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In this work, we are interested in a hypothesis testing problem within the
framework of a Generalized Pareto Distribution (GPD) model with interval
censoring. For this purpose, we first develop the calculation of the likelihood
function, using conditional probabilities, to achieve the same expression pro-
posed by Klein and Moeschberger. Next, we show that the properties of the
maximum pseudo-likelihood estimates of the model parameters and essen-
tially the asymptotic normality are preserved. Finally, we built a hypothesis
testing to compare two types of breast cancer treatment as part of the model
mentioned above. As a result, we can distinguish which treatment lengthens
the comfort time of the patients.

Keywords: Interval censoring, likelihood function, GPD model, asymp-
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1 Introduction

In practice, many problems are better formalized within censored models. To illustrate,
in medicine and biology, censored data appears in clinical trial for survival studies (Law-
less, 2003). Moreover, in finance, the reinsurance’s companies face some censored data
due to unreported or non-settled information claims (Albrecher et al., 2017). In an
overview of available literature, a lot of contributions have dealt with censored mod-
els on the right (Lawless, 2003), left (Samson et al., 2006) or right and left (Turnbull,
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1974). Furthermore, the concept of interval censoring has been introduced (Klein and
Moeschberger, 1997) to generalize different types of censoring. Statistical inference in
such models has been developed using more generally non-parametric or semi-parametric
methods (Gentleman and Geyer, 1994, Clifford Anderson-Bergman, 2016, Kalbfleisch
and Prentice, 2002, Lin et al., 2016).

In this work, we aim to develop a statistical inference within a parametric model by
mean of the study of a corpus of data (Lindsey and Ryan, 1998) concerning two types of
breast cancer treatment. We want to compare these two treatments using a hypothesis
testing strategy built around the tail indexes of empirical data distributions for both
types of cure.

In the second Section, we reformulate the likelihood function using a different calcu-
lation technique to achieve the same expression as in (Klein and Moeschberger, 1997).
The estimates of the model parameters are obtained by maximizing a pseudo-likelihood
function. Furthermore, we propose a proof of the asymptotic normality of model pa-
rameter estimates because this property is essential for the construction of a hypothesis
testing.

In the last Section, we define the variable of interest X as the duration of the aesthetic
comfort of the patients breasts, that is the time elapsed between the beginning of the
treatment and the appearance of breast retraction. Without treatment, breast retraction
appears fairly quickly. However, treatment by radiotherapy or chemotherapy extends
the patient’s aesthetic comfort time. Therefore, we can assume that X is an excess
above a threshold. Thereby, we reposition our study in the context of a GPD model.
Afterwards, we consider a test’s statistic based on the difference between the tail indexes
of the distributions and standardized using the results of the previous sections as in Wald
(Wald, 1943). Finally, the rejection region is determined and the power of the test is
calculated.

2 Parametric model with interval censoring

Let X be a random variable with probability distribution function FX , defined on the
probability space

(
R+,BR+ , Pθ

)
θ∈Θ

. Let us suppose that the set Θ is compact in Rd
and contains the true value. Moreover, let us assume that the model is identifiable,
that the application θ → Pθ is injective for all θ in Θ. Data collection for some random
phenomena is subject to interval censoring, so instead of observing the variable of interest
X, we observe the triplet (Y, Z,∆) which takes its values in D = R2

+ × {1, 2, 3}. The
components Y and Z are two random variables absolutely continuous with respect to
the Lebesgue measure. We assume that the joint density of Y and Z does not depend on
θ, and that the variable of interest X is independent of the pair (Y, Z). The component
∆ is a discrete random variable defined such as

∆ =


1 if Y < X ≤ Z
2 if X > Z

3 if X ≤ Y
.
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The joint probability distribution of the triplet (Y,Z,∆) is such that

P (y ≤ Y < y + dy, z ≤ Z < z + dz,∆ = δ) = P (y ≤ Y < y + dy, z ≤ Z < z + dz)

P {∆ = δ /(y ≤ Y < y + dy, z ≤ Z < z + dz)} .

