

2002 0.0010005 0.01693314 0.07627881

2003 0.0010005 0.01732366 0.07500763

2004 0.0010005 0.01858599 0.07417957

2005 0.0010005 0.01731115 0.07317319

2006 0.0010005 0.01812203 0.07046889

2007 0.0010005 0.01662066 0.06851038

2008 0.0010005 0.01709801 0.06566561
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Figure 6: Year 2005. Simulated annual survival probabilities and longevity index. Age
ranging from 64 to 89

Figure 7: Year 2006. Simulated annual survival probabilities and longevity index. Age
ranging from 64 to 89
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Figure 8: Year 2007.Simulated annual survival probabilities and longevity index. Age
ranging from 64 to 89

Figure 9: Comparison of technical provisions.
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