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In this article we consider the estimation of the stress-strength reliability
parameter, R = P (X < Y ) when the stress (X) and the strength (Y ) are
dependent random variables distributed as bivariate Lomax model. The
maximum likelihood, moment and Bayes estimators are derived. We obtained
Bayes estimators using symmetric and asymmetric loss functions via squared
error loss and Linex loss functions respectively. Since there are no closed
forms for the Bayes estimators, we used an approximation based on Lindley’s
method to obtain Bayes estimators under these loss functions. An extensive
computer simulation is used to compare the performance of the proposed
estimators using three criteria, namely, relative bias, mean squared error
and Pitman nearness (PN) probability. Real data application is provided
to illustrate the performance of our proposed estimators using bootstrap
analysis.

keywords: Bivariate Lomax distribution, Lindley’s approximation, Pit-
man nearness probability.

1 Introduction

Due to the diversity of purposes and applications, the study of reliability models received
the attention of researchers from many diverse disciplines. As a result, reliability models
have been considered from different perspectives. The most widely used approach for
reliability estimation is the well known stress-strength model, R = P (X < Y ) where
X and Y are random variables. In this model, the reliability R, of the system is the
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



620 Musleh, Helu, Samawi

probability that the system is strong enough to overcome the stress imposed on it.
The reliability of aircrafts’ windshields is an example of aerodynamics and mechanical
engineering. The windshields consist of several layers of materials to withstand extreme
temperatures and pressure. In order to maintain a regular performance of aircrafts, it is a
vital information to know what the probability of windshield failure is at different stages
of the windshield life (after 1000, 2000. . . etc., of flight hours). Given a good estimate
of the windshield reliability by defining the stress to be the temperature and/or the
pressure differential and the strength to be the thickness and/or the composition of the
windshield layers. One can then make a rational decision about when windshields need
to be repaired or replaced.

Another example is the customer satisfaction which has been a main interest for man-
ufacturers to produce reliable products. For their products to remain desired and thus
profitable, they are motivated to develop high quality and long life products. This
requires having knowledge about products failure time distributions which is achieved
by performing life testing experiments on products before being released into the mar-
kets. After knowing the failure time distribution, the manufacturer finds the reliability
characteristics such as hazard rate and mean time to system failure.

It is worth mentioning that R is of greater interest than just a stress-strength model
since it provides a general measure of the difference between two populations and has
applications in many areas. For example, in clinical studies we may be interested in
comparing the effectiveness of two drugs, so X may represent the life time lived by a
patient when treated with a certain drug, and Y represents the life time lived by another
patient when treated with another drug.

A vast number of researchers dedicated so much of their work to study the stress-
strength model. Birnbaum et al. (1956) was the first connected the stress-strength
model with the Man-Whitney statistic in order to estimate R in case where X and Y
are independent. More works have followed to provide point and interval estimation of R
using different approaches. For example Kotz and Pensky (2003) provided a comprehen-
sive review of the development of the stress-strength reliability and its applications until
the year 2003. Recently, Rezaei et al. (2010) studied the estimation of R when X and
Y are two independent generalized Pareto distribution with different parameters. RRL
et al. (2010) studied the reliability in multicomponent stress-strength model when X
and Y follow log-logistic distribution. Barbiero (2013) studied the reliability of stress-
strength model when X and Y are independent Poisson random variables. Whereas,
Al-Mutairi et al. (2013) considered the problem of estimating R when X and Y are
distributed as Lindley with different shape parameters. Ghitany et al. (2015) derived
a point and interval estimation of R using maximum likelihood, parametric and non-
parametric bootstrap methods when X and Y are independent power Lindley random
variables. Makhdoom et al. (2016) extended the work of Ghitany et al. (2015) and de-
veloped a Bayesian inference on R. In addition, Wong (2012) derived an asymptotic
confidence intervals for R when X and Y are two independent generalized Pareto ran-
dom variables with same scale parameter. However, several researchers have focused
their interest to a more realistic problem that is the estimation of R in the case where
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X and Y are dependent. For example, but not limited to, Barbiero (2012) assumed that
(X,Y ) are jointly normally distributed; Rubio et al. (2013) assumed that X and Y are
marginally distributed as a skewed scale mixture of normal distribution and constructed
the corresponding joint distribution using a Gaussian copula; Domma and Giordano
(2013) constructed the joint distribution of (X,Y ) using a Farlie-Gumbel-Morgenstern
copula with marginal distributions belonging to the Burr system; Domma and Giordano
(2012) considered Dagum distributed marginals and constructed their joint distribution
using a Frank copula; Samawi et al. (2016) considered the problem of estimating R
when X and Y are dependent random variables with a bivariate underlying distribution
using kernel estimation and bivariate ranked set sampling; Nasiri (2016) considered the
estimation of R for Lomax distribution with presence of outliers, among others (Gupta
et al. (2013); Nadarajah (2005)).

