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Based on the competing risks grouped data, Bayesian estimation approach
is considered for the parameters of the Weibull distribution and the related
specific hazard and survival functions. The estimation procedures are carried
out under the square error loss (SELF) and linear exponential loss (LINEX)
functions. High posterior (HPD) credible intervals for the specified param-
eters are also obtained. The derived estimators are in explicit closed forms.
Their properties and performance are illustrated through an application to
real lifetime’s data and an extended simulation study. Overall results indi-
cate that, the Bayesian estimators are dominated other estimators obtained
by other methods and are recommended when continuous life testing is not
available.

keywords: Weibull distribution, competing risks, grouped data, loss func-
tion, HPD credible interval.

1 Introduction

In reliability and survival analysis subjects may be at risk of failure due to more than one
cause, giving rise of what is known as competing risks analysis. Problems related with
competing risks are extensively involved in reliability systems, medicine, engineering,
economics and many other fields of studies that concerns with lifetime distribution of a
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unit (individual, item, system) subject to several failure modes. Statistical inference for
the parameters of the lifetime models using different censoring schemes with competing
risks data are considered by many authors. Examples are Sarhan (2007); Alwasel (2009);
Josmar and Jorge (2011); Shai and Wu (2016); Lai and Murthy (2003).

In many real practical settings, continuous monitoring the test units to have the
required lifetimes data is not available, incorporate specific measurement errors, costly
and needs hard efforts or not feasible in some situations. Therefore, it is more probable
to inspect the units periodically for failure. Hence, the time line is initially divided into
adjacent intervals to have the interval grouped data which consists of the numbers of
failed or censored units in the given intervals. This type of data is frequently used in
many areas of reliability and survival analysis. The Maximum likelihood estimation using
a general interactive optimizer and grouped data is considered in Gove and Fairweather
(1989). Pipper and Ritz (1989) have checked the grouped data for the Cox model.
Aludaat et al. (2008) derived estimators of the Burr type X distribution parameters using
the grouped data. Migdadi and Al-Batah (2014) investigated the Bayesian approach for
the Weibull distribution based on the interval grouped data.

The Weibull distribution proposed initially by Weibull (1951), for describing the fa-
tigue failures from the wear out materials. Recently, it has extensive applications in
modeling a variety of real lifetimes data. Applications of the Weibull distribution are
mainly addressed in Lowe and Lewis (1983); Yazhou et al. (1995); Lai et al. (2017);
Rinne (2009); Mudholkar and Asubonteng (2010).

Consider the life testing experiment in which n units are put in the test for failure
and are exposed to m possible risks. If the ith cause of failure comes from the Weibull
model with common shape parameter γ and scale parameters λi, i = 1, 2, . . . ,m. Then
the specific survival and hazard function for the ith mode are:

Si(t) = e−λit
γ

(1)

hi(t) = γλit
γ−1, γ > 0, λi > 0, i = 1, 2, . . . ,m (2)

If the lifetime of the unit comes from only one of the independent competing risks,
then the overall survival and hazard functions are:

S(t) = Πm
i=1Si(t) = e−Σm1 λit

γ
= e−λt

γ
(3)

h(t) = Σm
i=1hi(t) = γ(Σm

i=1λi)t
γ−1 = γλtγ−1 (4)

where λ = Σm
i=1λi.

Maximum likelihood and type moment Estimators of the Weibull parameters using
competing risks grouped data are studied by David and Moeschberger (1978) and Lianfen
and Jose (2003). Yanez et al. (2014) have studied the characteristics of two competing
risks models with Weibull distributed risks. Iskandar and Gondokaryono (2016) con-
sidered Bayesian analysis approach for the competing risk models in reliability systems
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using a Weibull distribution. Dey et al. (2016) considered Bayesian analysis of the mod-
ified Weibull distribution under progressively censored competing risk model. Bayesian
inferences for the Weibull and other lifetimes models are also included in Prakash (2014),
Pak and Chatrabgoun (2016), Tahir et al. (2017) and Pak and Rastogi (2018).

