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This paper introduces a generalization of moment exponential distribu-
tion so called Kumaraswamy Moment Exponential distribution. The limit
behaviour of its density and hazard functions are described. Some proper-
ties of the proposed distribution are discussed including moments, skewness,
kurtosis, quantile function, and mode. Characterizations based on truncated
moments and hazard function are presented. Ri and q-entropies, mean resid-
ual life (MRL) and mean inactivity time (MIT) of X, and order statistics are
determined. The maximum likelihood estimation (MLE) is used to estimate
the model parameters. Two real data sets are used to compare the KwME
distribution with other competitive models and concluded that it could serve
as a better alternative lifetime distribution than existing well known models.

keywords: Hazard function, Moment Exponential distribution, moments,
maximum likelihood estimation.

1 Introduction

The modeling of lifetime data has a vital role in statistical analysis in the various fields
of science and human life. Therefore many generalizations have been developed by intro-
ducing shape parameter(s) to make baseline model more flexible. The interest in such
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generalized models remains increased these days. Since last few decades, generalized
models are more useful in the field of medical and health, economic and growth, finance,
reliability analysis and engineering. These generalizations includes beta-G family of dis-
tributions proposed by Eugene et al. (2002), Hashmi and Memon (2016) studied beta
exponentiated Weibull distribution, Weibull-G family of distributions defined by Bour-
guignon et al. (2014), the generalized transmuted-G family of distributions introduced
by Nofal et al. (2017), Haq et al. (2016) derived and studied transmuted Power function
distribution, among others. One can get knowledge of recently developed generalizations
from Lee et al. (2013) who discussed and compared the characteristics of these families.

The exponential distribution is a positively skewed distribution used worldwide for
reliability analysis and to deal with lifetime data sets by Epstein (1958). Its general-
izations include double exponential distribution by Norton (1984), exponentiated expo-
nential distribution by Gupta and Kundu (2001), transmuted exponential distribution
by Merovci (2013), moment exponential distribution by Dara and Ahmad (2012), expo-
nentiated moment exponential distribution by Hasnain et al. (2015), the odd Fréchet-G
family of probability distributions by Haq and Elgarhy (2018), the odd moment expo-
nential family of distributions: its properties and applications by Haq et al. (2018), the
Marshall-Olkin length-biased exponential distribution and its applications by Haq et al.
(2017) and generalized exponentiated moment exponential distribution by Iqbal et al.
(2014) among others.

Dara and Ahmad (2012) developed moment exponential distribution by assigning
linear weights to exponential model. They developed some basic properties such as
moment generating function, moments, skewness, kurtosis, explained the behaviour of
distribution, its hazard curves with an application. Later on Hasnain et al. (2015) and
Iqbal et al. (2014) generalized this moment exponential distribution for more litheness.

The probability density function (pdf) and cumulative distribution function (cdf) for
one parametric moment exponential distribution is given as:

g (x;β) =
x

β2
e
− x
β , x > 0, β > 0 (1)

G (x;β) = 1−
(

1 +
x

β

)
e
− x
β , x > 0, β > 0 (2)

where β > 0 is its only scale parameter.
If G denoted the distribution function for parent distribution with a random variable

X, then the cdf of Kw −G can be defined as:

F (x) = 1− [1−Ga (x)]b, a > 0, b > 0 (3)

Correspondingly, its pdf is given as:

f (x) = abg (x)Ga−1 (x) [1−Ga (x)]b−1 (4)

where a > 0, b > 0 are two new shape parameters which are responsible for skewness,
tail weights and kurtosis. Its density function is a simple function and does not involve
any particular function such as beta-G distribution and gamma-G distribution.
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The arrangement of this paper is presented in subsequent sections. In section 2, we de-
fine Kw-ME distribution and present expansions for density, cumulative distribution and
hazard functions, we also discuss limiting behaviour of its probability density and hazard
functions. In section 3, different mathematical properties including moments, moment
generating function, quantile function, mode and incomplete moments are derived. We
also obtain Rényi entropy and q-entropy, mean residual life (MRL) and mean inactivity
time (MIT) of X. The densities of smallest and largest order statistics are determined
in section 4. In section 5, we obtain the maximum likelihood estimates (MLEs) of the
model parameters. In section 6, some simulation results investigate the performance of
these estimates. In Section7, we show the potentiality of the proposed distribution using
two real data analysis. Finally, in Section 8, we state some remarks as a conclusion.