It obvious that,

lim
dy→0 , dz→0

P (y ≤ Y < y + dy, z ≤ Z < z + dz)

dydz
= f(Y,Z)(y, z),

where f(Y,Z) is the joint density function of the couple (Y, Z). Moreover, for δ = 1, 2, 3
we have

lim
dy→0, dz→0

P {(∆ = 1) /(y ≤ Y < y + dy, z ≤ Z < z + dz)} = P (y < X ≤ z) ,

lim
dy→0, dz→0

P {(∆ = 2) /(y ≤ Y < y + dy, z ≤ Z < z + dz)} = P (X > z) ,

lim
dy→0, dz→0

P {(∆ = 3) /(y ≤ Y < y + dy, z ≤ Z < z + dz)} = P (X ≤ y) .

The distribution of the conditional random variable (∆ = δ/Y = y, Z = z) can be sum-
marized as:

P (∆ = δ|Y = y, Z = z) = lim
dy→0,dz→0

P (∆ = δ /y ≤ Y < y + dy, z ≤ Z < z + dz )

= P (y ≤ X < z)1{δ=1}(δ) P (X < y)1{δ=2}(δ) P (X ≥ z)1{δ=3}(δ) .

Let f(Y,Z,∆) be the density function of the triplet (Y,Z,∆) defined such that

lim
dy→0,dz→0

P (y ≤ Y < y + dy, z ≤ Z < z + dz,∆ = δ) = f(Y,Z,∆)(y, z, δ),

where

f(Y,Z,∆) (y, z, δ) = f(Y,Z)(y, z)P (y ≤ X < z)1{δ=1}(δ) P (X ≤ y)1{δ=2}(δ) P (X > z)1{δ=3}(δ)

= f(Y,Z)(y, z) (FX(z)− FX(y))1{δ=1}(δ) FX(y)1{δ=2}(δ) (1− FX(z))1{δ=3}(δ) .

Let (Yk, Zk,∆k)k=1,...,n be a random sample of the triplet (Y,Z,∆) whose distribution
function depends on the parameter θ. The likelihood function of this sample is

L (θ) =

n∏
k=1

f(Y,Z,∆)(yk, zk, δk)

=

n∏
k=1

f(Y,Z)(yk, zk)

n∏
k=1

U (yk, zk, δk;θ)

where

U (yk, zk, δk;θ) = (FX (zk;θ)− FX (yk;θ))
1{δk=1}(δk) (1− FX (zk;θ))

1{δk=2}(δk) FX (yk;θ)
1{δk=3}(δk)
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The maximum likelihood estimator of θ is obtained by maximizing the log-pseudo-

likelihood ` (θ) = logL(θ) =

n∑
k=1

logU (yk, zk, δk;θ), so the maximum pseudo-likelihood

estimator θ̂ of θ is
θ̂ = arg max

θ∈Θ
`(θ).

In the sequel, we are going to prove the asymptotic normality of the estimator θ̂.

2.1 Asymptotic normality of the estimator

Let us define the score function D to simplify the notation in the sequel, as

D(Y,Z,∆;θ) =

(
∂

∂θ1
logU(Y,Z,∆;θ), ...,

∂

∂θd
logU(Y,Z,∆;θ)

)
.

Moreover, let us assume that the function U(y, z, δ;θ) is smooth and twice continuously
differentiable with respect to θ in a neighborhood of the true value for all (y, z, δ) ∈ D
(condition C1).

Lemma 1 If the function U(Y,Z,∆;θ) satisfies the condition C1, then

E [D(Y,Z,∆;θ)] = 0

Proof. In fact, for every i = 1,..., d, we have

E

(
∂

∂θi
logU(Y,Z,∆; θi)

)
=

∫∫ ∑
δ∈{1,2,3}

∂
∂θi
U(y, z, δ; θi)

U(y, z, δ; θi)
U(y, z, δ; θi)f(y, z)dydz

=
∂

∂θi

∫∫ ∑
δ∈{1,2,3}

fY,Z,∆(y, z, δ; θi)dydz = 0.

Moreover, let us suppose that the information matrix I(θ) exist for all (i, j) ∈ {1, ..., d}⊗2

(condition C2).

Lemma 2 If the function U(Y,Z,∆;θ) satisfies the condition C2, then

1√
n

n∑
k=1

D(Yk, Zk,∆k;θ)
D−→ N (0, I(θ)) .