Our focus is on estimating R = P (X < Y ) when X and Y follow a bivariate Lomax
distribution with different parameters. This model was proposed by Lindley and Singpur-
walla (1986), considering a two components system where in a given environment, η, the
component lifetimes X and Y are conditionally independently exponentially distributed
with failure rates ηλ1 and ηλ2 respectively, where λ1 and λ2 are the failure rates under
the test environment. Then

f(x, y|η) =

∫
ηλ1e

−ηλ1ηλ2e
−ηλ2dG(η), (1)

where G(η) is the distribution function of η. In order to find the unconditional distri-
bution of (X,Y ), we assign Gamma distribution gη(c, b) as a distribution of η, with a
density

gη(c, b) =
bcηc−1e−ηb

Γ(c)
, η, c, b > 0. (2)

Then, the joint distribution function of (X,Y ) is given by

f(x, y) =

∫
f(x, y|η)gη(c, b)dη

=
λ1λ2b

cc(c+ 1)

(b+ λ1x+ λ2y)c+2
. (3)

Let α1 = λ1
b and α2 = λ2

b , hence (3) is reduced to

f(x, y) =
α1α2c(c+ 1)

(1 + α1x+ α2y)c+2
, x, y, α1, α2, c > 0 , (4)

which is known as bivariate Lomax distribution. It can be shown that the joint survival
function of (X,Y ), F (x, y), the marginal of X, h1(x) and the marginal of Y , h2(y) are
as follows:
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F (x, y) = (1 + α1x+ α2y)−c, x, y, c, α1, α2 > 0. (5)

h1(x) =
cα1

(1 + α1x)(c+1)
, x, c, α1, α2 > 0. (6)

h2(y) =
cα2

(1 + α2y)(c+1)
, y, c, α1, α2 > 0. (7)

The quantity of interest is the parameter R = P (X < Y ) which is derived as

R = P (X < Y ) =

∞∫
0

∞∫
x

α1α2c(c+ 1)

(1 + α1x+ α2y)c+2
dydx

=
α1

α1 + α2
. (8)

The aim of the paper is to consider classical and Bayesian estimation of R. As for the
classical estimation we suggest using the maximum likelihood estimator (MLE) and the
moment estimator (MOM). While for the Bayes estimates we will derive them based on
symmetric and asymmetric loss functions. It is observed that the Bayes estimates cannot
be obtained in explicit forms, so instead of using numerical techniques, approximation
method such as Lindley’s approximation is applied. To compare the performance of
the proposed estimators using real data, we use bootstrap approach to calculate the
bootstrap bias, standard error, lower and upper confidence interval limits (see Efron
and Tibshirani (1994)).

This paper is arranged as follows: In Section 2 we derive the classical estimates. The
Bayes estimation is provided in Section 3. In Section 4 we provide the simulation study.
Results of the simulation study are in Section 5. In Section 6 we illustrate the proposed
procedures of estimation using a real data example. Our conclusion and remarks are
presented in Section 7.

2 Classical estimation procedures

2.1 Maximum likelihood estimator of R

Let (x1, y1), (x2, y2), ..., (xm, ym) be a random sample of size m from a bivariate Lomax
distribution with pdf defined in (4), then the likelihood function is given by

L(α1, α2;x, y) = αm1 α
m
2 (c(c+ 1))m

m
Π
j=1

(1 + α1xj + α2yj)
−(c+2), (9)

and the corresponding log likelihood function is

l(α1, α2;x, y) = m lnα1 +m ln(α2) +m ln c(c+ 1)− (c+ 2)

m∑
j=1

ln(1 +α1xj +α2yj). (10)



Electronic Journal of Applied Statistical Analysis 623

The MLEs of the parameters α1, α2 and c, denoted by α̂1, α̂2 and ĉ respectively, can
be obtained by taking the first derivative of (10) with respect to α1, α2 and c and then
equating the normal equations to 0 as follows:

∂l(α1, α2;x, y)

∂α1
=

m

α1
− (c+ 2)

m∑
j=1

xj
(1 + α1xj + α2yj)

= 0 (11)

∂l(α1, α2;x, y)

∂α2
=

m

α2
− (c+ 2)

m∑
j=1

yj
(1 + α1xj + α2yj)

= 0 (12)

∂l(α1, α2;x, y)

∂c
=

m(2c+ 1)

c(c+ 1)
−

m∑
j=1

ln(1 + α1xj + α2yj) = 0. (13)

Note that there is no explicit solution to Eqs.(11)-(13). Therefore, we implement
Newton-Raphson method by using SAS\IML language to obtain MLEs of α1, α2 and
c . Once α̂1, α̂2 are obtained, the MLE of R, denoted by R̂MLE , is obtained.

R̂MLE =
α̂1

α̂1 + α̂2
. (14)

2.2 Moment estimator of R

The method of moments, estimating the parameters of the probability distribution by
matching the sample moment

mx =
1

m

m∑
i=1

Xi = X, (15)

with the theoretical moment

µx =

∫
xh1(x)dx

=
1

α1(c− 1)
. (16)

Equating equations (15) and (16) and solving for α1,mom, we get

α1,mom =
1

X(c− 1)
. (17)

Similarly,

my =
1

m

m∑
i=1

Yi = Y , (18)
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µy =

∫
yh2(y)dy

=
1

α2(c− 1)
. (19)

Equating equations (18) and (19) and solving for α2,mom, we get

α2,mom =
1

Y (c− 1)
. (20)

mx & my are viewed as an estimator of µx and µy respectively. From the law of large
numbers: mx → µx and my → µy in probability as m→∞.