2 KwME Distribution

If G (x;β) is the moment exponential distribution with parameter β then equation (2)
yields a new model KwME cumulative distribution (for x > 0), say F (x) = F (x; a, b, β),
reduces to

F (x) = 1−
[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]b
(5)

where β > 0 is a scale parameter while a and b are two positive real value shape
parameters. The corresponding KwME pdf. is obtained by inserting (1) and (2) in
equation (4).

f (x) = ab
x

β2
e
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]b−1

, x ≥ 0 (6)

In Figures (1) and (2), we present the plots of the p.d.f. and failure (hazard) rate
functions of the KwME distribution for specified values of parameters.

2.1 Expansions used for density function

Here, we explain some binomial function used for the expansion of probability density
function for (0 < a < 1)

(1 + a)v =

∞∑
k=0

(
k

v

)
ak

where (
k

v

)
=
n (n− 1) (n− 2) . . . . . . (v − k + 1)

k!

Also

(1− z)b−1 =

∞∑
j=0

(−1)j
(
b

j

)
zj , |Z| > 0



226 Hashmi, Haq, Usman

We can write Eq. (6) as

f (x) = ab
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
1

βk+2
xk+1e

− x
β

(j+1)
. (7)

The survival function S(x) and hazard or failure function h(x) of X are given as

S (x) =

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]b
. (8)

h (x) =
ab x

β2 e
− x
β

[
1−

(
1 + x

β

)
e
− x
β

]a−1

1−
{

1−
(

1 + x
β

)
e
− x
β

}a . (9)

A flexible model approaches to other distributions when parameters assume different
values. If Y is a random variable of KwME distribution with pdf defined in Eq. (6),
then we have following special cases for proposed distribution:

1. If a = b = 1, KwME converts into moment exponential distribution ME(β).

2. When a = 1, we have the generalized moment exponential distribution GME(β, a).

3. When b = 1, we get the exponentiated moment exponential distribution EME(β, b).

2.2 Shape of density function

Figures 1a, 1b, 2a, 2b display some graphs of the KwME probability density, and hazard
rate curves for some specific parametric values β, a and b. Further, the hrf (failure or
hazard rate function) of the KwME model is very flexible in accommodating different
form and thus it becomes an important model to fit real lifetime data.

Figure 1a & 1b shows the various shapes of KwME density curve with different set of
parameter a and fixed values of b = 4 and β = 3. Figure 2a & 2b represent the hazard
(failure) curves for KwME models with an increasing, decreasing and semi bathtub
shapes.

2.3 Limiting behavior of KwME density and hazard functions

Theorem 1: The limit of KwME probability density function as x → ∞ is zero and
the limit at origin are

lim
x→0

f (x) =


∞ for 0 < a < 1

2
b

β
√

2 for a = 1
2

0 for a > 1
2

(10)
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(a) (b)

Figure 1: Plots of probability density function for some specific parametric values

Proof:

lim
x→0

f (x; a, b, β) = lim
x→0

[
ab

x

β2
e
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]b−1
]

=
ab

β2
lim
x→0

[
xe
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1
]

=
ab

β2
lim
x→0

{
xe
− x
β

((
1 +

x

β

)
e
− x
β

)a−1

− (a− 1)

((
1 +

x

β

)
e
− x
β

)a−2

+
(a− 1) (a− 2)

2((
1 +

x

β

)
e
− x
β

)a−3

− . . .
}

Expand exponent series and the result can be demonstrated easily.

Theorem 2: The limit of KwME hazard function as x → ∞ is b
β and the limit at

origin are

lim
x→0

h (x) =


∞ for 0 < a < 1

2
b

β
√

2 for a = 1
2

0 for a > 1
2

(11)

Proof: The limit of KwME hazard function at origin is obtained by

lim
x→0

h (x; a, b, β) = lim
x→0

ab xβ2 e
− x
β

[
1−

(
1 + x

β

)
e
− x
β

]a−1

1−
{

1−
(

1 + x
β

)
e
− x
β

}a
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(a) (b)

Figure 2: Plots of the failure rate function for some specific parametric values

It is straightforward to prove the result from this equation. Now for the limit of KwME
hazard function at infinity, we use following lemma.

