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Lasso regression methods are widely used for a number of scientific appli-
cations. Many practitioners of statistics were not aware that a small change
in the data would result in an unstable Lasso solution path. For instance,
in the presence of outlying observations, Lasso perhaps leads to an increase
in the percentage of the false selection rate of predictors. The discussions
on determining an optimal shrinkage parameter of Lasso are still ongoing.
Therefore, this paper proposed a robust algorithm to tackle the instability
of Lasso in the presence of outliers. The new weight function is proposed to
overcome the problem of outlying observations. The weighted observations
are for a certain number of subsamples to control the false Lasso selection.
The simulation study has been carried out and uses real data to assess the
performance of our proposed algorithm. Consequently, the proposed method
shows more efficiency than LAD-Lasso and weighted LAD-Lasso and more
reliable results.

keywords: Robust Lasso, LAD-Lasso, WLAD-Lasso, Subsamples, Out-
liers.

1 Introduction

Efron et al. (2004) proposed Least Angle Regression (LAR) serves as a non-greedy version
of a forward selection method and is then collected with a forward stagewise and Lasso
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penalty (Tibshirani, 1996) to find a Lasso solution path. However, the new version of
Lasso has the ability to rank the most important variables but does not need to be
significant, see ( Khan et al., 2007; Brink-Jensen and Thorn Ekstrøm, 2014). In the
last ten years, respectable scientific papers argue that in some cases lasso gives multiple
solutions. Tibshirani et al. (2012) pointed out when the rank of the covariates matrix is
less than the number of covariates, Lasso does not have a unique minimum. This case can
happen where some of the covariates are drawn from a discrete probability distribution.
Moreover, as a result of the small change that may happen in the data, drastic changes
occur in the lasso solution paths such as inclusion and some noise variables. Instability
in the Lasso path can also occur when Lasso penalty randomly picks single correlated
covariates each time it is run. Consequently, repeating Lasso on the same data more
than once yields different results.

Lasso is reputed to be sensitive in the presence of a heavy tail, which can occur in
high dimensional data as a result of heterogeneity problems. Heterogeneity problem
occurs due to sampling data from different subpopulations. It leads to a heavy tail
in the distribution shape of the model errors (Wu and Ma, 2014 ). Therefore, char-
acterizing the approximate distribution of the Lasso estimator becomes more complex
because the distribution of the heavy tail is unknown but differs from the distribution
of the bulk of data. However, this small change certainly results in a drastic change
in Lasso solution paths. Many research efforts have been a dedicated to propose the
robust version of Lasso that has an ability to deal with outliers in both directions, the
design matrix X and response variable Y. Wang et al. (2007) proposed Least Absolute
Deviation (LAD) of Lasso, which denoted as (LAD-Lasso) by combining

∑n
i=1 |yi − x

′
iβ|

LAD loss function with n
∑p

j=1 λj |βj | penalty where λj is adaptive tuning parameter
for different coefficients βj ( Zou, 2006). LAD-Lasso is resistant to the presence of out-
liers Y direction, but it is breakdown when the leverage points (outliers in X direction)
are present. Arslan Arslan (2012) proposed combining weighted LAD,see Ellis and
Morgenthaler (1992), Hubert and Rousseeuw (1997 J. ), Giloni et al. (2006a), Giloni
et al. (2006b)

∑n
i=1wi|yi − x

′
iβ| with adaptive Lasso penalty in one algorithmic frame-

work which denoted as WLAD-Lasso. The weights wi = min{1, p
M(xi)

} are chosen by

using robust measure of distanceM(xi) to assign a down weight to leverage points. One
of the important shortcomings of WLAD-Lasso is that it is less efficient than adaptive
lasso when the errors distribution(no outliers and nor heavy tail) due to LAD-Lasso is
not adapted for small errors ( Lacroix (2011)).Rosset and Zhu (2007) employed LARS
Efron et al. (2004) as a piecewise linear solution path through huberizing Lasso and
improving the efficiency of estimation even no outlier in the data. However, the penalty
function of Lasso needs to estimate the shrinkage parameter which is computed by using
cross validation.It is well known that the cross validation method arbitrary splits data
into two sets. Due to this arbitrary split lasso does not guarantee any reproducible
results and the solution path will be instable.

