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Traditionally, the main assumptions often used in practice for calculat-
ing process capability indices are that process data being independent and
normally distributed. In this research we study the effects of the autocor-
relation structure among process data on the distributional properties for
the sample version of the most three common process capability indices in
terms of bias, MSE and empirical distribution. Previous studies investigated
ordinary autocorrelation structures among data modeled by some ordinary
ARMA models. Here, we investigate a different autocorrelation structure,
namely the first order seasonal autoregressive (SAR(1)) model in which the
seasonal auto-correlation structure is apparent. For the sake of complete-
ness, we have also considered two other models for process data, namely
the ordinary first order autoregressive (AR(1)) model and the multiplicative
seasonal AR model of orders (1, 1). Assuming that the process data follow
those models with normal error terms, Monte-Carlo simulations are carried
out using R. The results showed that the characteristics of sample process
capability indices are negatively affected by the autocorrelation among data,
especially for the multiplicative seasonal AR model. Besides, we found that
the empirical distributions of the three sample capability indices are posi-
tively skewed and leptokurtic, a fact which is merely true when the data are
independent and normal.
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1 Introduction

Quality control is a process that ensures a certain level of quality is achieved in a product
or service. The main statistical techniques for quality control include statistical process
control (SPC), design of experiments and acceptance sampling. The SPC method in-
cludes control chart and process capability. For more details on these issues see Mont-
gomery (2009).

The process capability is defined as the ability of the production process to pro-
duce conforming products. Indices of process capability give a clear indication of the
capability of a manufacturing process. The main assumption in process capability is the
process data are independent and normally distributed. However, in real industries data
are often autocorrelated (see for example, Shore (1997) and Guevara and Vargas (2007).

A process capability index (PCI) is a numerical measure defined to evaluate pro-
cess capability. The essence of such measure is to compare the behavior of a product
or some of its characteristics with its engineering specifications (Wen-lea and Samuel,
2006). Usually, a large value of such indices indicates that the current process is capable
(Steiner et al., 1997). In the literature of statistical process control (SPC) a large num-
ber of PCIs were defined (see Guevara and Vargas (2007)). The most popular indices
used in the industry, which we also consider in this research, are defined as:

Cp =
USL− LSL

6σ
,

Cpk = (
USL− µ

3σ
,
µ− LSL

3σ
),

and

Cpm =
USL− LSL

6
√
σ2 + (µ− T )2

with sample versions, given respectively as:

Ĉp =
USL− LSL

6s
(1)

Ĉpk = (
USL −X

3s
,
X − LSL

3s
) (2)

and

Ĉpm =
USL− LSL

6
√
s2 + (X − T )2

(3)

where LSL and USL are respectively the lower and the upper specification limits, σ
is the (theoretical) process standard deviation, s is the sample standard deviation, µ is
the process theoretical mean, (X) is the sample mean, and T is the target specification
value (Wen-lea and Samuel, 2006). Notice that Ĉp is solely based on the variability of
data while the other two measures depend on both center and variability of data.

Under the assumptions of normality and independence of process data, Chou and
Owen (1989) derived the probability density function, the mean and the variance for
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Ĉp defined in (1) while Pearn et al. (1998) obtained the UMVUE of Cp. Kotz et al.

(1993) derived the rth moments of Ĉpk and proved that this estimator is asymptotically

unbiased. They also proved that Ĉpm defined in (3) is the MLE of Cpm. A detailed
account on the distributional properties of the three sample PCIs defined in (1) to (3)
for independent and normal data is found in Wen-lea and Samuel (2006). They reported
that all the three sample measures are biased but asymptotically unbiased with Ĉp and

Ĉpk having positive bias while Ĉpm have a negative bias especially for large sample size.

Besides, many researches questioned the validity of the independence assumption in
real process data and examined the effect of such dependence on sample PCIs. For in-
stance,Shore (1997) discussed the effects of autocorrelation data on capability indices in
some depth. He concluded that bias and variability of the sample PCIs are considerably
affected when autocorrelation among data is present. In addition, in a comparison be-
tween a process with independent observations and a process data following the ordinary
first order autoregressive model, Guevara and Vargas (2007) concluded that the bias of
sample PCIs is affected by the direction and strength of autocorrelation in data. Alzoubi
(2013) investigated the effect of autocorrelation among data based on low-orders autore-
gressive moving average (ARMA) models. She concluded that bias, MSE and empirical
distributions of sample PCIs are affected by the direction, the strength and the type of
autocorrelation within data.