Substitute α1,mom and α2,mom in equation (8), we get the moment estimator of R,

denoted by R̂MOM

R̂MOM =

1
X(c−1)

1
X(c−1) + 1

Y (c−1)

=
1

1 + X
Y

=
Y

Y +X
(21)

3 Bayes estimator of R

Bayesian estimation for the probability R = P (X < Y ) under bivariate Lomax dis-
tribution is obtained. Bayes method, which considers the parameters to be random
variables with distributions commonly known as prior distributions. The Bayes method
is effected by the choice of the loss function not just by the choice of the prior distri-
bution. In the literature, the most popular loss function is the symmetric squared error
loss function (SEL). The SEL is widely employed in the Bayesian inference due to
its computational simplicity. It is a symmetric loss function that gives equal weight to
overestimation as well as underestimation. However, this is not a good criteria from a
practical point of view. For example, Feynman (1987) stated that in the disaster of the
space shuttle, Challenger, the management may have overestimated the average life or
reliability of solid fuel rocket booster. In estimating reliability and failure rate functions,
an overestimation causes more damage than underestimation. To resolve such situation,
asymmetrical loss functions are more appropriate.

Varian (1975) introduced the Linex loss function (Linear- Exponential) in response to
the criticism of the SEL. Linex loss function has been widely used by several authors
such as Karimnezhad (2013), Rasheed and Sultan (2015), Yu and Xie (2016), Metiri et al.
(2016) and Rizki et al. (2017). Linex loss function rises approximately exponentially on
one side of zero and approximately linearly on the other side. The Linex loss function
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is defined as follows:

L(θ̂, θ) = exp(λ(θ̂ − θ))− λ(θ̂ − θ)− 1, λ 6= 0 (22)

To obtain the Bayes estimator of R = P (X < Y ), we assume that, the parameters α1

and α2 have independent gamma priors:

α1 ∼ π1(α1) =
αa1−11 e−α1

Γ(a1)
, (23)

α2 ∼ π2(α2) =
αa2−12 e−α2

Γ(a2)
, (24)

where a1 and a2 are assumed to be known and non-negative. Without loss of generality,
we assume the scale parameters to be 1. We will use (23) and (24) to construct prior
distribution of R = α1

α1+α2
. Let S = α1 + α2 which follows gamma distribution with

a1 + a2 as its shape parameter and 1 as its scale parameter,

πS =
Sa1+a2−1e−S

Γ(a1 + a2)
. (25)

Using change of variables, the prior distribution of R is Dirichelet (a1, a2):

πR =
Γ(a1 + a2)

Γ(a1)Γ(a2)
(

α1

α1 + α2
)a1−1(

α2

α1 + α2
)a2−1

=
Γ(a1 + a2)

Γ(a1)Γ(a2)
Ra1−1(1−R)a2−1. (26)

Hence, the joint prior distribution of R and S:

π(R,S) ∝ Sa1+a2−1e−SRa1−1(1−R)a2−1, (27)

Next, we redefine the likelihood function in Eq. (9) so it will be a function of R and S:

L(R,S;x, y) = (RS)m(S(1−R))m(c(c+ 1))m
m
Π
j=1

(1 +RS(xj − yj) + Syj)
−(c+2). (28)

Thus, the joint posterior distribution of R & S after observing (x1, y1), ..., (xm, ym) is as
follows:

π∗(R,S|x, y) ∝ Rm+a1−1(1−R)m+a2−1S2m+a1+a2−1e−S
m
Π
j=1

(1+RS(xj−yj)+Syj)
−(c+2).

(29)

Therefore, the Bayes estimator of any function of R and S say u(R,S) is the posterior
expected value. Let u(R,S) be a function of R and S, then the expected value of u(R,S)
is given by:
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û = Eπ∗(u(R,S)|x, y) =

∞∫
0

1∫
0

u(R,S)π∗dRdS

∞∫
0

1∫
0

π∗dRdS

=

∞∫
0

1∫
0

u(R,S)el(R,S|x,y))+ρ(R,S)dRdS

∞∫
0

1∫
0

el(R,S|x,y)+ρ(R,S)dRdS

(30)

where l(R,S|x, y) = log L(R,S|x, y), and ρ(R,S) = log π(R,S).