Meinshausen et al. Meinshausen et al. (2009) found the subsampling technique that
proposed by Politis and Romano (1994) can make an asymptotically correct inference
around Lasso coefficients. Stability paths of subsampling technique is constructed from
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the probability for each covariate to be selected when randomly resampling the subsam-
pling procedure on the same data many times. It is well evident that Lasso statistical
inference can be obtained from multiple random splits without losing the asymptotic
control of inclusion noise variables. The multi split procedure Meinshausen et al. (2009)
repeats the method of single split Wasserman and Roede (2009) many of times. Based
on the simple random sampling without replacement, the random single split procedure
gives each observation in the data set the same chance of choice to be in the subsample.
In this case, multi split procedure cannot avoid appearing the outliers in the subsamples.
Therefore, multi split procedure would yield invalid p-values that cannot use in prac-
tice. Suggestion robustifying Lasso is an uncompleted solution with random subsamples
procedure. Due to the percentage of outliers that may appear in the subsample under
consideration, perhaps exceeds the breakdown point of the estimator.

This paper proposes identifying the true non-zero coefficients based on adjusted p-
values for robust subsamples Lasso regression (PRS-Lasso) algorithm, that is to over-
come the instability of Lasso solution path by weighting data of X and Y variables. The
weights have been derived from reweighted multivariate normal location and scatter ma-
trix, see ( Olive and Hawkins (2010), Uraibi et al. (2017a), Uraibi et al. (2015), Uraibi
et al. (2017b)) to downweight the outliers in multivariate normal data. This procedure
is combined with the algorithm of finding the correct p-values of high dimensional re-
gression Meinshausen et al. (2009). Meinshausen et al. (2009) assigned the value then
extracted the non-zero coefficients are based on the corrected p-values in which 1 is
assigned to zero coefficients and 0 to non-zero ones.

The rest of this paper is organized in the following, Section 2, illustrates the proposed
algorithm that is described into subsections 2.1, c-steps concentration procedure to get
the robust weights to the response variable and predictors and the Section 2.2, presents
the procedure to get p-values for subsamples Lasso regression. In Section 3, the simu-
lation study has been done to assess the performance of our proposed method with two
robust methods. Carseats data with two modified Carseats datasets have been consid-
ered in Section 4 to illustrate the efficiency of our proposed method. A brief summary
of this research follows Section 5.

2 P-values for Robust Subsamples Lasso Regression
Algorithm

The first step of multisplit procedure is to split data into two random subsamples, the
dimensional reduction such Lasso can be performed with the first subsample and end up
with a set of p-values of regression coefficients which can be computed using LS method
for the second subsample. Repeat this procedure for the certain numbers of times to
get a set of p-values at each time. Finally, combining all sets of p-values and producing
what is called correct p-values in which only the significant variables remain in the final
model. The supsamples procedure has been discussed a lot in the statistical literature,
for more details see ( Buhlmann et al., 2013, Zhang and Zhang, 2014, Lockhart et al.,
2014, Van de Geer et al., 2014,Javanmard and Montanari, 2013, Brink-Jensen and Thorn
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Ekstrøm, 2014 and Meinshausen, 2015).

2.1 C-steps concentration procedure for weighting Y and X

Consider the high dimensional linear regression equation,

Y = Xβ + e (1)

where Y is an (n×1) response vector, X is (n×p) fixed design matrix of independent vari-
ables, β is an (p×1) regression parameters vector and e is an (n×1) random errors vector
with iid. from the following contamination distribution F (e) = (1 − ε)N(0, σ2) + (ε)G,
where G is another distribution different from N(0, σ2). Assume that (n × ε) leverage
points are present in each independent variable. Weighting X and Y has been done
before multisplit procedure. Actually, the weights has been derived from robust location
and scatter matrix Olive and Hawkins (2010) concentration algorithm as follows,