Lemma 1: If X be a random variable, then for β > 0

lim
x→∞

(
1 +

x

β

)
e
− x
β = 0

Proof: Applying L’ Hospital rule and result follow. Using Lemma, we get

lim
x→∞

h (x; a, b, β) = lim
x→∞

ab x
β2 e
− x
β

[
1−

(
1 + x

β

)
e
− x
β

]a−1

1−
{

1−
(

1 + x
β

)
e
− x
β

}a =
b

β

Remark 1: The shapes of density function of KwME distribution have the following
properties:

1. The density curve is modal for a > 1
2 .

2. The pdf curve begins from a specific point b
β
√

2
at origin and has increasing trend

and reaches to zero as x approaches to infinity for a = 0.5.

3. The curve has decreasing trend starts from infinity and touches zero as x ap-
proaches to infinity.

Remark 2: The hazard rate function of KwME distribution has the following properties:

1. The hazard rate curve begins from infinity at the origin and goes to the point b
β

as x tends to infinity for a < 0.5. The curve may be decreasing or semi bathtub
shape for this.
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2. The hazard rate curve begins at particular point b
β
√

2
at origin and goes to the

point b
β x approaches to infinity for a = 0.5.

3. The hazard rate curve has an increasing trend and begins from zero at the origin
and reaches to the point b

β as x goes to infinity for a > 0.5.

3 Mathematical properties

It is efficient to illustrate the structural quantities of KwME model with algebraic ex-
pressions as compare to direct numerical integration of density function. Therefore, we
derived expressions for some important statistical measures.

3.1 Moments

Theorem 3: Let X be a r.v. from KwME distribution then its rth moment is

µ ŕ = ab
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
βr

(j + 1)k+r+2
Γ (k + r + 2) (12)

Proof: The rth moment of KwME random variable X can be obtained from

µ ŕ =

∞∫
0

xrf (x; a, b, β) dx

Using binomial expansions,we have

= ab
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
1

βk+2

∞∫
0

xk+r+1e
− x
β

(j+1)
dx

Let z =
x

β
(j + 1)⇒ x =

zβ

(j + 1)
⇒ dx =

β

(j + 1)
dz

= ab
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
1

βk+2

∞∫
0

zk+r+1βk+r+1

(j + 1)k+r+1
e−z

β

(j + 1)
dz

= ab
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
βr

(j + 1)k+r+2

∞∫
0

zk+r+1e−zdz

and the result follows.
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3.2 Incomplete Moments

Theorem 4: Let X has KwME distribution then its rth incomplete moment is

ϕ (x) = ab

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
βrγ (k + r + 2, x)

(j + 1)k+r+2
(13)

Proof: The rth incomplete moment of X can be obtained from

ϕ (x) =

x∫
0

vr f (v) dv

= ab

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
1

βk+2

x∫
0

vk+r+1e
− v
β

(j+1)
dv

Let z =
v

β
(j + 1)⇒ x =

zβ

(j + 1)
⇒ dx =

β

(j + 1)
dz

= ab

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
1

βk+2

x∫
0

zk+r+1βk+r+1

(j + 1)k+r+1
e−z

β

(j + 1)
dz

= ab
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
βr

(j + 1)k+r+2

x∫
0

zk+r+1e−zdz

Incomplete gamma function completes the proof.

3.3 Moment generating function

Mx (t) = E
(
etx
)

=

∞∫
0

etxf (x; a, b, β) dx

= ab

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
1

βk+2

∞∫
0

xk+1e
− x
β

(j+1)
etxdx

After integration and simplification, we get the moment generating function as

= ab

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
b− 1

i

)(
a (i+ 1)− 1

j

)(
j

k

)
1

(j + 1 + βt)k+2
Γ (k + 2) (14)
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3.4 Quantile and random number generation

If U is a uniform random variate with unit interval (0, 1), then the random variable
X = Q(U) has density Eq.(6). The quantile function of X corresponding to (Eq. 5) is

x = Q (u) = β

[{
1−

(
1− u

1
b

) 1
a

}
e
x
β − 1

]
(15)

Since it is a complex equation so by iteration method, the equation provides the quartiles
and random numbers of the KwME distribution.