It can be noticed that û is in the form of ratio of two integrals which cannot be
simplified to closed form. Hence, Lindley’s approximation method is applied to obtain
the Bayes estimator of R, see Lindley (1980). Then Eq. (30) is reduced to the following
numerical expression:

û = u(R̂, Ŝ) + 0.5[(ûRR + 2ûRρ̂R)σ̂RR + (ûSR + 2ûS ρ̂R)σ̂SR + (ûRS + 2ûRρ̂S)

+σ̂RS + (ûSS + 2ûS ρ̂S)σ̂SS ] + 0.5[(ûRσ̂RR + ûS σ̂RS)(l̂RRRσ̂RR + l̂RSRσ̂RS

+l̂SRRσ̂SR + l̂SSRσ̂SS) + (ûRσ̂SR + ûS σ̂SS)(l̂SRRσ̂RR + l̂RSS σ̂RS + l̂SRS σ̂SR

+l̂SSS σ̂SS)]. (31)

where R̂ and Ŝ are the MLEs of R and S respectively, ûR = ∂2u(R,S)
∂R |(R̂,Ŝ), ûRR =

∂2u(R,S)
∂R∂S |(R̂,Ŝ), ρ̂R = a1−1

R̂
− a2−1

(1−R̂)
, ρ̂S = a1+a2−1

Ŝ
− 1. Other expressions can be defined

similarly (see Appendix).

3.1 Bayes estimate of R under squared error loss function

If u(R,S) = R, uR = 1, uS = uSS = uRR = uRS = uSR = 0, then,

R̂SEL = R̂+ σ̂RR(ρ̂R + l̂RRS σ̂RS) + σ̂RS(ρ̂S + l̂RSS σ̂RS) +

0.5[σ̂2RR l̂RRR + σ̂RR(σ̂RS l̂RRS + σ̂SS l̂RSS) + σ̂RS l̂SSS σ̂SS ]. (32)

3.2 Bayes estimate of R under Linex loss function

If u(R,S) = e−λR, uR = −λe−λR, uRR = λe−λR, uS = uSS = uRS = uSR = 0 then

Eπ∗(e−λR|x, y) = e−λR̂ + 0.5λ2e−λR̂σ̂RR − λe−λR̂[σ̂RR(ρ̂R + l̂RRS σ̂RS) + σ̂RS(ρ̂S + l̂RSS σ̂RS)]

−0.5λe−λR̂[σ̂2RR l̂RRR + σ̂RR(σ̂RS l̂RRS + σ̂SS l̂RSS) + σ̂RS l̂SSS σ̂SS ].

(33)

Hence, the Bayes estimate of R is obtained by
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R̂LIN = − 1

λ
logEπ∗(e−λR|x, y), (34)

where,

Eπ∗(e−λR|x, y) =

∞∫
0

1∫
0

e−λRel(R,S|x,y))+ρ(R,S)dRdS

∞∫
0

1∫
0

el(R,S|x,y)+ρ(R,S)dRdS

. (35)

4 Simulation Study

The purpose of the simulation study is to compare the performance of the classical
estimators (MLE, MOM) with the Bayes estimators under symmetric and asymmetric
loss functions using independent gamma priors for the parameters α1 and α2.

The ”Method of Mixture” has been used to generate new random samples of the bivariate
Lomax distribution, which depends on the fact f(x, y) = f(y|x).f(x). A bivariate pair
(x, y) is generated by sequentially simulating steps starting by generating observation x
from its marginal distribution, then using the conditional distribution f(y|x) to generate
y given the generated value of x.

Values of α1 and α2 are generated from π1 and π2 given in (23) and (24) with specified
parameters a1 and a2. The resulted values of α1 and α2 are considered to be the true
values that will be used to generate the bivariate Lomax random samples.

Our simulation is based on 5000 simulated sets over the following values of a1 (=
1.5,2,3,4,5), a2 (=3,5,5.5,6), c = 10 and λ = 1 and in each set the classical and Bayes
estimators are computed. For each set of data, the classical and the Bayesian estimators
are computed. We obtain the MLEs of α1, α2 and c by solving the nonlinear equations
(11)-(13) using Newton-Raphson algorithm. R̂MLE is obtained by substituting α̂1, α̂2 in
Eq. (14).

The three criteria used for comparing all the above estimators are the relative bias
(RBias), mean squared error (MSE) and Pitman nearness (PN) probability. Suppose
R̂i is the estimate of R for the ith simulated data set, then the RBias, MSE and PN
are computed as follows:

1. RBias = (R̂i−R)
R × 100.

2. MSE = 1
5000

5000∑
j=1

(R̂j −R)2.

3. Pitman Nearness: Suppose R̂i and R̂j (i 6= j) are two estimators of parametric

function R. Then R̂i is said to be Pitman nearness to R relative to R̂j if PN =

P ((R̂i −R)8(R̂i −R) < (R̂j −R)8(R̂j −R)) ≥ 0.5.
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5 Results of the simulation study

Results are summarized in Tables 1-3, provided at the end of this section, as follows:

• Table 1 presents the RBias and MSE values for the estimators of R.

• Tables 2 and 3 display the PN probabilities of the estimators of R relative to each
other.

A summary of the results is provided below:

• R̂MOM and R̂MLE are equivalent in terms of the RBias and MSE values.

• Classical estimators outperform the Bayes estimators in terms of the RBias values
especially for small values of m (m = 10&20). However, they are equivalent as m
increases (m > 20). In addition, classical and Bayesian estimators are equivalent
in terms of MSE values.