1. Combining Y and X in one frame to create multivariate data matrix, say Z =
[Y,X].

2. Find µ̂RF and Σ̂RF , the location and scatter estimators of, reweighted fast consis-
tence and high breakdown Olive and Hawkins (2010). Consider that the critical
value of desired upper bound of Mahalanobis distance is For j = 1, 2 Do

a) The robust Mahalanobis distance which denoted as M(zi) should be com-
puted first, M(zi) = (zi − µ̂RF )

′
Σ̂−1RF (zi − µ̂RF )

b) Let S = {
∑
M(zi) : M(zi) ≤ χ2

(0.975,p)} , δ = (0.975×n)
(2×S) and then the upper

tail of chai-sqaure critical value can be computed through q = min(δ, 0.995)

c) The new scatter matrix which is denoted as Σ̂RM can be obtained by weighting

Σ̂RF , Σ̂RM(j)
=

[
Med(M(zi))

χ2
(δ,p)

]
× Σ̂RF

d) Let Σ̂RF = Σ̂RM(j)
to re-weighted Σ̂RM(j)

in the second replication.

e) Next

3. Finally, the weights can be obtained from, wi = min

[
1,

χ2
(q,p)

M(zi)

]
and the Yw = Y ×w

and Xw = X × w

2.2 p-values for Subsamples Lasso Regression

Let B is the total number of random splitting times of original data such that b =
1, . . . , B which is the indexing randomly splitting the original data into two disjoint
groups of equal size. The Multi-split Meinshausen et al. (2009) algorithm can use the
following procedure:
Stage I:
For b = 1, 2, ..., B
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1. Let the original data be denoted as D =


Yw1 Xw11 . . . Xwp1

...
...

...
...

Ywn Xw1n . . . Xwpn

 randomly

split D into two disjoint groups of equal size (n/2) denoted as D
(b)
in = (Ywin , Xwin)

, D
(b)
out = (Ywout , Xwout) respectively.

2. Let Ŝ
(b)
H = {j; β̂Hj 6= 0} be the β̂Hj (λ) estimates of Lasso based on D

(b)
in such that

N = Ŝ
c(b)
H = {j; β̂Hj = 0} the set of zero coefficients.

3. Fit the set of active predictors in Ŝ
c(b)
H by using Leas squares (LS) based on D

(b)
out

subsample data and calculating corresponding p-values as follows,

P̃j
(b)

=

{
Pj if j ∈ Ŝ(b)

H
1 if j /∈ Ŝ(b)

H
(2)

and then without aggregated, adjusted P̃j
(b)

values as

P̂
(b)
j = min

(
P̃j

(b) × |Ŝ(b)
H |, 1

)
(3)

Stage II:

The stage I leads to B vectors of P̂j values. To aggregate all of them P̂j vectors,
Meinshausen et al. (2009) suggested that the quantile γ can be written as follows,

Qj(γ) = min

[
1, qγ

(
P̂

(b)
j

γ
; b = 1, 2, ..., B

)]
(4)

for any fixed γ ∈ (0, 1) with lower bound at least equals to 0.05, where qγ(.) is the
empirical quantile function. Selection the proper γ requires adding more correction
to control the Family-wise Error (FWER) rate at level through the correction factor
1 − log(γmin) with upper bound 4. Consequentially, we can get the robust adjusted
p-values from the following formula,

P robj = min

{
1, 1− log(γmin) inf

γ∈(γmin,1)
Qj(γ)

}
(5)

From all values of P robj just the predictors coefficients that possess, P robj 6= 1, will be in
the best model.

3 Simulation Study

Simulation scenarios have been done in this section to assess the performance of PRS-
Lasso with LAD-Lasso and WLAD-Lasso method respectively. Five criteria are consid-
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ered to compare the performances of PRS-Lasso, LAD-Lasso and WLAD-Lasso meth-
ods, over all 5000 generated dataset that are obtained by replications : (1) the av-
erage number of true zero coefficients (Zero.coef) , (2) the average number of non-
zero true coefficients (N.Zero.coef), the (3) the False selection Rate (FSR), and (4)
the criterion of Median of Mean Absolute Deviations (MMAD) residuals with (5) its
standard deviation (SD). The mathematical formulation of MMAD can be defined as

MMAD = Median
{

1
n

∑n
i=1(|Xβ̂ −Xβ|)

}
. The best method is the one that selects the

highest value of Zero.coef which is associated with lowest values of false selection vari-
ables FSR, MMAD and SD, respectively. The value of N.Zero.coef is related with the
value of FSR in which the zero true coefficient is selected by certain method to be non-
zero estimated coefficient, therefore the best method that possess the lowest FSR value
have to select all true N.Zero.coef. However the FSR represents the false selection rate
which need to be controlled.