Statistical selection procedures are used in a variety of applications to select the best
of a finite set of alternatives. “Best” is defined with respect to the (largest or smallest)
mean, where the mean is inferred with statistical sampling, as in simulation optimiza-
tion. Many sequential selection procedures are proposed to select a good design when
the number of alternatives is large, see Alrefaei and Almomani (2007); Almomani and
Alrefaei (2012); Almomani and R.AbdulRahman (2012); Almomani and Alrefaei (2016);
Al-Salem et al. (2017); Almomani et al. (2018).

The aim of this paper is to obtain Bayesian estimators of the Weibull parameters
using the competing risks grouped data. In the next section based on the grouped data,
the likelihood function of the parameters is formulated. In Section 3 the specific priors
of the parameters are proposed to construct the posterior functions and in Section 4
the loss functions are defined .The Bayesian estimation procedures are performed under
the squared loss function in Section 5 and under the linear exponential loss function in
Section 6. High posterior credible intervals for the specific parameters are obtained in
Section 7. To illustrate the properties and performance of the Bayesian estimators, real
lifetimes data are applied to the theoretical results with a simulation study in Section
8. Finally, conclusions about the overall work are explored in Section 9.

2 The Likelihood Function

Let the time scale line divided into k non overlapping intervals by the cut points τ0 <
τ1 < . . . < τk to form the intervals Ij = [τj−1, τj), j = 1, 2, . . . , k where τ0 is the initial
time of the life testing experiment and τk is the termination time. Let fij be the number
of failure units in the intervals Ij , j = 1, 2, . . . , k from mode i, i = 1, 2, . . . ,m. Define;
Pij(λi) = P (unit fails due to the ith risk inIj), j = 1, 2, . . . , k. Then

Pij(λi) =

∫ τj

τj−1

hi(t)S(t)dt = e−λiτ
γ
j−1 − e−λiτ

γ
j , (5)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , k.

This implies the contribution of fij to the likelihood function of λi, i = 1, 2, . . . ,m is

L1(λ1, λ2, . . . , λm\fij) ∝
m∏
i=1

k∏
j=1

(Pij(λi))
fij

Let cij be the number of units lost to follow up or censored in the interval Ij from mod
i, i = 1, 2, . . . ,m and j = 1, 2, . . . , k (These units are assumed to be survival at least half
of the giving interval). This implies R = n −

∑k
j=1

∑m
i=1(fij + cij) is the total number

of units still alive at the termination time τk. The contribution of cij , i = 1, 2, . . . ,m,
j = 1, 2, . . . , k and R to the likelihood function of λi, i = 1, 2, . . . ,m is
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L2(λ1, λ2, . . . , λm\cj , R) ∝ (
m∏
i=1

k∏
j=1

e−cijλim
γ
j )e−λRτ

γ
k

= e−
∑m
i=1

∑k
j=1 λicijm

γ
j−λRτ

γ
k

Where mj , j = 1, 2, . . . , k are the mid interval times. Substituting for Pij(λi) from
(5), the overall likelihood function is

L(λ1, λ2, . . . , λm\cgdata) ∝ L1(λ1, λ2, . . . , λm)L2(λ1, λ2, . . . , λm) =

m∏
i=1

k∏
j=1

(e−λiτ
γ
j−1 − e−λiτ

γ
j )fije−

∑m
i=1

∑k
j=1 λicijm

γ
j−λRτ

γ
k

(6)

Where cgdata are the competing risks grouped data and consists of (fij , cj , R, τj ,mj),
i = 1, 2, . . . ,m and j = 1, 2, . . . , k.