3.5 Mode

The mode of f(x) is an important measure of average. f ′(x) = d f(x)
dx = 0, for the mode,

simplifies to

1− 1

β
+
x

β
e
− x
β

− (a− 1)

1− e
− x
β

(
1 + x

β

) +
a (b− 1)

1−
(

1− e
− x
β

(
1 + x

β

))a
 = 0 (16)

The second derivative may be used if required.

3.6 Skewness and kurtosis

Skewness is the measure of the asymmetry of the probability density function and kur-
tosis is the measure of peakedness of the probability density function. Both measures
are the descriptive measures of the shape of the probability distribution. Skewness and
kurtosis can be easily determined by the following expressions based on first four mean
moments calculated by Eq. (11) or Eq. (12).

γ1 (sk) =
µ3

µ
3
2
2

, β2 =
µ4

µ2
2

(17)

4 Characterizations

Characterization of a distribution is theoretically important as it is the unique way of
identifying the distribution. Characterizing a distribution is an important problem which
helps researcher to see if proposed model is the correct one.

4.1 Characterization based on two truncated moments

For characterization of KwME distribution we use the proposition based on the ratio of
two truncated moments Glänzel (1987).
Theorem 5: Let X: Ω→ (0,∞) be distributed as Eq.(6) and

q1 (x) =

{
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a}1−b
(18)
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q2 (x) = q1 (x)

{
1−

(
1 +

x

β

)
e
− x
β

}a
for x > 0. (19)

The random variable X follows Kw ME distribution if and only if the function η is of
the form

η (x) =
1

2

{
1 +

{
1−

(
1 +

x

β

)
e
− x
β

}a}
. (20)

Proof: It can be seen that

(1− F (x))E [q1 (X) |X ≥ x] = b

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]
, x > 0

(1− F (x))E [q2 (X) |X ≥ x] =
b

2

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}2a
]
, x > 0

and so

η (x) =
1

2

{
1 +

{
1−

(
1 +

x

β

)
e
− x
β

}a}
.

As

η (x) q1 (x)− q2 (x) =
q1 (x)

2

{
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a}
6= 0 for all x.

the proof follows.
Conversely, given q1 (x) , q2 (x) and η (x)we show that the random variable X has Kw

ME distribution. Here,

´
s (x) =

´
η (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

´
η (x)

η (x)−
{

1−
(

1 + x
β

)
e
− x
β

}a
´
s (x) =

ax

(
1− e

− x
β (x+β)
β

)a
β
(
x+ β − ex/ββ

){(
1− e

− x
β (x+β)
β

)a
− 1

} , x > 0

and so

s (x) = − ln

[(
1− e

− x
β (x+ β)

β

)a
− 1

]
, x > 0 (21)

Now
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= c

x∫
0

´
η (u)

η (u) q1 (u)− q2 (u)
exp [−s (u)] du

= c

x∫
0

au

(
1− e

−u
β (u+β)
β

)a{
1−

{
1−

(
1 + u

β

)
e
−u
β

}a}b−1

β
(
u+ β − eu/ββ

) du

which can be simplified to

x∫
0

fKwMED (u) du = FKwMED (x)

4.2 Characterization based hazard function

Hamedani and Najibi (2016) presented the characterization based on hazard rate func-
tion. Using this idea, the characterization of KwME distribution is presented here.
Theorem 6: The pdf of KwME distribution is (6) if and only if its hazard function
h(x) satisfies the differential equation