Having a deep look at the previous research regarding sample PCIs with autocorre-
lated data, we noticed that ordinary autocorrelation structures are considered via some
selected ARMA models. An interesting type of autocorrelation structure, namely the
seasonal autocorrelation structure is the main issue in this research. In general, season-
ality in time series data is frequently encountered in practice. Therefore, we will consider
process data that have such kind of autocorrelation structure by assuming that those
data follow the first order seasonal autoregressive SAR(1) model. In addition, and in or-
der to link the results of this research with previous works in the area we considered also
the ordinary first order autoregressive (AR(1)) model. Besides, we considered a third
model with autocorrelation structure that mixes both the ordinary and seasonal types,
namely, the multiplicative seasonal autoregressive model of orders (1, 1). More details
about these models and their autocorrelation functions are given in the next section.

Thus, our main objective in this article is to study the distributional properties of the
three sample PCIs defined in (1) to (3) including bias, MSE and some aspects of the
shape of their empirical distributions, namely skewness and kurtosis. The study will be
carried out using Monte-Carlo simulation assuming that process data are autocorrelated
according to the three models mentioned above. The parameters of simulations and
related settings are explained in section 3. In the next section we explain the time series
models considered in this research along their autocorrelation functions and some other
properties.
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2 The Selected Time Series Models

Now, we will define three different time series models that belong to the autoregressive
type. These models will be considered in this research for simulating autocorrelated
process data. These three models are special cases of the general seasonal autoregressive
moving average (SARMA) models.

The zero-mean SARMA model of orders (p, q) and (P,Q) is written as (Box et al.,
2008):

φp(B)ΦP (Bω)Xt = θq(B)ΘQ(Bω)αt (4)

where
φp(B) = 1− φ1B − φ2B2 − · · · − φpBp

ΦP (Bω) = 1− Φ1B
ω − Φ2B

2ω − · · · − ΦPB
Pω

θq(B) = 1− θ1B − θ2B2 − · · · − θqBq

and
ΘQ(Bω) = 1−Θ1B

ω −Θ2B
2ω − · · · −ΘQB

Qω

are, respectively, the ordinary AR, seasonal AR, ordinary MA and seasonal MA polyno-
mials of orders p,Q, q,Q while B is the backshift operator and ω is the seasonal length.
This model is denoted by the SARMA(p, q) × (P,Q)ω in which p and q represent the
non-seasonal orders and P and Q represent the seasonal orders. If P = Q = 0, then
model (4) reduces to the traditional ARMA(p, q) model while if p = q = 0, then it
reduces to the purely seasonal ARMA(P,Q) model. In case at least one of the ordinary
orders p and q is non-zero as well as at least one of the seasonal orders P and Q is
non-zero, then the resulting model is called a multiplicative SARMA model.

In this research we will consider three special cases of model (4) that all belong to the
autoregressive type. The first one is the zero-mean ordinary first order autoregressive
AR(1) model, which results from the general SARMA model above with p = 1, P =
Q = q = 0, and ω =1. Thus, it is written a

Xt = φXt−1 + αt (5)

where φ is the AR parameter satisfying |φ| < 1 for stationarity and {αt} is a purely
random process which we assume iid N(0, σ2α) through out this article (for all selected
models). This model is widely used for modeling autocorrelated data. The autocorrela-
tion function (ACF) of this model is given by

ρk = φk, k = 0, 1, · · ·

which has an exponential decay pattern. An example of this ACF is shown in Figure
(1) for positive and negative values of φ. Notice that autocorrelations exist at all lags
with an alternating behavior for negative values of φ.