All of PRS-Lasso, LAD-Lasso and WLAD-Lasso methods were run together in one
simulation framework to find the p-values vectors of estimated coefficients without ex-
tract the non-zero coefficients. These vectors of are putted as rows in the PM×K matrix,
where M is the number of replications and K is the number of selection methods,
hence,M = 5000 replication and K = 3 methods are considered to generate the random
response variable y from linear regression model in the following equation,

y = Xβ + σe (6)

where X is a design matrix of p predictor which has been sampled from joint Gaussian
marginal distribution with correlation structure ρ = 0.5. The distribution of random
errors e is generated from the following contamination model,

F (e) = [(1− ε)N + (ε)G]× σ (7)

where ε is the contamination ratio, σ is a signal to noise which chooses to be 2, N and G
stand for standard normal and heavy tail distributions, respectively. In this simulation
the double exponential distribution which is so called Laplace(0, 1) and t- distribution
with 2 degree of freedom t(2) are considered from the family of heavt tail distributions.
The ε of the observations of each predictors are randomly selected and then shifted by
adding 10 value to create the leverage points, where ε = {0.05, 0.10, 0.15, 0.20}. In order
to verify the ability of PRS-Lasso method to control the selection rate, three simulation
studies were carried out to simulate three sparse models based on the vector of true
regression parameter β as follows,

Simulation1: β = (2, 2, 2, 2, 2︸ ︷︷ ︸
5

, (0, . . . , 0︸ ︷︷ ︸
20

)) , p = 25, and n = 50.

Simulation 2: β = (1.5, 0, 0, 0, 3︸ ︷︷ ︸
5

, 0, 2, 0, 0, 4︸ ︷︷ ︸
5

, 0, 2, 0, 0, 0︸ ︷︷ ︸
5

, (0, . . . , 0)︸ ︷︷ ︸
35

), p = 50 and n = 100

Simulation 3: β = (1.5, 0, 0, 0, 3, 0︸ ︷︷ ︸
6

, 0, 0, 2, 0, 0︸ ︷︷ ︸
5

, 0, 2, 0, 0, 0, 3︸ ︷︷ ︸
6

, (0, . . . , 0)︸ ︷︷ ︸
33

),p = 50 and n =

200. Each simulation study simulates two sparse models relies the mixture distribution
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Table 1: The FSR, average of Zero and non-zero coefficients MMAD, SD of Simulation
1.

Simulation 1 G ∼ Laplace(0, 1) G ∼ t(2)