• Among Bayes estimators, R̂SEL outperforms R̂LIN in terms of RBias values al-
though they are equivalent in terms of the MSE values.

• In terms of PN probabilities, we notice that

– R̂MLE outperforms R̂MOM for all values of m, α1 and α2.

– For small values of m(m = 10) and under all choices of α1 & α2, it is observed
that the classical estimators outperform the Bayes estimators. However, as
m values increase (m ≥ 50) Bayes estimators prevail over the classical esti-
mators.

– Among Bayes estimators, R̂SEL outperforms R̂LIN for small values of m (m =
10&20), while for large values of m (m ≥ 50) and for most choices of α1 and
α2 R̂LIN is superior to R̂SEL.
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Table 1: RBias and MSE of R using different estimation methods
Estimation m = 10 m = 20 m = 50 m = 100

(a1, a2) R Method RBias MSE RBias MSE RBias MSE RBias MSE

(1.5, 3.0) 0.3327 MLE 1.4480 0.0105 1.0213 0.0052 0.6968 0.0021 0.8250 0.0010

MOM 1.4415 0.0105 1.0399 0.0053 0.7164 0.0021 0.8195 0.0010

SEL 5.9594 0.0264 1.9993 0.0049 0.8543 0.0019 0.5579 0.0010

LIN 7.5781 0.0399 2.5248 0.0049 1.1584 0.0019 0.7130 0.0010

(1.5, 5.0) 0.2286 MLE 6.5896 0.0073 0.7879 0.0034 1.9230 0.0013 2.6419 0.0007

MOM 6.5746 0.0073 0.8172 0.0035 1.9539 0.0014 2.6529 0.0007

SEL 14.909 0.0495 3.2858 0.0054 2.3451 0.0014 2.7346 0.0006

LIN 22.230 0.0856 3.5098 0.0059 2.6943 0.0013 2.9886 0.0006

(2.0, 5.0) 0.2850 MLE 3.6893 0.0092 1.7074 0.0045 1.5545 0.0018 0.0492 0.0009

MOM 3.6792 0.0092 1.7303 0.0046 1.5790 0.0018 0.0571 0.0009

SEL 12.485 0.0568 4.2431 0.0060 1.9016 0.0017 0.2677 0.0008

LIN 17.271 0.0912 4.2583 0.0070 2.1798 0.0017 0.3166 0.0008

(2.0, 6.0) 0.2508 MLE 4.4180 0.0080 1.6960 0.0038 0.6952 0.0015 0.4692 0.0007

MOM 4.4049 0.0080 1.7231 0.0039 0.7233 0.0015 0.4593 0.0007

SEL 15.493 0.0724 4.8683 0.0068 1.2252 0.0015 0.1084 0.0007

LIN 22.660 0.1215 5.3807 0.0086 1.4687 0.0015 0.2506 0.0007

(3.0, 5.0) 0.3749 MLE 1.6692 0.0116 0.3711 0.0058 0.9760 0.0023 0.3936 0.0011

MOM 1.6650 0.0116 0.3563 0.0058 0.9916 0.0024 0.3901 0.0012

SEL 7.0138 0.0647 1.2849 0.0058 1.3095 0.0020 0.2268 0.0010

LIN 10.191 0.0896 1.3039 0.0070 1.0206 0.0020 0.3793 0.0010

(3.0, 5.5) 0.3518 MLE 2.6391 0.0111 1.5588 0.0056 1.4143 0.0022 0.2587 0.0011

MOM 2.6334 0.0111 1.5752 0.0056 1.4321 0.0023 0.2542 0.0011

SEL 9.3399 0.0758 3.3862 0.0064 1.5079 0.0020 0.0451 0.0010

LIN 12.967 0.1030 3.3955 0.0085 1.8230 0.0019 0.1982 0.0010

(3.0, 6.0) 0.3329 MLE 2.2531 0.0106 0.5331 0.0053 2.4407 0.0021 0.7800 0.0010

MOM 2.2465 0.0106 0.5512 0.0053 2.4602 0.0022 0.7854 0.0011

SEL 10.748 0.0881 2.8326 0.0071 2.9072 0.0019 0.8479 0.0009

LIN 14.845 0.1166 3.1287 0.0111 2.6286 0.0019 1.0018 0.0009

(4.0, 5.0) 0.4426 MLE 1.6715 0.0127 0.2837 0.0064 0.3054 0.0026 0.2083 0.0013

MOM 1.6708 0.0126 0.2746 0.0065 0.2952 0.0026 0.2075 0.0013