The second model is the zero-mean first order seasonal autoregressive SAR(1)ω model,
where ω is the seasonal period which we set in this article to 4. The SAR(1)4 model is
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a special case of the SARMA(p, q)× (P,Q)ω model (4) with P = 1, p = q = Q = 0, and
ω = 4. Thus the zero-mean SAR(1)4 model is written as:

Xt = ΦXt−4 + αt (6)

where Φ is the seasonal AR parameter satisfying |Φ| < 1 for stationarity. The ACF of
this model is written as:

ρk =

{
Φ( k

4
) k = 0, 4, 8, · · ·

0 otherwise

Again, an example of this ACF is shown in Figure (1) . It is seen that autocorrelations
exist only at seasonal lags. However, exponential decay is also seen for autocorrelations
at seasonal lags. Thus, the ACF here has gaps of non-autocorrelations. Those gaps
increase as the seasonal length ω gets larger.

Moreover, the zero-mean multiplicative seasonal autoregressive SAR(1)× (1)ω model
is a special case of the SARMA(p, q) × (P,Q)ω model (4) when P = p = 1, Q = q = 0
and ω = 4. The SAR(1) × (1)ω model combines the idea of seasonal and nonseasonal
autoregressive models. The zero-mean SAR(1)× (1)4 model is derived from (4) as:

(1− φB)((1− ΦB4)Xt = αt

which is then simplified as:

Xt = φXt−1 + ΦXt−4 − φΦXt−5 + αt (7)

where φ and Φ are respectively the ordinary and seasonal AR parameters. This model
is stationary iff |φ| < 1 and |Φ| < 1(see, Cryer and Chan (2008)). Unfortunately, there
is no closed formula for the ACF of the SAR(1) × (1)ω model, although Yule-Walker
equations can be developed for recursive comparison of autocorrelation of this model (see
Cryer and Chan (2008)). For computation purposes we developed an R-code that utilizes
the R-command (ARMAacf). In Figure (2) we illustrate the ACF of the SAR(1)× (1)4
model in (7) for four pairs of φ and Φ. Note that the ACF of this model can take several
patterns according to the choice of its parameters φ and Φ. Sometimes seasonality in the
ACF of this model can be clearly seen as in Figure (2, A) and Figure (2, B). However,
autocorrelations are present at seasonal as well as other lags.

A detailed account on the three models introduced earlier as well as other SARMA
models, their ACF, other properties and applications is found, for example, in Cryer and
Chan (2008).

In the next section we define the settings of our simulation study that focuses on some
statistical properties of the sample PCIs defined in (1) - (3) for autocorrelated data
governed by models (5), (6) and (7). Then the results of our study are summarized and
then discussed.
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3 A Simulation study

As we have mentioned above, the main objective of this article is to study the bias,
MSE as well as some statistical properties of the empirical distribution for the sample
capability indices Ĉp , Ĉpk ,Ĉpm defined in (1) to (3) when the process data are au-
tocorrelated according the AR(1), SAR(1) and SAR(1) × (1)4 models. Therefore, we
developed an R-code to obtain the empirical relative bias (RB) as well as the relative
root mean square error (RRMSE) defined respectively as:

RB(θ̂) =
1

θ
B̂ias(θ̂) =

1

θ
(

∑
θ̂i
r
− θ), θ 6= 0

and

Figure 1: The theoretical ACF of AR(1) : φ = 0.9, AR(1) : φ = −0.9,
(A and B),and the theoretical ACF of SAR(1)4 : Φ = 0.9,
SAR(1)4 : Φ = −0.9, (C and D).

RRMSE(θ̂) =
1

θ

√
1

r

∑
(θ̂i − θ)2, θ 6= 0

where r is the number of iterations, θ is any parameter and θ̂i is the estimate of θ from
the i-th iteration, i = 1, · · · , r. The simulated data from various time series models were
carried out using the R-command “arima.sim”. All the computations were done based
on R, Version 3.4.2 (Team, 2017).

Now, for the parameters of our simulations we have selected r = 10, 000, LSL =
−3, USL = 3and µ = T = 0. Besides, the variance of error terms σ2α is selected so that
V ar(Xt) = 1 for all selected models. Accordingly, the values of the three theoretical
measuresCp, Cpm and Cpk are all equal 1.
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Figure 2: The theoretical ACF of SAR(1)× (1)4 :
(φ,Φ) = (0.9, 0.9), (−0.9, 0.9), (0.9,−0.9) and (−0.9,−0.9), in sub-graphs (A)
to (D), respectively.