´
h (x)− x−1h (x) =

abx

(
1− e

− x
β (x+β)
β

)a [
ax+

(
ex/β − 1

)
β

{(
1− e

− x
β (x+β)
β

)a
− 1

}]
β2
(
x+ β − ex/ββ

)2[(
1− e

− x
β (x+β)
β

)a
− 1

]2

(22)
Proof: If X has pdf (6), then

´
h (x)−x−1h (x) =

[
ab

(
1− e

− x
β (x+β)
β

)a{
ax2 + β

(
ex/β (x− β) + β

)((
1− e

− x
β (x+β)
β

)a
− 1

)}]
[
β2
(
x+ β − ex/ββ

)2{(
1− e

− x
β (x+β)
β

)a
− 1

}2
] −

− x−1

abe−
x
β x
(

1− e
− x
β

(
1 + x

β

))a−1[
1−

(
1− e

− x
β

(
1 + x

β

))a]
β2

 (23)

simplification follows (21). Now if (21) holds then

d

dx

[
x−1h (x)

]
= ab

d

dx

 e
− x
β

(
1− e

− x
β

(
1 + x

β

))a−1[
1−

(
1− e

− x
β

(
1 + x

β

))a]
β2
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h (x) = ab
x e
− x

β

(
1− e

− x
β

(
1 + x

β

))a−1[
1−

(
1− e

− x
β

(
1 + x

β

))a]
β2

(24)

5 Entropies

Entropy of a r. v. X is used to measure the variation of the uncertainty. Mostly, Ri
entropy is used as a common measure of entropy.

5.1 Rényi Entropy

Theorem 7: If the random variable X is defined as Eq. 5, then the Ri entropy is given
by

IR (δ) =
δ log a

1− δ
+
δ log b

1− δ
+ log β +

1

1− δ

log

 ∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
δ (b− 1)

i

)(
ai+ δ (a− 1)

j

)(
j

k

)
Γ (δ + k + 1)

(δ + j)δ+k+1

 (25)

Proof: If X has the KwME distribution then Ri entropy is defined as

IR (δ) =
1

1− δ
log [I (δ)] (26)

where δ > 0 and δ = 1 and I (δ) =
∞∫
0

f δ (x) dx

I (δ) =

∞∫
0

(ab)δ
xδ

β2δ
e
−xδ
β

[
1−

(
1 +

x

β

)
e
− x
β

]δ(a−1)[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]δ(b−1)

dx

After simplification final expression is

=
(ab)δ

βδ−1

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
δ (b− 1)

i

)(
ai+ δ (a− 1)

j

)(
j

k

)
1

(δ + j)δ+k+1
Γ (δ + k + 1)

(27)
Substituting Eq. (26) in Eq. (25), the result follows.

5.2 q-Entropy

The q entropy (Hq) is defined by

Hq =
1

q− 1
log (1− (1− q) IR (δ)) (28)

Substitution of Eq. (24) completes the proof.
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6 Mean Residual Life (MRL) and Mean Inactivity Time
(MIT)

If T is a continuous r. v. representing the life of a component having distribution
function F(t) defined in Eq. (5), the mean residual life is defined by

µ (t) = E (T − t |T 〉 t)) =
1

F̄

∞∫
t

S (v) dv, t ≥ 0 (29)

where F̄ = 1− F = S (t) is the survival function.
Theorem 8: Let X be a r. v. having KwME distribution, the mean residual life is

given by

µ (t) =

[
1− ab

∑∞
i=0

∑∞
j=0

∑∞
k=0 (−1)i+j

(
b−1
i

)(
a(i+1)−1)

j

)(
j
k

)βr γ(k+r+2,x)

(j+1)k+r+2

]
1−

[
1−

{
1−

(
1 + t

β

)
e
− t
β

}a]b − t. (30)

Proof: from

µ (t) =
1

S (t)

∞∫
t

S (v) dv

=
1

1−
[
1−

{
1−

(
1 + t

β

)
e
− t
β

}a]b
∞∫
t

1−
[
1−

{
1−

(
1 +

v

β

)
e
− v
β

}a]b
dv

Also, the mean residual life can be obtained as

µ (t) =
[1− ϕ1 (t)]

S (t)
− t =

∫∞
t v f (v) dv

S (t)
− t, t ≥ 0, (31)

where ϕ1 (t) =
t∫
0

v f (v) dv is first incomplete moment of V. Substituting of Eq. (12)

in Eq. (30), completes the proof.