ε Model LAD-Lasso WLAD-Lasso PRS-Lasso LAD-Lasso WLAD-Lasso PRS-Lasso

Z.Coef 5.74 5.18 19.88 7.16 9.82 19.84

NZ.Coef 19.26 19.82 5.12 17.84 15.18 5.16

0.05 FSR 0.570 0.590 0.005 0.510 0.413 0.006

MMAD 1.56 1.38 1.07 1.51 1.29 1.11

SD 0.28 0.23 0.10 0.16 0.12 0.11

Z.Coef 5.88 6.38 19.92 6.04 7.20 19.94

NZ.Coef 19.12 18.62 5.08 18.96 17.80 5.06

0.10 FSR 0.565 0.545 0.003 0.558 0.512 0.002

MMAD 1.49 1.29 1.06 1.54 1.34 1.08

SD 0.11 0.10 0.10 0.32 0.16 0.11

Z.Coef 5.18 5.78 19.94 5.54 6.18 19.96

NZ.Coef 19.82 19.22 5.06 19.46 18.82 5.04

0.15 FSR 0.593 0.569 0.002 0.578 0.50 0.002

MMAD 1.53 1.35 1.11 1.59 1.41 1.07

SD 0.13 0.10 0.10 0.62 0.63 0.10

Z.Coef 5.28 5.56 19.96 5.16 5.68 19.96

NZ.Coef 19.72 19.44 5.04 19.84 19.32 5.04

0.20 FSR 0.589 0.578 0.002 0.594 0.573 0.002

MMAD 1.48 1.35 1.01 1.65 1.47 1.06

SD 0.12 0.12 0.10 0.22 0.22 0.11
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of F (e) model, in which the distribution of outliers is G ∼ Laplace(0, 1) which is assigned
to the first sparse model, and then G ∼ t(2) is added to the second one. Both models are
examined with different ratios of outliers, ε = {0.05, 0.10, 0.15, 0.20} of n. The results of
PRS-Lasso, LAD-Lasso and WLAD-Lasso methods of Simulations 1,2 and 3 are listed
in Tables 1,2 and 3,respectively. The results have been shown that the performance of
PRS-Lasso method to extract the true Z.coef and NZ.coef is the best than others. As
can be seen in Fig 1 and 2 most NZ.coef of LAD-Lasso and WLAD-Lasso methods dis-
tributed around the horizontal dotted line which represents the Z.coef, while PRS-Lasso
forced most of them to be zero. Moreover, It can be observed the values of FSR of PRS-
Lasso method are getting between 0.002 and 0.006. This means from 2 to 6 times, a
type I error (overfit) can occur among 1000 models selected by the PRS-Lasso method,
while the false selection of LAD-Lasso and WLAD-Lasso methods exceeds 500 times.
When p = 25 predictors are simulated in Simulation 1 in which only 5 of predictors
are having non-zero true coefficients, LAD-Lasso and WLAD-Lasso methods are given
more than 70% as a chance to zero true coefficients to be chosen as non-zero coefficient.
This selection opportunity certainly results in to increase the overfitting problem across
overall replications.

It can notable the gap between the values of Z.coef that are identified by PRS-Lasso
method and others. It is very big as Table 1,2 and 3 reported. All simulation studies
have not recorded any underfitting case and three methods are included all non-zero
true coefficients in the best model selection. For the resulting plot, see Fig. 2 and
3, across overall 5000 replications of Simulation 1, LAD-Lasso, WLAD-Lass and PRS-
Lasso are included all non-zero true coefficients, even though LAD-Lasso, WLAD-Lass
are suffered from overfitting problem. However, controlling the overfitting problem is
crucial to determine the best method, therefore, LAD-Lasso and WLAD-Lasso methods
are considered unstable selection method. In other words, the PRS-Lasso method is
strongest for controlling the False Selection Rate (FSR).

Table 1, Table 2 and Table 3 reports the values of MMAD and SD are very close
which shows the stability in the general performance of the three methods. This has
not changed even though the sample size and the contamination distribution of random
error are changed too. Hence, describing LAD-Lasso and WLAD-Lasso methods as
stable methods does not mean their efficiency in the selection, but they continue on
the same performance. On the other hand, the values of MMAD and SD of PRS-Lasso
method shows more homogenous and more stable than the other methods. However, the
PRS-Lasso method performs very well and reliable.

4 Revised Carseats Data

Carseats dataset is obtained from James et al. (2013). The 400 observations are col-
lected from sale locations as well as ten potential predictors (seven quantitative and
three qualitative). Only, quantitative predictors (CompPrice, Income, Advertising, Pop-
ulation, Price, Age and Education) have been chosen to construct two modified datasets.
It is well known that Carseats data is clean (no outliers and leverage points), therefore it
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Table 2: The FSR, average of Zero and non-zero coefficients MMAD, SD of Simulation
2.