SEL 3.6069 0.0719 0.1561 0.0051 0.1230 0.0021 0.1282 0.0011

LIN 6.3757 0.0694 0.4798 0.0067 0.3978 0.0021 0.2724 0.0011

(4.0, 5.5) 0.4198 MLE 1.1166 0.0124 0.1676 0.0062 0.3019 0.0025 0.3661 0.0012

MOM 1.1145 0.0123 0.1786 0.0063 0.3137 0.0026 0.3678 0.0013

SEL 4.8947 0.0844 1.2778 0.0057 0.2686 0.0020 0.3614 0.0011

LIN 8.0000 0.0875 1.3222 0.0071 0.5479 0.0020 0.4131 0.0011

(4.0, 6.0) 0.3977 MLE 2.0033 0.0121 0.0603 0.0060 0.0272 0.0024 0.0446 0.0012

MOM 2.0001 0.0120 0.0728 0.0061 0.0406 0.0025 0.0420 0.0012

SEL 6.9575 0.0970 1.6621 0.0063 0.2022 0.0020 0.0353 0.0011

LIN 10.454 0.1072 1.6842 0.0085 0.3050 0.0020 0.1148 0.0011

(5.0, 5.5) 0.4759 MLE 0.2033 0.0129 0.4036 0.0065 0.3465 0.0026 0.1123 0.0013

MOM 0.2034 0.0128 0.4104 0.0066 0.3543 0.0027 0.1125 0.0013

SEL 1.3013 0.0963 0.3059 0.0051 0.1222 0.0020 0.0643 0.0011

LIN 4.8473 0.0753 0.6703 0.0058 0.3849 0.0020 0.2021 0.0011

(5.0, 6.0) 0.4554 MLE 0.5012 0.0128 0.0292 0.0064 0.4223 0.0026 0.8189 0.0013

MOM 0.5005 0.0127 0.0209 0.0065 0.4130 0.0027 0.8193 0.0013

SEL 2.6334 0.1085 0.5160 0.0055 0.3004 0.0020 0.6969 0.0011

LIN 6.2677 0.0893 0.6028 0.0074 0.5672 0.0020 0.8395 0.0011
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Table 2: PN comparisons
(a1,a2) R m = 10 m = 20 m = 50 m = 100

(1.5,3.0) 0.3327 R̂MLE vs R̂MOM 0.5233 0.5248 0.5302 0.5285

R̂MLE vs R̂SEL 0.5264 0.4704 0.4331 0.4194

R̂MLE vs R̂LIN 0.5293 0.4683 0.4246 0.4113

R̂MOM vs R̂SEL 0.5279 0.4725 0.4396 0.4467

R̂MOM vs R̂LIN 0.5318 0.4724 0.4381 0.4494

R̂SEL vs R̂LIN 0.5650 0.4919 0.4791 0.5340

(1.5,5.0) 0.2286 R̂MLE vs R̂MOM 0.5238 0.5259 0.5301 0.5270

R̂MLE vs R̂SEL 0.6207 0.5812 0.5058 0.4755

R̂MLE vs R̂LIN 0.6224 0.5821 0.5021 0.4672

R̂MOM vs R̂SEL 0.6215 0.5748 0.4902 0.4544

R̂MOM vs R̂LIN 0.6235 0.5771 0.4880 0.4504

R̂SEL vs. R̂LIN 0.6840 0.6053 0.4676 0.4138

(2.0,5.0) 0.2850 R̂MLE vs R̂MOM 0.5237 0.5255 0.5296 0.5283

R̂MLE vs R̂SEL 0.6014 0.5464 0.4805 0.4547

R̂MLE vs R̂LIN 0.6044 0.5463 0.4757 0.4495

R̂MOM vs R̂SEL 0.6033 0.5435 0.4703 0.4513

R̂MOM vs R̂LIN 0.6060 0.5447 0.4673 0.4507

R̂SEL vs R̂LIN 0.6643 0.5623 0.4619 0.4969

(2.0,6.0) 0.2508 R̂MLE vs R̂MOM 0.5237 0.5258 0.5299 0.5293

R̂MLE vs R̂SEL 0.6473 0.5893 0.5112 0.4730

R̂MLE vs R̂LIN 0.6489 0.5903 0.5089 0.4703

R̂MOM vs R̂SEL 0.6487 0.5861 0.4995 0.4645

R̂MOM vs R̂LIN 0.6502 0.5872 0.4981 0.4640

R̂SEL vs R̂LIN 0.7287 0.6195 0.5000 0.5165

(3.0,5.0) 0.3749 R̂MLE vs R̂MOM 0.5234 0.5251 0.5302 0.5288

R̂MLE vs R̂SEL 0.5401 0.4804 0.4082 0.3917

R̂MLE vs R̂LIN 0.5441 0.4832 0.4025 0.3877

R̂MOM vs R̂SEL 0.5432 0.4852 0.4203 0.4292

R̂MOM vs R̂LIN 0.5467 0.4870 0.4192 0.4304

R̂SEL vs R̂LIN 0.6001 0.5370 0.4619 0.5183
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Table 3: PN comparisons
(a1, a2) R m = 10 m = 20 m = 50 m = 100