Theorem 9: Let X be a r.v. with KwME distribution, the mean inactivity life is
given by

M (t) = t−
ab
∑∞

i=0

∑∞
j=0

∑∞
k=0 (−1)i+j

(
b−1
i

)(
a(i+1)−1)

j

)(
j
k

)βr γ(k+r+2,x)

(j+1)k+r+2[
1−

{
1−

(
1 + x

β

)
e
− x
β

}a]b . (32)

Proof: The mean Inactivity time (MIT) is defined by
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M (t) = E (t− T |T ≤ t)) = t− [ϕ1 (t)]

F (t)
, t > 0,

By inserting Eq. (12) and Eq. (5), the result follows.

7 Order Statistics

LetX(i) be random variables and its ordered values is denoted asX(1), X(2), X(3), . . . . . . , X(n).
The probability density function (p.d.f.) of order statistics is obtained by the following
function

fs:n (x) =
n!

(s− 1)! (n− s)!
[F (x)]s−1[1− F (x)]n−sf (x)

The density of the sth ordered statistics of the KwME distribution is derived as follows

fs:n (x) =
n!

(s− 1)! (n− s)!

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]bs−1
[

1−
[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]b]n−s

ab
x

β2
e
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1

The density of the smallest order statistics obtained as

f1:n (x) = n

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]b−1
[

1−
[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]b]n−1

ab
x

β2

e
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1

(33)

The density of the largest order statistics obtained as

fn:n (x) = n

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]bn−1

ab
x

β2
e
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1

. (34)

8 Estimation

Numerous estimation methods are recommended in statistical theory but the maximum
likelihood estimation method is the supreme used. The MLEs provide the maximum
information about the properties of distribution and useful during the construction of
confidence intervals and also use in examination of test statistics. In large sample theory,
the normal approximation for ML estimators can easily be managed either numerically
or critically. Therefore, we preferably used ML estimation for the estimation of KwME’s
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parameters. Here, we explore the MLEs of unknown parameters of the KwME (a, b, β)
model.

Let X be random variable following KwME distribution of size n with vector of pa-
rameters (a, b, β)T . Then sample likelihood and Log-Likelihood functions of KwME are
obtained as

n∏
i=1

f (x) =
anbn

β2n

n∏
i=1

xe
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1{
1−

[
1−

(
1 +

x

β

)
e
− x
β

]a}b−1

Log-likelihood function is:

L = n log a+n log b+n
∑

log x−2n log β−
∑ x

β
+(a− 1)

∑
log

[
1−

(
1 +

x

β

)
e
− x
β

]
+

+ (b− 1)
∑

log

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]
(35)

Therefore, The MLE’s of parameters (a, b and β) can be found by maximizing the above
log-likelihood function Eq. (34). Take the first derivative of the above log-likelihood
equation with respect to parameters and equate to zero respectively.

∂L

∂a
=
n

a
+
∑

log

[
1−

(
1 +

x

β

)
e
− x
β

]
− (b− 1)

∑{
1−

(
1 + x

β

)
e
− x
β

}a
log a

1−
{

1−
(

1 + x
β

)
e
− x
β

}a = 0 (36)

∂L

∂b
=
n

b
+
∑

log

[
1−

{
1−

(
1 +

x

β

)
e
− x
β

}a]
= 0 (37)

∂L

∂β
=
−2n

β
+
∑ x

β2
−(a− 1)

β2

∑ xe
− x
β

1−
(

1 + x
β

)
e
− x
β

+
a (b− 1)

β2

∑ x
{

1−
(

1 + x
β

)
e
− x
β

}a
e
− x
β

1−
{

1−
(

1 + x
β

)
e
− x
β

}a = 0

(38)
The exact solution of above derived ML estimator for unknown parameters is not

possible. So it is well-situated to use Newton-Raphson algorithm to maximize the above
likelihood function numerically. We can use R (optim function or maxBFGS function),
or MATHEMATICA (NMaximize function).

9 Simulation study

Monte Carlo simulation study under 10,000 repetitions is used to inspect the performance
for MLEs of KwME parameters for various sample sizes (n). The simulations are achieved
as:
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• Data sets are produced from the relation F (x) = R, where R˜U (0, 1).