Simulation 2 G ∼ Laplace(0, 1) G ∼ t(2)

ε Model LAD-Lasso WLAD-Lasso PRS-Lasso LAD-Lasso WLAD-Lasso PRS-Lasso

Z.Coef 14.42 18.06 44.94 15.82 17.88 44.90

NZ.Coef 35.58 31.04 5.06 34.18 32.12 5.09

0.05 FSR 30.58 26.04 0.06 29.18 27.12 0.09

MMAD 1.50 1.31 1.11 1.53 1.34 1.13

SD 0.08 0.08 0.07 0.14 0.12 0.08

Z.Coef 12.38 12.34 44.94 12.28 13.78 44.92

NZ.Coef 37.62 37.66 5.06 37.72 36.22 5.08

0.10 FSR 32.62 32.66 0.06 32.72 31.22 0.08

MMAD 1.53 1.37 1.15 1.59 1.42 1.14

SD 0.09 0.08 0.08 0.11 0.11 0.10

Z.Coef 10.38 12.20 44.92 10.64 11.78 44.94

NZ.Coef 39.62 37.80 5.08 39.36 38.22 5.06

0.15 FSR 34.62 32.80 0.08 34.36 33.22 0.06

MMAD 1.54 1.36 1.10 1.59 1.43 1.12

SD 0.10 0.09 0.07 0.11 0.09 0.08

Z.Coef 10.72 11.46 44.88 9.70 11.78 44.88

NZ.Coef 39.28 38.54 5.12 40.30 38.22 5.12

0.20 FSR 34.28 33.54 0.12 35.30 33.22 0.12

MMAD 1.55 1.40 1.09 1.70 1.50 1.06

SD 0.07 0.07 0.07 0.37 0.36 0.08
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Table 3: The FSR, average of Zero and non-zero coefficients MMAD, SD of Simulation
3.

Simulation 3 G ∼ Laplace(0, 1) G ∼ t(2)

ε Model LAD-Lasso WLAD-Lasso PRS-Lasso LAD-Lasso WLAD-Lasso PRS-Lasso

Z.Coef 13.66 16.90 44.92 14.38 17.74 44.92

NZ.Coef 36.34 33.10 5.08 35.62 32.26 5.02

0.05 FSR 31.34 28.10 0.08 30.62 27.26 0.02

MMAD 1.48 1.32 1.11 1.52 1.34 1.10

SD 0.08 0.07 0.06 0.12 0.08 0.06

Z.Coef 11.76 12.28 44.84 10.86 12.18 44.86

NZ.Coef 38.24 37.72 5.16 39.14 37.82 5.14

0.10 FSR 33.24 32.72 0.16 34.14 32.82 0.14

MMAD 1.51 1.36 1.13 1.55 1.40 1.13

SD 0.09 0.09 0.08 0.12 0.11 0.07

Z.Coef 10.30 11.62 44.92 9.20 11.84 44.92

NZ.Coef 39.70 38.38 5.08 40.80 38.16 5.08

0.15 FSR 34.70 33.38 0.08 35.80 33.16 0.08

MMAD 1.52 1.35 1.10 1.62 1.45 1.11

SD 0.08 0.08 0.06 0.12 0.10 0.08

Z.Coef 10.68 10.20 44.96 10.22 10.22 44.90

NZ.Coef 39.32 39.80 5.04 39.78 39.78 5.10

0.20 FSR 34.32 34.80 0.04 34.78 34.78 0.10

MMAD 1.56 1.39 1.07 1.68 1.54 1.05

SD 0.09 0.08 0.08 0.23 0.22 0.09



Electronic Journal of Applied Statistical Analysis 79

Figure 1: Boxplots of coefficients estimates from 5000 simulated datasets generated using
simulation 1. Random errors contaminated by Laplace(0, 1) distributionn =
100,ε = 0.2, σ = 2. Horizontal dotted lines show the true zero values of the
regression coefficients.
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Figure 2: Boxplots of coefficients estimates from 5000 simulated datasets generated using
simulation 1. Random errors contaminated byt(2) distribution n = 100, ε =
0.2,σ = 2. Horizontal dotted lines show the true zero values of the regression
coefficients.
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has been revised for two times. The first revision which denoted as (REV1) is to create
40 outliers in the Sales variable and 40 leverage points in population size predictor. The
values of 40 clean observation in sales variable were enlarged through multiplying it by
ten to create the outliers. Similar to this procedure, the predictor of population size has
been contaminated to create 40 leverage points. The observations that were enlarged
located at the top of the original data.