We recall that V ar(Xt) (usually denoted as γ0) for models (5), (6) and (7) are given
respectively by (see, Cryer and Chan (2008)):

γ0 =
σ2α

1− φ2
,

γ0 =
σ2α

1− Φ2
,

and

γ0 =
σ2α

1− φρ1 − Φρ4 − φΦρ5

where ρ1, ρ4 and ρ5 are the autocorrelation values at lags 1, 4 and 5, respectively. Thus,
fixing V ar(Xt) = γ0 at one, we use the formulas above to find σ2α at each selected value(s)
of AR parameters. As for the AR parameters, we chose them in {−0.8,−0.4, 0, 0.4, 0.8}
for both φ and Φ for all models. Finally the sample size (or, realization length) is chosen
as {75, 150, 300}.

Now, the simulation results regarding the RB and RRMSE for the three sample
capability indices defined in (1) to (3) for the AR(1), SAR(1)4 and SAR(1) × (1)4
models are summarized in Tables (1) to (3), respectively.

Another issue we are concerned with in this research is to study the behaviors of the
empirical distributions for the sample capability indices defined in (1) to (3) in view of the
autocorrelation structure of data and the sample size. To accomplish this objective, we
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may use the empirical density function (obtained using R-command ”density”). Figure
(3) is an illustration for this method which presents the empirical distribution for Ĉp
when the data follow the SAR(1)4 model for n = 75 and n = 300. However, due
to the large number of cases we have in this study as well the difficulty to accurately
compare such curves; we decided to investigate the skewness and kurtosis of the sample
distributions for simulated data. To do this we have considered the SAR(1)×(1)4 model
with both φ and Φ are selected in {−0.8,−0.4, 0, 0.4, 0.8} which covers the ordinary
AR(1) as well as the SAR(1)4 models corresponding to Φ = 0 and φ = 0, respectively.
The measures of skewness and kurtosis are computed based on the same setting as above
using the R-commands ”skewness” and ”kurtosis” involved in the R-package ”moments”.
The results regarding skewness and kurtosis are summarized in Table (4).

Table 1: The values of RB and RRMSE (in parentheses) of several capability indices for
AR(1) data

Ĉp Ĉpk Ĉpm

n = 75 150 300 75 150 300 75 150 300

0.036 0.020 0.008 0.025 0.012 0.003 0.042 0.022 0.010

-0.8 (0.179) (0.124) (0.089) (0.175) (0.123) (0.088) (0.181) (0.125) (0.089)

0.009 0.005 0.002 -0.011 -0.010 -0.008 0.013 0.006 0.003

-0.4 (0.098) (0.068) (0.049) (0.097) (0.068) (0.049) (0.098) (0.068) (0.049)

φ 0.010 0.005 0.003 -0.020 -0.017 -0.012 0.010 0.005 0.003

0 (0.085) (0.058) (0.041) (0.088) (0.061) (0.044) (0.085) (0.058) (0.041)

0.021 0.011 0.005 -0.026 -0.022 -0.018 0.012 0.007 0.003

0.4 (0.101) (0.071) (0.048) (0.104) (0.076) (0.054) (0.098) (0.070) (0.048)

0.098 0.050 0.024 0.000 -0.017 -0.023 0.041 0.023 0.010

0.8 (0.210) (0.136) (0.091) (0.184) (0.130) (0.094) (0.181) (0.125) (0.087)

4 Discussion of Results

Starting with Figure (3), it is seen that for the SAR(1)4 model, the bias, variability and
shape of distribution of Ĉp is affected by the sample size as well as the value of seasonal
AR parameter (Φ). This result is assured for all sample capability indices in view of
Tables (1) to (4).

Now, for the RB and RRMSE, Tables (1) to (3) show that both measures decrease
when the size of data n increases. These measures are also affected by the autocorrelation
structure, the strength and direction of autocorrelation. For AR(1) and SAR(1)4 models,
as each of |φ| and |Φ| approaches one, then RB and RRMSE increase for all the three
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Figure 3: The empirical distribution of Ĉp under SAR(1)4 model with Φ ∈
{−0.8,−0.4, 0, 0.4, 0.8} for n = 75 (above) and n = 300 (down)

capability indices, respectively. A similar conclusion applies for the SAR(1)×(1)4 model
when either |φ| and |Φ| approaches one.