Proof. Considering the Lemma 1, it is obvious that the covariance matrix of the vector
D(Y, Z,∆;θ) coincides with the Fisher information matrix I(θ), so according to the
central limit theorem we have

1√
n

n∑
k=1

D(Yk, Zk,∆k;θ)
D−→ N (0, I(θ)).
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Finally, let us assume that the function U(y, z, δ;θ) is continuous for all (y, z, δ) ∈ D and
for all θ ∈ Θ (condition C3), and that the Hessian matrix J(θ) exists and is invertible
for all (i, j) ∈ {1, ..., d}⊗2 (condition C4).

Proposition 3 If the function U(Y, Z,∆;θ) satisfies the conditions C1, C2, C3 and C4,
then √

n
(
θ̂n − θ

)
D−→ N (0,Σθ) ,

where

Σθ = J(θ)−1I(θ)J(θ)−1.

Proof. The score function D(Yk, Zk,∆k; θ̂n) equal to zero at θ̂ since θ̂ maximizes
logU(Y, Z,∆;θ). Then, using the Taylor-Young formula in the neighborhood of the
true value of θ, we can write

1√
n

n∑
k=1

D(Yk, Zk,∆k; θ̂n) =
1√
n

n∑
k=1

D(Yk, Zk,∆k;θ) + Jn(θ)
√
n(θ̂ − θ) +Rn = 0, (1)

where Jn(θ) is such as

Jn(θ) =
(
J i,jn (θ)

)
1≤i,j≤d =

(
1

n

n∑
k=1

∂2

∂θi∂θj
logU(Yk, Zk,∆k;θ)

)
1≤i,j≤d

.

J i,jn (θ) is the empirical mean of the functionHi,j = ∂2

∂θi∂θj
logU(Yk, Zk,∆k;θ), 1 ≤ i, j ≤ d.

Then, using the weak law of large numbers we claim that

Jn(θ)
P−→ J(θ). (2)

Therefore, we can say that Jn(θ) is almost surely invertible.
Finally, by Lemma 2 and using the equation 1, we can write that

√
n
(
θ̂n − θ

)
D−→ N

(
0, J(θ)−1I(θ)J(θ)−1

)
.

3 Analysis of breast cancer data

3.1 Statement of the problem

A study (Lindsey and Ryan, 1998) was performed to compare the state of patients with
early breast cancer treated by radiotherapy and chemotherapy together with the state
of those treated by radiotherapy alone in terms of aesthetic effects. The subjects of the
study are patients who were treated at the Joint Center for Radiation Therapy in Boston
between 1976 and 1980. The objective of this study is to compare the results obtained
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with the two treatments in terms of the deterioration of the aesthetic state of the breast
of the patients. These patients are examined at clinical visits every 4 to 6 months.
Monitoring intervals can be longer depending on the circumstances of each patient.
Interval censoring data occur naturally in medical studies requiring periodic monitoring.
Indeed, a person under periodic monitoring may miss visits and return in an altered
state. The results of this study are presented in Table 1 where the intervals indicate
the period of time during which the aesthetic state has deteriorated. For example, if
an observation is coded (6; 14), then at the 6th month the patient shows no aesthetic
deterioration of the breast, but at 14th month the retraction of the breast is present. If
the observation is coded (0; 5), then the patient shows an aesthetic deterioration of the
breast before the study began, but that was figured out at the 5th month of the study. If
an observation is coded (11, 61), then at the 11th month the patient shows no aesthetic
deterioration of the breast and maintained that until the end of the study at the 61th

month.
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Table 1: Breast cancer data with two different treatments

Therapy = RC Status Therapy = R Status
Left Right Left Right

8 12 1 45 61 2
0 22 3 6 10 1
24 31 1 0 7 3
17 27 1 46 61 2
17 23 1 46 61 2
24 30 1 7 16 1
16 24 1 17 61 2
13 61 2 7 14 1
11 13 1 37 44 1
16 20 1 0 8 3
18 28 1 4 11 1
17 26 1 15 61 2
32 61 2 11 15 1
23 61 2 22 61 2
44 48 1 46 61 2
14 17 1 46 61 2
0 5 3 25 37 1
5 8 1 46 61 2
12 20 1 26 40 1
11 61 2 46 61 2
33 40 1 27 34 1
31 61 2 36 44 1
13 39 1 46 61 2
19 32 1 36 48 1
34 61 2 37 61 2
13 61 2 40 61 2
16 24 1 17 25 1
35 61 2 46 61 2
15 22 1 11 18 1
11 17 1 38 61 2
22 32 1 5 12 1
10 35 1 37 61 2
30 34 1 0 5 3
13 61 2 18 61 2
10 17 1 24 61 2
8 21 1 36 61 2
4 9 1 5 11 1
11 61 2 19 35 1
14 19 1 17 25 1
4 8 1 24 61 2
34 61 2 32 61 2
30 36 1 33 61 2
18 24 1 19 26 1
16 60 1 37 61 2
35 39 1 34 61 2
21 61 2 36 61 2
11 20 1
48 61 2