(3.0,5.5) 0.3518 R̂MLE vs R̂MOM 0.5239 0.5244 0.5296 0.5288

R̂MLE vs R̂SEL 0.5643 0.4995 0.4345 0.4152

R̂MLE vs R̂LIN 0.5680 0.5012 0.4291 0.4120

R̂MOM vs R̂SEL 0.5663 0.5006 0.4363 0.4339

R̂MOM vs R̂LIN 0.5711 0.5031 0.4346 0.4342

R̂SEL vs R̂LIN 0.6287 0.5329 0.4525 0.5101

(3.0,6.0) 0.3329 R̂MLE vs R̂MOM 0.5231 0.5265 0.5283 0.5278

R̂MLE vs R̂SEL 0.5979 0.5339 0.4546 0.4314

R̂MLE vs R̂LIN 0.6004 0.5373 0.4483 0.4264

R̂MOM vs R̂SEL 0.5996 0.5350 0.4490 0.4352

R̂MOM vs R̂LIN 0.6028 0.5377 0.4466 0.4341

R̂SEL vs R̂LIN 0.6708 0.5750 0.4306 0.4665

(4.0,5.0) 0.4426 R̂MLE vs R̂MOM 0.5232 0.5253 0.5291 0.5285

R̂MLE vs R̂SEL 0.4697 0.3757 0.3057 0.2815

R̂MLE vs R̂LIN 0.4736 0.3836 0.3130 0.2883

R̂MOM vss R̂SEL 0.4683 0.3885 0.3737 0.4026

R̂MOM vs R̂LIN 0.4731 0.3936 0.3788 0.4061

R̂SEL vs R̂LIN 0.5261 0.5007 0.5053 0.5117

(4.0,5.5) 0.4198 R̂MLE vs R̂MOM 0.5239 0.5257 0.5295 0.5277

R̂MLE vs R̂SEL 0.5133 0.4239 0.3528 0.3284

R̂MLE vss R̂LIN 0.5174 0.4289 0.3516 0.3251

R̂MOM vs R̂SEL 0.5125 0.4306 0.3888 0.4041

R̂MOM vs R̂LIN 0.5164 0.4350 0.3901 0.4047

R̂SEL vs R̂LIN 0.5684 0.5081 0.4794 0.4838

(4.0,6.0) 0.3977 R̂MLE vs R̂MOM 0.5245 0.5254 0.5301 0.5282

R̂MLE vs R̂SEL 0.5372 0.4648 0.3868 0.3702

R̂MLE vs R̂LIN 0.5410 0.4692 0.3854 0.3649

R̂MOM vs R̂SEL 0.5371 0.4689 0.4083 0.4143

R̂MOM vs R̂LIN 0.5417 0.4724 0.4103 0.4161

R̂SEL vs R̂LIN 0.5951 0.5337 0.4885 0.5001

(5.0,5.5) 0.4759 R̂MLE vs R̂MOM 0.5247 0.5243 0.5304 0.5279

R̂MLE vs R̂SEL 0.4368 0.3096 0.2223 0.1906

R̂MLE vs R̂LIN 0.4674 0.3298 0.2444 0.2205

R̂MOM vs R̂SEL 0.4340 0.3270 0.3283 0.3806

R̂MOM vs R̂LIN 0.4650 0.3398 0.3366 0.3859

R̂SEL vs R̂LIN 0.5311 0.4887 0.4848 0.5077

(5.0,6.0) 0.4554 R̂MLE vs R̂MOM 0.5237 0.5254 0.5306 0.5274

R̂MLE vs R̂SEL 0.4901 0.3700 0.2865 0.2515

R̂MLE vs R̂LIN 0.4967 0.3794 0.2977 0.2546

R̂MOM vs R̂SEL 0.4869 0.3800 0.3549 0.3797

R̂MOM vs R̂LIN 0.4937 0.3869 0.3609 0.3814

R̂SEL vs R̂LIN 0.5461 0.5009 0.5089 0.4600
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6 Real Life Data

In order to illustrate the proposed estimators of R = P (X < Y ) under a bivariate
Lomax distribution, we use the American Football League data from the matches on
three consecutive weekends in 1986, which were first published in ’Washington Post’
and proposed by Csörgő and Welsh (1989) after converting the seconds in the data to
decimal points. The validity of exponential model is checked using Kolmogrov-Smirnov
(K-S), as well as Anderson-Darling (A-D) and Chi-square tests. In this bivariate data
set (X,Y ), the variable X represents the game time to the first points scored by kicking
the ball between goal posts, while the variable Y represents the game time by moving
the ball into the end zone. The times are given in minutes and seconds and reported in
Table (4).