3 The Prior and The Posterior functions

For each independent specific cause of failure, let the prior of the scale parameter λi be
the Gamma(ai, bi) distribution given by

πi(λi) =
baii

Γ(ai)
(λi)

ai−1e−biλi , ai ≥ 1, bi > 0, i = 1, 2, . . . ,m

Then the joint prior of λi, i = 1, 2, . . . ,m is

π(λ1, λ2, . . . , λm) =
m∏
i=1

πi(λi) ∝ (
m∏
i=1

(λi)
ai−1)e−

∑m
i=1 biλi (7)

Combining the likelihood function and the joint prior, the joint posterior function of
λi, i = 1, 2, . . . ,m and the cgdata is

π(λ1, λ2, . . . , λm, cgdata) =
L(λ1, λ2, . . . , λm\cgdata)π(λ1, λ2, . . . , λm)

M
(8)

Where

M =

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

L(λ1, λ2, . . . , λm\cgdata)π(λ1, λ2, . . . , λm)dλ1dλ2 . . . dλm

is the marginal function of λi, i = 1, 2, . . . ,m. Substituting for L(λ1, λ2, . . . , λm\cgdata)
and π(λ1, λ2, . . . , λm) in (8), π(λ1, λ2, . . . , λm, cgdata) involved highly complicated in-

tegrals. Therefore, we approximate
∏m
i=1

∏k
j=1(e−λiτ

γ
j−1 − e−λiτ

γ
j )fij mathematically in

both numerator and denominator of (8) as the following:



Electronic Journal of Applied Statistical Analysis 691

m∏
i=1

k∏
j=1

(e−λiτ
γ
j−1 − e−λiτ

γ
j )fij =

m∏
i=1

k∏
j=1

(e−λiτ
γ
j−1(1− e−λi(τ

γ
j −τ

γ
j−1)))fij

Using the local linear approximation:

k∏
j=1

(1− e−λi(τ
γ
j −τ

γ
j−1))fij ≈

k∏
j=1

(λi(τ
γ
j − τ

γ
j−1))fij

Setting:

Zj = τγj − τ
γ
j−1, Yi =

k∑
j=1

fijτj , Ni =
k∑
j=1

fij ,Wi = cijm
γ
j +Rτγk

W = (

m∑
i=1

k∑
j=1

cijm
γ
j ) +Rτγk

Implies, the joint posterior function becomes

π(λ1, λ2, . . . , λm, cgdata) ∝
∏m
i=1(λi)

Ni+ai−1e−
∑m
i=1(bi+Yi)

λie−λW∫∞
0

∫∞
0 . . .

∫∞
0

∏m
i=1(λi)Ni+ai−1e−

∑m
i=1(bi+Yi)λie−λWdλ1dλ2 . . . dλm

(9)

Integrating the numerator and denominator of π(λ1, λ2, . . . , λm, cgdata) with respect
to λi, j 6= i, 1, 2, . . . , (m − 1) the marginal posterior function of each of the parameters
λi, i = 1, 2, . . . ,m is

πi(λi, cgdata) ∝ (λi)
Ni+ai−1e−(bi+Yi+Wi)

λi∫∞
0 (λi)Ni+ai−1e−(bi+Yi+Wi)λidλi

(10)

Clearly, π(λ1, λ2, . . . , λm, cgdata) =
∏m
i=1 πi(λi, cgdata) and πi(λi, cgdata) is the Gamma

(Ni+ai, bi+Yi+Wi) distribution. Thus πi(λi) can be considered as a specific conjugate
prior of λi, i = 1, 2, . . . ,m.

4 Loss functions

One of the basic elements to perform Bayesian estimation procedures is to precisely
identify the loss function. In this paper two loss functions will be considered .The first is
the squared error loss function denoted as (SELF).This loss function is symmetric and
frequently used in Bayesian estimation. The squared loss function is defined by

L(δ, θ) = (δ − θ)2 (11)

Where δ is the Bayesian estimator of θ and given by Berger (1985) as δ = Eθ(Π(θ, data)).
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The second symmetric loss function to be considered is the linear exponential function
denoted as (LINEX) defined by

L(δ, θ) = ec(δ−θ) − c(δ − θ)− 1, c 6= 0 (12)

This loss function comes as a modification of SELF by Hamada et al. (2008) and
Varian (1975). The Bayesian estimator under LINEX is given by Zellner (1986) as
δ = −1

c ln(EΠ(e−cθ)).