The esthetic deterioration of the breast is inevitable for a patient with breast cancer.
So if the treatment is effective, the comfort time X for a treated patient tends to become
longer. As a result, the tail of the X distribution for the treated patients tends to
thicken in the case of effective treatment. Thus, to compare the effectiveness of the two
types of treatment, we compare the distribution functions of the patients treated with
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Figure 1: Frequency curves of the two empirical distributions of comfort time of the pa-
tients treated with chemotherapy and radiotherapy and the estimated comfort
time of the patients treated with radiotherapy alone

chemotherapy and radiotherapy and radiotherapy alone using their tail indexes.

3.2 Estimation of model parameters

Let
{
X

(0)
i

}
1≤i≤n1

be the comfort time of patients who had been treated with chemother-

apy after initial radiotherapy and
{
X

(1)
j

}
1≤j≤n2

be the comfort time of the patients who

received only an equivalent dose of radiotherapy (Table1), and let F (x(m), γm, σm), m = 0
or 1, be their distribution functions defined as follows:

F (x(m); γm, σm) = 1−

(
1 + γm

x(m)

σm

)− 1
γm

where x(m) > −σm
γm

.

The model under consideration is subject to interval censoring. Therefore, the parame-
ters estimation can be carried out using the maximum pseudo-likelihood method (Section
2). Let ˜̀(γm, σm) be the pseudo-likelihood function defined such as

˜̀(γm, σm) =
n∑
k=1

[
1{δk=1}(δk) log

(
(1 +

γm
σm

yk)
− 1
γm − (1 +

γm
σm

zk)
− 1
γm

)
−1{δk=2}(δk)

1

γm
log(1 +

γm
σm

zk
)

+ 1{δk=3}(δk) log

{
1− (1 +

γm
σm

yk)
− 1
γm

}]
.

To maximize ˜̀(γm, σm), we use the numerical method of Nelder-Mead (Nelder and Mead,
1965). The results of this optimization are summarized in the following table:
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Table 2: GPD parameters estimation

Parameters Estimation Parameters Estimation

γ0 -0.4123641 γ1 -0.6472023

σ0 28.1896309 σ1 73.9606626

The figure below shows the two survival function of GPD distribution with the estimated
parameters:

Figure 2: Two survival functions of the estimated comfort time of the patients treated
with chemotherapy and radiotherapy and the estimated comfort time of the
patients treated with radiotherapy alone.
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3.3 Comparison between the two treatments

Figure 2 shows that the tail of the estimated comfort time distribution function of the
patients treated with chemotherapy and radiotherapy is thinner than the tail of the
distribution function of comfort time of the patients treated with radiotherapy alone. In
other words, the aesthetic comfort time for the patients treated with chemotherapy and
radiotherapy is shorter. That is, the treatment with chemotherapy and radiation does
not lengthen the comfort time of the patients.
The comparison of the two treatments can be obtained simply by solving the testing
problem of the null hypothesis H0:’γ = γ0 = γ1’ against the alternative hypothesis
H1 :’γ = γ1 < γ0’. There are several methods for determining a decision rule for this
test. It is known that Neyman type tests and Wald type tests are equivalent for this kind
of hypothesis (Toulemonde, 2008). However, for practical reasons we will proceed as in
Wald (Wald, 1943) by standardizing the quantity γ̂0 − γ̂1 whose asymptotic variance
V = V0 + V1 is given in the proposition 3 such that

V =
J(γ0)−1I(γ0)J(γ0)−1

n0
+
J(γ1)−1I(γ1)J(γ1)−1

n1
. (3)

Let us define the statistic T such as

T =
γ̂0 − γ̂1√

V̂
,

where V̂ is obtained by substituting γi by γ̂i, i=0,1 in the relation 3.
Under the null hypothesis the statistic T has a standard normal distribution. Thus, the
decision rule can be defined through the rejection region defined as:

Rc = {T > q1−α} ,

where the normal quantile q1−α = φ−1(1 − α) and where φ is the distribution function
of the standard normal distribution.
Moreover, under the hypothesis H1, the statistic T is of normal distribution with mean
(γ0 − γ1) and variance V̂ . Therefore, the power of this hypothesis testing can be ex-
pressed as

1− β = PH1(Rc) = 1− φ

(
φ−1(1− α)− (γ0 − γ1)√

V̂

)
With the help of our script written under (Team et al., 2013), the value of the statistic
T and the power 1− β of the test are calculated such that

T = 2.475412 , q1−α = 1.644854 and 1− β = 0.7968884,

as T > q1−α, we reject the hypothesis H0.
As a conclusion, we can state that the treatment with radiotherapy and chemotherapy
together does not improve the aesthetic comfort of patients with breast cancer, but it
tends to damage it.
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4 Conclusion

We have shown throughout our work that, in parametric models with interval censor-
ing, the parameter estimates preserve their essential properties, namely efficiency and
asymptotic normality. In addition, we have built a hypothesis testing and we calculated
its power 1 − β, which is not always possible. Therefore, we can claim that our test
is as powerful as the Wald or Pearson type tests. Moreover, we can point out that
it would be interesting to develop a specific method to fit probability distributions to
interval-censored data. Hence, the distribution of these data can be confirmed instead
of being supposed, thus many practical problems can be formalized and analyzed more
accurately.

References

Albrecher, H., Teugels, J. L., and Beirlant, J. (2017). Reinsurance: actuarial and statis-
tical aspects. John Wiley & Sons.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2006). Statistics of extremes:
theory and applications. John Wiley & Sons.

Clifford Anderson-Bergman, Y. Y. (2016). Computing the log concave npmle for interval
censored data. Statistics and Computing, 26(4):813–826.

Dorey, F. J., Little, R. J., and Schenker, N. (1993). Multiple imputation for threshold-
crossing data with interval censoring. Statistics in medicine, 12(17):1589–1603.

Esteban, M. and Morales, D. (1998). On the asymptotic distribution of maximum
likelihood estimators with doubly censored data. Kybernetes, 27(8):940–951.

Finkelstein, D. M. and Wolfe, R. A. (1985). A semiparametric model for regression
analysis of interval-censored failure time data. Biometrics, pages 933–945.

Gentleman, R. and Geyer, C. J. (1994). Maximum likelihood for interval censored data:
Consistency and computation. Biometrika, 81:618–623.

Gourieroux, C., Monfort, A., and Trognon, A. (1984). Pseudo maximum likelihood
methods: Applications to poisson models. Econometrica, 52:701–720.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The statistical analysis of failure time data.
John Wiley et Sons, New York; Chichester.

Klein, J. P. and Moeschberger, M. L. (1997). Survival analysis: techniques for censored
and truncated data. Springer-Verlag Inc, Berlin; New York.

Klein, J. P. and Moeschberger, M. L. (2006). Survival analysis: techniques for censored
and truncated data. Springer Science & Business Media.

Lawless, J. F. (2003). Statistical models and methods for lifetime data. John Wiley et
Sons, New York; Chichester.

Lin, J., Sinha, D., Lipsitz, S., and Polpo, A. (2016). Semiparametric analysis of interval-
censored survival data with median regression model. In Statistical Applications from



Electronic Journal of Applied Statistical Analysis 391

Clinical Trials and Personalized Medicine to Finance and Business Analytics, pages
149–163. Springer.

Lindsey, J. C. and Ryan, L. M. (1998). Methods for interval-censored data. Statistics
in medicine, 17(2):219–238.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The
computer journal, 7(4):308–313.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis
testing. In Handbook of econometrics, Vol. IV, volume 2 of Handbooks in Econom.,
pages 2111–2245. North-Holland, Amsterdam.

Odell, P. M., Anderson, K. M., and D’Agostino, R. B. (1992). Maximum likelihood
estimation for interval-censored data using a weibull-based accelerated failure time
model. Biometrics, pages 951–959.

Reiss, R.-D. and Thomas, M. (2007). Statistical analysis of extreme values with applica-
tions to insurance, finance, hydrology and other fields. Birkhäuser Verlag, Basel, third
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