The second modified dataset which denoted as (REV2) involves increasing the dimen-
sionality of data to be totally 30 predictor. The new 23 predictors were generated from
normal standard distribution and the values of 40 observation at the top of the observa-
tions of each predictor have been enlarged ten times. The PRS-Lasso with LAD-Lasso
and WLAD-Lasso methods are carried out using original and two revised datasets respec-
tively. The picked up predictors by the certain method with original and REV1 datasets
are configured two multiple regression models. The selected predictors of LAD-Lasso,
WLAD-Lasso and PRS-Lasso are analyzed using LAD regression, WLAD-regression and
Least Squares method respectively. The rq( ) from R-package quantreg is used to sum-
marize the estimates of LAD regression, WLAD-regression methods. The R-code of
PRS-Lasso method is combined some functions from hdi R-package with rmvn function
that presents in David Olive website. The selected predictors of PRS-Lasso method are
summarized using linear model lm( ) from MASS R-package. The analysis of predictors
coefficients will reveal whether there is Type I or Type II error occurring in the selection
of the predictors.

Table 4 is shown that the LAD-Lasso selects all predictors of Carseats dataset, but
the summary of qr( ) where =0.5 reports the p-values of the coefficients of Population
and Education predictors are not significant, therefore it is considered Overfit case.
WLAD-Lasso identifies the coefficient of Education predictor is zero. The p-value of the
Population predictor coefficient is non-significant in the summarized results of WLAD-
Lasso Method. Table 4 presents also the selected predictors by PRS-Lasso method that
diagnosed the true zero and non-zero coefficients of Carseats dataset predictors. Table 5
shows the results of three methods where 40 outliers and 40 leverage points are identified
in sales variable and Population predictor of REV1 dataset, respectively. It is obvious
that the LAD-Lasso identifies only the true zero coefficient of Education predictor, but
the result of LAD method is summarized that the Advertising and Population are not
significant too. The result WLAD-Lasso method has not been expected due to it fails to
diagnose the true zero coefficients of Population and Education predictors, Overfit=2.

The PRS-Lasso performs very well and identified the true zero coefficients too without
undefitting case. The existence of one or two zero predictors among the selected predic-
tors by certain variable selection method may be acceptable. That due to, the statistical
theories assumed that type I error may occur with variable selection method. However,
the best variable selection method is that the one controlling Type I error. It is observed
that the number of true non-zero coefficients in Carseats is five predictors and two are
zero true coefficients, therefore it is not clear controlling the type I error at the lower
bounds. The performances of three methods have been examined with REV2 dataset
and the results are displayed in Table 6. The results thus obtained from table 6 are
compatible with Its predecessors and confirmed that PRS-Lasso method outperformed
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all others. It is observed that PRS-Lasso method identifies the 5 true zero coefficients
and 25 non-zero true coefficients among 30 predictors. On the other hand, LAD-Lasso
overfits 11 predictors and identified only 4 true zero coefficients. The WLAD-Lasso may
perform better than LAD-Lasso method, as shown in Table 6 in which the WLAD-Lasso
identified 5 true non-zero coefficients and overfits 8 predictors without underfit problem.

5 Summary

This paper is a modest contribution to the ongoing improvements on instability Lasso
solution path. Particular attention is paid to weight the X and Y as multivariate re-
gression data. The weights are derived from multivariate normal location and scatter
estimators to reduce the effect of outlying observation ( outliers and leverage points). To
control the false selection rate of Lasso and satisfying the stability, multisiplit procedure
has been done for weighted data. Weighted data and multisplit procedure are combined
in one computational algorithmic framework to proposed PRS-Lasso algorithm. The
performance of proposed method is compared with LAD-Lasso and WLAD-Lasso.. The
finding of the comparison was quite surprising and shows a high-efficiency in the PRS-
Lasso, perfect controlling of a false selection occurring, a high stability solution path and
further suggests it is hard to exclude true non-zero coefficients. Based on the findings of
the current research, it is possible to conclude that our proposed method is more reliable
than LAD-Lasso and WLAD-Lasso in the presence or not of outliers and leverage points
in the data, so it has great potential and it can be readily used in practice.
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