• The values of true parameters (a, b, β) are taken as (2.5, 1.5, 1.5), (1.25, 4, 2), (1.5, 3, 4)
respectively for example.

• n=50, 150, 300 and 500 are the sample sizes used for simulation.

• The experiment is replicated 100 00 times for each sample size.

We calculate the average estimates (AEs), mean square errors (MSEs) and biases. The
outcomes of the Monte Carlo simulation study are presented in Table 1. The findings
of simulated results indicate that as ’n’ increases the MSE decrease and approaching
towards zero, as usually expected under the first-order asymptotic theory. The aver-
age parameter estimates tend to be closer to the true parameters as the sample size
’n’ increases. An obvious fact can be seen during estimation of parameters is that the
asymptotic normal distribution provides a satisfactory approximation to the finite sam-
ple distribution of the estimates. This normal approximation can be upgraded by the
adjustment of bias to the estimates. First-order bias correction plays an excellent role
in bias reduction but MSE might increase. Correction of bias is beneficial in practice
depends mainly on the shape of the bias function and the variance of the MLE.

The figures in Table 1 indicate that the MSE of ML estimators of a, b, and β decreases
and their biases decay towards 0 as sample size increases.

10 Data Analysis

This section explains and proves the litheness of the new distribution KwME by its
application to the two real data sets empirically. We compare it with the fits of the Ex-
ponential (E) distribution Epstein (1958), beta-exponential (BE) distribution Nadara-
jah and Kotz (2006), Kumaraswamy exponential (KwE) distribution Cordeiro et al.
(2010), moment exponential (ME) distribution Dara and Ahmad (2012), Exponentiated
inverted Weibull (EIW) distribution Flaih et al. (2012), Exponentiated moment expo-
nential (EME) distribution Hasnain et al. (2015) and generalized moment exponential
(GEME) distribution Iqbal et al. (2014). Their probability density functions are given
by:

KwE : f (x) = ab λ e−λx
[
1− e−λx

]b−1
(

1−
(

1− e−λx
)b)a−1

GEME : f (x) = aλ
x2λ−1

β2
e
−x

λ

β

[
1−

(
1 +

xλ

β

)
e
−x

λ

β

]a−1

EME : f (x) = a
x

β2
e
− x
β

[
1−

(
1 +

x

β

)
e
− x
β

]a−1

BE : f (x) =
λ

B (a, b)
e−bλx

[
1− e−λx

]a−1
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Table 1: Mean estimates, bias and MSE of Estimated parameters

a b β Sample size Parameter Mean Bias MSE

2.5 3.5 1.5

50

a 4.335 1.835 43.60

b 10.69 7.193 226.9

β 2.067 0.567 2.683

150

a 2.759 0.259 1.111

b 7.997 4.497 136.8

β 1.911 0.411 1.582

300

a 2.614 0.114 0.390

b 5.570 2.070 46.46

β 1.718 0.218 0.706

500

a 2.259 0.061 0.195

b 4.551 1.051 16.19

β 1.624 0.124 0.343

2.5 2 2

50

a 2.259 1.009 12.44

b 12.12 8.123 246.9

β 3.149 1.149 8.839

150

a 1.393 0.143 0.249

b 11.43 7.432 255.3

β 3.175 1.175 8.501

300

a 1.303 0.053 0.059

b 9.891 5.891 196.7

β 2.989 0.989 6.481

500

a 1.278 0.028 0.031

b 8.316 4.316 133.3

β 2.760 0.760 4.586

3.5 2.5 2

50

a 2.917 1.417 23.89

b 7.589 5.089 108.5

β 4.619 1.619 18.54

150

a 1.707 0.209 0.489

b 6.399 3.899 93.07

β 4.373 1.373 1.373

300

a 1.599 0.099 0.131

b 4.769 2.269 55.86

β 2.041 0.041 0.091

500

a 1.564 0.064 0.066

b 3.691 1.191 21.57

β 3.454 0.454 4.311
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EIW : f (x) = λβx−(β+1)
(
e−x

−β
)λ

ME : f (x) =
x

β2
e
− x
β

Exp : f (x) = λe−λx

All parameters of the these mentioned densities are positive real numbers.
Data: In this section, we offer a data analysis for a simple uncensored data set to see

how the new distribution works in practice. The first data set has been obtained from
Nichols and Padgett (2006), the data concerning tensile strength of 100 observations of
carbon fibers.