Again, for AR(1) and SAR(1)4 models, at the same value of n and for the same values
of φ and Φ, it seems that corresponding values of RB and RRMSE are nearly the same,
although slightly smaller for the SAR(1)4 model. This point shows that the gaps within
the ACF of the SAR(1)4 as compared to that of the AR(1) model (pictured in Figure
(1)) did not strongly impact the values of RB and RRMSE. On the other hand, for
the same models, it is seen from Tables (1 ) and (2) that for Ĉp and Ĉpk the values
of RB and RRMSE are often smaller for negative AR parameter as for corresponding
positive values. For Ĉpm it seems that the values of RB and RRMSE are affected by
the strength of autocorrelation but not its direction.

For the SAR(1) × (1)4 data, it is seen in Table (3) that RB and RRMSE values
for the three measures are affected by the values of both AR parameters (φ,Φ). It is
however seen that the largest values of RB and RRMSE for Ĉp and Ĉpk are seen when

(φ,Φ) = (0.8, 0.8) and for Ĉpm when (φ,Φ) = (0.8, 0.8) as well as (φ,Φ) = (−0.8, 0.8).

As far as the bias of the three sample capability indices is concerned, it is seen in
Tables( 1) to (3) that for all the models we have in this research, Ĉp and Ĉpm overestimate

Cp and Cpm, respectively, while Ĉpk (often) underestimates Cpk. This point agrees with
the result regarding the bias of the three measures for independent and normal data
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Table 2: The values of RB and RRMSE (in parentheses) of several capability indices for
SAR(1)4 data

Ĉp Ĉpk Ĉpm

n = 75 150 300 75 150 300 75 150 300

-0.8 0.035 0.017 0.009 0.023 0.009 0.003 0.041 0.020 0.010

(0.172) (0.122) (0.087) (0.169) (0.120) (0.087) (0.174) (0.123) (0.088)

-0.4 0.010 0.004 0.002 -0.011 -0.010 -0.008 0.013 0.006 0.003

(0.098) (0.068) (0.048) (0.097) (0.069) (0.049) (0.098) (0.068) (0.048)

Φ 0 0.010 0.005 0.003 -0.020 -0.017 -0.012 0.010 0.005 0.003

(0.085) (0.058) (0.041) (0.088) (0.061) (0.044) (0.085) (0.058) (0.041)

0.4 0.020 0.011 0.005 -0.027 -0.022 -0.018 0.011 0.007 0.003

(0.100) (0.070) (0.049) (0.103) (0.075) (0.054) (0.097) (0.069) (0.048)

0.8 0.084 0.047 0.023 -0.004 -0.017 -0.022 0.039 0.022 0.010

(0.193) (0.132) (0.089) (0.173) (0.127) (0.092) (0.171) (0.123) (0.086)

reported by Wen-lea and Samuel (2006) mentioned previously.

Now, from Table (4) it is clear that the shapes of the empirical distributions for all
sample capability indices are skewed to right. This skewness vanishes as the sample size
n gets larger. Similarly, the measure of kurtosis for all cases was greater than three,
which means that the empirical distributions of all sample capability indices and all
autocorrelation structures are leptokurtic. Also, these measures become closer to three
as n increases.

Finally, for the three time series models considered here the measures of skewness and
kurtosis were affected by the values and signs of AR parameter(s). More specifically, for
the AR(1) and SAR(1)4 models, those measures were nearly the largest when n = 75
and the AR parameter is closest to −1, whereas for the SAR(1) × (1)4 model, the
measures of skewness and kurtosis were the largest when n = 75 for Ĉp and Ĉpk when

(φ,Φ) = (−0.8, 0.8) and for Ĉpm when (φ,Φ) = (0.8, 0.8) as well as (φ,Φ) = (−0.8, 0.8).