Table 4: American Football League Data

X Y X Y X Y

2.05 3.98 5.78 25.98 10.40 14.25

9.05 9.05 13.80 49.75 2.98 2.98

0.85 0.85 7.25 7.25 3.88 6.43

3.43 3.43 4.25 4.25 0.75 7.75

7.78 7.78 1.65 1.65 11.63 17.37

10.57 14.28 6.42 15.08 1.38 1.38

7.05 7.05 4.22 9.48 10.35 10.35

2.58 2.58 15.53 15.53 12.13 12.13

7.23 9.68 2.90 2.90 14.58 14.58

6.85 34.58 7.02 7.02 11.82 11.82

32.45 42.35 6.42 6.42 5.52 11.27

8.53 14.57 8.98 8.98 19.65 10.70

31.13 49.88 10.15 10.15 17.83 17.83

14.58 20.57 8.87 8.87 10.85 30.07

Without loss of generality we assume η = 1. We fit the exponential distribution
for X with failure rate λ1 = 0.1102, we observed that K-S = 0.17379 with Pvalue=
0.14023, A-D = 1.7151 and chi-square = 2.9102 with a corresponding Pvalue = 0.40569.
While for Y we fit the exponential distribution with failure rate λ2 = 0.07449, and we
observed that K-S = 0.14201 with Pvalue= 0.3332, A-D = 0.80191 and Chi-square =
3.0078 with a corresponding Pvalue = 0.55652. Using Eq. (3) we found that R = 0.5966.
A bootstrap approach is used to compute the bootstrap bias (BootBias) and standard
error (StdErr). The 95% bootstrap confidence interval is calculated and reported in
terms of (LowerCI, UpperCI). The output of the bootstrap analysis is summarized
in Table (5). Notice that the bootstrap bias for all proposed estimators are small with
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respect to the true value of R. In addition, our proposed estimators provided small
bootstrap standard error and short confidence limits.

Table 5: The bootstrap estimates output over 1000 resamples

BootBias SdtErr LowerCI UpperCI

R̂MLE 0.0030 0.0231 0.5447 0.6344

R̂MOM 0.0004 0.0238 0.5494 0.6421

R̂SEL 0.0013 0.0248 0.5324 0.6299

R̂LIN 0.0013 0.0248 0.5310 0.6286

7 Final remarks and conclusions

The importance of drawing inferences about R = P (X < Y ) arises naturally in many
disciplines. Therefore, it is of interest to find a reliable estimates of R. In this paper,
we have considered two types of inference procedures; the classical (MLE and MOM)
and the Bayesians (SEL and Linex) to estimate R = P (X < Y ) when X and Y are
distributed as bivariate Lomax distribution.

It is observed that the Bayes estimators do not have explicit forms, therefore we use
the Lindley’s approximation method, under the assumption of gamma priors.

The performance of the classical and Bayesian estimates are studied and compared
based on extensive simulations. It is observed that the classical and Bayesian estimators
are equivalent in terms of the MSE values for all choices of m. Moreover, the classical
estimators outperform the Baysians in terms of RBias and PN values especially for
small values of m. However, the Bayes estimators outperform the classical estimators in
terms of PN probabilities when m ≥ 50. In addition, R̂LIN outperforms R̂SEL in terms
of PN probabilities for large values of m. Based on all, for estimating the reliability R
based on bivariate Lomax distribution, we suggest to use the classical estimators when
sample size m is small and R̂LIN for larger values of m (> 50).
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1 Appendix

The entries for Lindley’s approximation are given by the following equations

σ̂ =

[
σ̂RR σ̂RS

σ̂SR σ̂SS

]−1
=

[
− ∂2l
∂R2 − ∂2l

∂R∂S

− ∂2l
∂S∂R − ∂2l

∂S2

]−1
R=R̂,S=Ŝ

l̂RR = ∂2l
∂R2 |R=R̂,S=Ŝ

= − m
(1−R)2

− m
R2 + (2 + c)

m∑
j=1

(
S(xj−yj)

(1+RS(xj−yj)+Syj))
2

l̂RRR = ∂3l
∂R3 |R=R̂,S=Ŝ

= − 2m
(1−R)3

+ 2m
R3 − 2(2 + c)

m∑
j=1

(
S(xj−yj)

(1+RS(xj−yj)+Syj))
3

l̂RS ≡ l̂SR = ∂2l
∂R∂S |R=R̂,S=Ŝ

= (2 + c)
m∑
j=1

[
S(xj−yj)(R(xj−yj)+yj)
(1+RS(xj−yj)+Syj)2 −

xj−yj
1+RS(xj−yj)+Syj ]

l̂SS = ∂2l
∂S2 |R=R̂,S=Ŝ

= −2m
S2 + (2 + c)

m∑
j=1

(
R(xj−yj)+yj

1++RS(xj−yj)+Syj )2

l̂SSS = ∂3l
∂S3 |R=R̂,S=Ŝ

= 4m
S3 − 2(2 + c)

m∑
j=1

(
R(xj−yj)+yj

1+RS(xj−yj)+Syj )3

l̂RSS = ∂3l
∂S∂R2 |R=R̂,S=Ŝ

= −2(2 + c)
m∑
j=1

[
S(xj−yj)(R(xj−yj)+yj)2
(1+RS(xj−yj)+Syj)3 − (xj−yj)(R(xj−yj)+yj)

(1+RS(xj−yj)+Syj)2 ]

l̂RRS = ∂3l
∂R2∂S

|
R=R̂,S=Ŝ

−2(2 + c)
m∑
j=1

[
S2(xj−yj)2(R(xj−yj)+yj)

(1+RS(xj−yj)+Syj)3 − S(xj−yj)2
(1+RS(xj−yj)+Syj)2 ]
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