5 Bayesian estimation under SELF

Based on the marginal posterior defined in (9), the Bayesian estimator of λi under SELF
is the posterior mean given by

λ̂lBS =

∫∞
0 (λi)

Ni+aie−(bi+Yi+Wi)
λidλi∫∞

0 (λi)Ni+ai−1e−(bi+Yi+Wi)λidλi
=

Ni + ai
bi + Yi +Wi

, i = 1, 2, . . . ,m (13)

Consequently, the Bayesian estimators for the specific survival and hazard functions
at a given time t are given respectively by

ŜlBS(t) =

(
bi + Yi +Wi

bi + Yi +Wi + tγ

)Ni+ai

ĥlBS(t) = γtγ−1

(
Ni + ai

bi + Yi +Wi

)
Based on the posterior in (8), the Bayesian estimator for any given function g(λ1, λ2, . . . , λm)

under SELF is given by

B̂S = (EΠ(g(λ1, λ2, . . . , λm)))

Since, the population survival and the hazard functions at given time t and the pa-
rameter λ are all functions of λi, i = 1, 2, . . . ,m. This implies their Bayesian estimators
are given respectively by

ŜBS(t) =

m∏
i=1

(
bi + Yi +Wi

bi + Yi +Wi + tγ

)Ni+ai
,

ĥBS(t) = γtγ−1
m∑
i=1

(
Ni + ai

bi + Yi +Wi

)
,

λ̂BS =

m∑
i=1

(
Ni + ai

bi + Yi +Wi

)
.

(14)
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6 Bayesian Estimation Under LINEX

Assuming the LINEX function with parameter c 6= 0 , based on the posterior given in
(8) the Bayesian estimator for any function g(λ1, λ2, . . . , λm) is given by

B̂L =
−1

c
(ln(EΠ(e−cg(λ1,λ2,...,λm))))

This implies, Bayesian estimators for hazard function at a given time t and the parameter
λ are

ĥBL(t) =
−1

c

m∑
i=1

ln

(
bi + Yi +Wi

bi + Yi +Wi + cγtγ−1

)Ni+ai
,

λ̂BL(t) =
−1

c

m∑
i=1

ln

(
bi + Yi +Wi

bi + Yi +Wi + c

)Ni+ai
.

(15)

Based on the marginal posterior given in (9), Bayesian estimators of the specific hazard
functions at a given time and of the parameters λi, i = 1, 2, . . . ,m are respectively

ĥlBL(t) =
−(Ni + ai)

c
ln

(
bi + Yi +Wi

bi + Yi +Wi + cγtγ−1

)
,

λ̂lBL(t) =
−(Ni + ai)

c
ln

(
bi + Yi +Wi

bi + Yi +Wi + c

)
.

(16)

Clearly, ĥBL(t) =
∑m

i=1 ĥlBL(t), λ̂BL(t) =
∑m

i=1 λ̂lBL(t), ŜBS(t) =
∏m
i=1 ŜlBS(t), ĥBS(t) =∑m

i=1 ĥlBS(t), λ̂BS =
∑m

i=1 λ̂lBS .

7 Credible Intervals

Another common Bayesian approach is to construct intervals for which the unknown
parameters are most probably to lie. Given the marginal posterior in (9), the (1− α)%
credible interval in the form (c1, c2) can be obtained by solving the equation:∫ c2

c1

Πi(λi, cgdata)dλi = (1− α) (17)

To choose credible intervals for λi, i = 1, 2, . . . ,m, it is desirable to minimize its size
subject to condition (16) to have high posterior credible intervals (HPD). This requires

Πi(c1, cgdata) = Πi(c2, cgdata) (18)

Setting Y = bi + Yi + W , making the transformation u = Y λi and substituting
for Πi(λi, cgdata) in (16) and (17). Implies (1 − α)% HPD credible intervals for λi,
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i = 1, 2, . . . ,m can be obtained by solving the following two equations simultaneously
with respect to c1, c2

Ig(Y c2, Ni + ai)− Ig(Y c1, Ni + ai) = (1− α)Γ(Ni + ai)Y
Ni+ai (19)

(
c1

c2

)Ni+ai−1

= e−Y (c1−c2) (20)

Where Ig(x, y) is the incomplete gamma function defined as :

Ig(x, y) =
1

Γ(y)

∫ x

0
ty−1e−1dt

8 Application and Simulation Study

To illustrate found out theoretical results, the Bayesian estimation is applied to real
lifetime’s data. Furthermore an extended simulation study with different settings is also
conducted.