5 Conclusions

In this article we investigated some distributional properties for three common sample
capability indices when data are autocorrelated according to three time series models
that belong to the AR type. The focus was on seasonal autocorrelation among process
data. In view of the extensive simulation results, we conclude that RB and RRMSE
are affected by the sample size, autocorrelation structure and AR parameters, although
minor differences are seen in the results between pure ordinary AR(1) and seasonal
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Table 3: The values of RB and RRMSE(in parentheses) of several capability indices for
SAR(1) ×(1)4 data

Ĉp Ĉpk Ĉpm

φ Φ n = 75 150 300 75 150 300 75 150 300

-0.8 0.035 0.020 0.009 0.029 0.016 0.006 0.042 0.023 0.010

(0.175) (0.127) (0.091) (0.174) (0.126) (0.091) (0.178) (0.128) (0.092)

-0.8 -0.4 0.021 0.008 0.005 0.013 0.003 0.001 0.028 0.011 0.007

(0.137) (0.096) (0.067) (0.135) (0.095) (0.067) (0.139) (0.096) (0.067)

0.4 0.071 0.038 0.017 0.057 0.028 0.011 0.077 0.040 0.019

(0.251) (0.174) (0.120) (0.244) (0.171) (0.119) (0.253) (0.175) (0.120)

0.8 0.173 0.093 0.053 0.150 0.077 0.042 0.175 0.095 0.054

(0.431) (0.290) (0.204) (0.416) (0.282) (0.199) (0.429) (0.290) (0.203)

-0.8 0.040 0.023 0.012 0.032 0.017 0.008 0.047 0.026 0.013

(0.184) (0.133) (0.096) (0.181) (0.132) (0.095) (0.186) (0.134) (0.096)

-0.4 -0.4 0.012 0.006 0.003 -0.001 -0.004 -0.004 0.018 0.008 0.004

(0.109) (0.076) (0.053) (0.108) (0.076) (0.053) (0.110) (0.077) (0.053)

0.4 0.021 0.010 0.005 -0.010 -0.011 -0.010 0.205 0.010 0.005

(0.121) (0.083) (0.059) (0.118) (0.083) (0.060) (0.120) (0.083) (0.059)

0.8 0.072 0.040 0.022 0.017 -0.001 -0.007 0.056 0.031 0.018

(0.216) (0.154) (0.109) (0.199) (0.146) (0.106) (0.203) (0.149) (0.107)

-0.8 0.040 0.022 0.013 0.022 0.011 0.005 0.044 0.025 0.014

(0.187) (0.135) (0.096) (0.182) (0.133) (0.095) (0.188) (0.136) (0.096)

0.4 -0.4 0.018 0.008 0.004 -0.014 -0.014 -0.011 0.017 0.008 0.004

(0.111) (0.077) (0.053) (0.110) (0.075) (0.055) (0.110) (0.077) (0.053)

0.4 0.047 0.027 0.012 -0.025 -0.023 -0.023 0.019 0.013 0.005

(0.128) (0.087) (0.061) (0.126) (0.091) (0.068) (0.119) (0.084) (0.060)

0.8 0.161 0.091 0.048 0.023 -0.010 -0.022 0.056 0.031 0.017

(0.249) (0.170) (0.115) (0.201) (0.151) (0.113) (0.202) (0.147) (0.106)

-0.8 0.049 0.026 0.013 0.004 -0.005 -0.009 0.041 0.022 0.011

(0.184) (0.130) (0.091) (0.173) (0.126) (0.090) (0.177) (0.128) (0.090)

0.8 -0.4 0.058 0.027 0.015 -0.015 -0.024 -0.021 0.028 0.012 0.008

(0.152) (0.100) (0.070) (0.143) (0.103) (0.074) (0.140) (0.096) (0.068)

0.4 0.176 0.089 0.044 0.042 -0.002 -0.018 0.072 0.038 0.020

(0.309) (0.196) (0.130) (0.254) (0.175) (0.126) (0.249) (0.172) (0.121)

0.8 0.478 0.249 0.121 0.228 0.087 0.015 0.174 0.097 0.050

(0.650) (0.395) (0.239) (0.479) (0.308) (0.205) (0.430) (0.294) (0.201)
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Table 4: The values of skewness and kurtosis (in parentheses) of several sample capability
indices for SAR(1)×(1)4 data

Ĉp Ĉpk Ĉpm

φ Φ n = 75 300 75 300 75 300
0.408 0.195 0.409 0.195 0.407 0.195

-0.8 (3.342) (3.027) (3.343) (3.032) (3.342) (3.027)
0.464 0.273 7 0.463 0.274 0.462 0.273