The second data set has been obtained from Al-Aqtash et al. (2014) and consists of
66 observations. The observations are breaking stress of carbon fibers of 50 mm length
(GPa). This data was used by Cordeiro and Lemonte (2011) in the application of the
four-parameter beta-Birnbaum-Saunders distribution (BBS) and compared it with two-
parameter Birnbaum-Saunders distribution by Birnbaum and Saunders (1969).

Table 2 provides some descriptive statistics about both data sets. Table 3 and 4 pro-
vide MLEs of the model parameters and some comparative measures for the first data
sets. MLEs of the model parameters and corresponding some comparative measures
for second data set are given in Table 5 and 6 respectively. Comparative measure in-
cludes Akaike information criterion (AIC), Bayesian information criterion (BIC) and A2,
W2 (Anderson Darling comparison measures). Since the values of these measures are
smaller for KwME distribution compared with those values of other distributions, the
new proposed model seems to be very competitive model for these data sets.

Table 2: Descriptive statistics

Data Q1 Median Q3 Mean Max. skewness kurtosis

Data 1 1.840 2.675 3.198 2.611 5.560 0.392 3.18

Data 2 2.555 2.95 3.295 2.962 4.900 -0.130 0.34

Table 3: MLEs for first data set

Distribution â b̂ β̂ λ̂

KwME 1.7317 27.210 - 4.2949 -

E - - - 0.3829

BE 7.0046 15.842 - 0.1270

KwE 3.4966 21.921 - 0.1633

ME - - 1.3057 -

EIW - - 1.7737 3.0855



Electronic Journal of Applied Statistical Analysis 241

Table 4: Some statistics for models fitted to first data set

Distribution AIC BIC -2L A W

KwME 287.44 290.65 281.44 0.44260 0.07783

E 393.97 396.18 391.98 17.5557 3.48081

BE 291.15 294.35 285.14 4.95641 0.78112

KwE 287.45 296.66 281.46 1862.62 33.4998

ME 333.85 341.06 331.86 8.14797 1.45650

EIW 348.99 354.20 344.99 5.45403 0.90695

Table 5: MLEs for second data set

Distribution â b̂ β̂ λ̂

KwME 1.72223 2.9496 ∗ 109 1214.64 -

E - - - 0.362379

BE 7.48244 217.156 - 0.012304

ME - - 1.37977 -

EME - - 0.779259 -

GEME 0.4403 - 44.1001 3.4466

Figures 3 and 4 show that KwME distribution is better than the other models in the
model fitting. Table 4 and Table 5 also shows that KWME distribution provide a good
fit for both datasets.

11 Conclusions

We introduce a three parameter probability distribution, named the Kumaraswamy mo-
ment exponential (KwME) distribution, which extends the moment exponential distri-
bution. We provide detailed study of its mathematical properties including moment
generating function, moments, the densities of the order statistics, and entropies. We
study the estimation procedure by maximum likelihood method. Since biases of MLEs
decreases as ’n’ increases. Thus, this simulation study supports the use of the Ku-
maraswamy moment exponential distribution for describing the data sets. Both appli-
cations to real data sets show that the fit of the new model is superior to the existing
models in probability theory. We hope that KwME attract wider applications in prob-
ability theory.
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Table 6: Some statistics for models fitted to second data set

Distribution AIC BIC -2L A W

KwME 177.889 184.458 172.138 0.49185 0.08432

E 267.989 270.178 265.989 17.6309 3.69494

BE 188.336 194.905 182.336 1.32817 0.24846

ME 226.008 228.197 224.008 8.09264 1.54250

EME 192.130 196.510 188.13 1.90614 0.34345

EIW 178.740 184.643 172.74 0.50671 0.08594

(a) (b)

Figure 3: The fitted KwME density curves.

(a) (b)

Figure 4: The fitted KwME cdf curves.
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