-0.4 (3.348) (3.165) (3.347) (3.165) (3.345) (3.165)
0.550 0.253 0.556 0.253 0.549 0.252

-0.8 0 (3.514) (2.933) (3.532) (2.934) (3.513) (3.933)
0.672 0.372 0.672 0.375 0.666 0.372

0.4 (3.575) (3.130) (3.582) (3.136) (3.564) (3.130)
0.850 0.606 0.857 0.610 0.833 0.605

0.8 (3.845) (3.588) (3.871) (3.606) (3.805) (3.587)
0.448 0.251 0.448 0.251 0.446 0.251

-0.8 (3.379) (3.242) (3.378) (3.242) (3.375) (3.242)
0.366 0.165 0.359 0.251 0.362 0.165

-0.4 (3.293) (3.045) (3.290) (3.058) (3.288) (3.046)
0.403 0.228 0.399 0.251 0.399 0.230

-0.4 0 (3.203) (3.088) (3.213) (3.111) (3.203) (3.092)
0.307 0.157 0.318 0.251 0.308 0.156

0.4 (3.173) (2.961) (3.215) (2.973) (3.194) (2.962)
0.356 0.171 0.372 0.251 0.359 0.166

0.8 (3.169) (3.055) (3.202) (3.056) (3.212) (3.048)
0.477 0.247 0.475 0.249 0.474 0.247

-0.8 (3.327) (3.057) (3.325) (3.065) (3.322) (3.058)
0.457 0.171 0.466 0.159 0.458 0.170

-0.4 (3.550) (3.003) (3.557) (3.008) (3.563) (3.003)
0.462 0.171 0.442 0.148 0.468 0.170

0 0 (3.425) (3.002) (3.450) (2.998) (3.458) (3.001)
0.393 0.184 0.349 0.115 0.395 0.173

0.4 (3.219) (3.021) (3.202) (3.003) (3.222) (3.000)
0.458 0.250 0.419 0.212 0.464 0.257

0.8 (3.335) (3.075) (3.226) (3.052) (3.243) (3.069)
0.440 0.204 0.438 0.206 0.430 0.204

-0.8 (3.298) (3.087) (3.273) (3.094) (3.265) (3.087)
0.436 0.193 0.429 0.184 0.436 0.194

-0.4 (3.438) (3.091) (3.465) (3.121) (3.465) (3.103)
0.398 0.176 0.372 0.128 0.406 0.177

0.4 0 (3.332) (3.078) (3.272) (3.017) (3.302) (3.062)
0.338 0.172 0.242 0.115 0.313 0.181

0.4 (3.223) (3.075) (3.173) (3.058) (3.201) (3.090)
0.394 0.145 0.306 0.100 0.363 0.149

0.8 (3.223) (2.999) (3.162) (2.909) (3.171) (2.929)
0.417 0.190 0.416 0.192 0.404 0.188

-0.8 (3.265) (3.058) (3.294) (3.033) (3.276) (3.055)
0.468 0.268 0.414 0.198 0.471 0.256

-0.4 (3.330) (3.134) (3.338) (3.082) (3.358) (3.088)
0.436 0.248 0.402 0.201 0.464 0.251

0.8 0 (3.196) (3.041) (3.239) (3.074) (3.302) (3.063)
0.521 0.300 0.611 0.276 0.604 0.315

0.4 (3.278) (3.103) (3.320) (3.102) (3.465) (3.114)
0.671 0.547 0.674 0.504 0.853 0.570

0.8 (3.443) (3.425) (3.514) (3.388) (3.851) (3.508)
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AR(1) models. Besides, we found that the empirical distributions for the three sample
capability indices, by means of skewness and kurtosis, are also affected by sample size,
autocorrelation structure and AR parameters. It is noticed that those distributions are
always skewed to right and leptokurtic. It is worth mentioning that more agreement in
terms of RB, RRMSE and shape is seen between Ĉp and Ĉpk as compared to Ĉpm .

Finally, comparing our results with corresponding theory for independent and normal
data, it seems that the autocorrelation among data does not alter the main facts about
bias and shape of distributions for the three sample capability indices, but affect their
magnitude or degree.
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