8.1 Application to Real Lifetimes Data

The following data are times to failure measured in millions of operations of 42 Mechan-
ical devises from Chambers et al. (1983) in two types of switches.

Type 1: 1.499 1.667 1.695 1.710 1.965 2.109 2.135 2.197 2.227 2.254 2.369 2.547 2.548
2.794 2.883∗ 2.910∗ 3.015∗ 3.017 3.793∗

Type 2: 1.151 1.170 1.248 1.331 1.381 1.508 1.534 1.577 1.584 2.012 2.051 2.076 2.116
2.119 2.199 2.250 2.261 2.349 2.738 2.883∗ 2.883∗ 3.793∗

where the n∗ numbers represents censored life times.

The data are fit to Weibull distributions with common shape parameter γ = 2 using
Minitab, at significance level α = 0.05, the maximum likelihood estimators using the
complete ungrouped data are λ̂1 = 0.17009 for Type 1 and λ̂2 = 0.22216 for Type 2.
The data are then grouped into 5 intervals with fixed length = 0.4 with initial time
τ0 = 1 and termination time τ5 = 3. After computing the number of failures and
censored observations fij , cij , i = 1, 2, j = 1, 2, . . . , 5 we identify the specific priors
with parameters (a1 = 3, b1 = 1) for Type 1 and (a2 = 4, b2 = 1). The following

results are computed for the Bayesian estimators under SELF: λ̂1BS = 0.17040, λ̂2BS =

0.21819 and the Bayesian estimators under LINEX when c = 2 are: λ̂1BL = 0.16914,

λ̂2BL = 0.21639. Clearly the Bayesian estimators using the grouped data are very close
to their corresponding maximum likelihood estimators using the ungrouped data, the
maximum absolute difference between their values not exceeds 0.00573 when we use
LINEX and 0.00397 when we use SELF. Using Minitab, the 95% asymptotic confidence
intervals for λ1, λ2 are (0.109728, 0.263625), (0.14763, 0.34051) respectively. The 95%
HPD credible intervals for λ1, λ2 are (0.112781, 0.263726), (0.147832, 0.33981) which
are better than their correspondence asymptotic confidence intervals with respect to
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their lengths. Table 1 and Table 2 represent the Bayesian estimators for the specific
survival and hazard functions with their corresponding maximum likelihood estimators
of the hazard functions ĥ1mle, ĥ2mle and the survival functions Ŝ1mle, Ŝ2mle using the
ungrouped data at the end interval points for the two types of mechanical devises.

As it appears from the Tables 1 and 2, the Bayesian estimators for both the spe-
cific hazard and survival functions are also very close to their corresponding maximum
likelihood estimators using the complete ungrouped data.

Taking into account that there is a specific loss of information in the exact life times
when using the grouped data, the obtained Bayesian estimators indicates a high perfor-
mance when using the competing risks grouped data.

8.2 Simulation

Because the maximum likelihood estimators using the complete ungrouped data in-
corporate specific standard errors rates. In this section, using Matlab a Monte Carlo
simulation study by proposing the true values of the parameters is conducted. Three
modes of failure are considered with common shape parameter γ = 1.5 for the first
setting, γ = 1 for the second setting and γ = 0.8 for the third setting. The proposed
scale parameters are λ1 = 0.1, λ2 = 0.15, λ3 = 0.20 with sample sizes n = 45, 72, 102 are
generated from specific Weibull models; equal size subpopulations with rate of censoring
5%, 10% and 15% are considered. The generating data are grouped into 5 intervals with
fixed length equal 1.5 and 7 intervals of fixed length equal 1 for the first setting, into
6 intervals with fixed length equal 3 and 8 intervals with fixed length equal 2.5 for the
second setting and into 8 intervals with fixed length equal 5 and 10 intervals with fixed
length equal 4 for the third setting. The prior scale parameter is fixed b = 2, and the
shape parameters are a1 = 1.764, a2 = 2.647, a3 = 3.529 respectively, the LINEX loss
parameter is fixed to be c = 2 in all the indices, for each setting 1000 replications of
the life testing experiments are performed. The performance of the Bayesian estima-
tors is measured in terms of their mean squared errors (MSE)and the mean percentage
errors(MPE) defined respectively as:

MSE(λ̂l) =
1

1000

1000∑
i=1

(λi − λ̂l)2

MPE(λ̂l) =
1

1000

1000∑
i=1

|λi − λ̂l|
λi

where λ̂l is the Bayesian estimator of λi, i = 1, 2, 3.

The MSEs and the MPEs of the Bayesian estimators at different settings are presented
in the Tables 3, 4, 5, 6, 7 and 8 where we have the following results:

1. For fixed sample size, the MSEs and the MPEs of the Bayesian estimators uniformly
increasing as the values of the parameters increasing. In Table 1, as the values of
the parameter increasing from 0.1 to 0.2 the MSEs increasing from 0.0076 to 0.0083
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using SELF and from 0.0081 to 0.0103 using LINEX. Similarly the MPEs increasing
from 0.0243 to 0.0492 using SELF and from 0.0385 to 0.0508 using LINEX.

2. Following each column in the Tables, the MSEs and the MPEs of the Bayesian
decreasing as the sample sizes are increasing. Observation results also show that,
the Bayesian estimators under SELF have less MSEs than the Bayesian estimators
under LINEX when the sample sizes n = 45 and n = 72, the converse is not true
when the sample size n = 102.

3. Comparing the simulation results in Table 3 with Table 4 , Table 5 with Table 6
and Table 7 with Table 8, we realize that as the lengths of the inspection intervals
decreasing and the number of intervals increasing, the Bayesian estimators become
more efficient because it incorporate less MSEs and MPEs.

4. Comparing the simulation results in Table 3 and Table 4 with their corresponding
results in Tables 5 and 6 and Tables 7 and 8, the Bayesian estimators are better
when the shape parameter γ = 1.5 than the Bayesian estimators when γ = 1 and
γ = 0.8. This assigns that the Bayesian estimation approach is more preferable for
the increasing failure rate process.

5. The rate of censoring can also be one of other factors affected performance of the
Bayesian approach. Results with censoring rate 5% are significantly better than
the results with censoring rates 10% and 15%.

6. Generally, simulation results show that, the derived Bayesian estimators are robust
with respect to both scale and shape parameters and give a high performance as
compared to the maximum likelihood and type moment estimators derived by
Lianfen and Jose (2003).

9 Conclusion

In this article, Bayesian estimation approach is devoted for the Weibull parameters
and related specific hazard and survival functions. Using the competing risks grouped
data, the Bayesian estimators are obtained in explicit closed forms and not needed any
numerical solutions. Applying the theoretical results to real lifetimes data manifest the
performance of the Bayesian estimators as compared with their corresponding ordinary
maximum likelihood estimators using the complete ungrouped data. Properties of the
Bayesian estimators are studied through a simulation study which illustrates the factors
that affected reliability of the estimation procedures. Being not having the exact failure
times, the competing risks grouped data with the Bayesian estimation is recommended
when continuous monitoring the test units is not feasible, costly or incorporates specific
measurement errors.
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Table 1: The estimated hazard and survival functions of Type 1 mechanical devises.

τi ĥ1mle ĥ1BS(t) ĥ1BL(t) Ŝ1mle Ŝ1BS(t)

1.4 0.4670 0.4774 0.5147 0.7782 0.7144

1.8 0.6100 0.6138 0.6433 0.7363 0.6680

2.2 0.6800 0.7501 0.7701 0.6897 0.6248

2.6 0.8840 0.8865 0.8951 0.6427 0.5845

3 1.0200 1.0229 1.0184 0.6004 0.5469

Table 2: The estimated hazard and survival functions of Type 2 mechanical devises.

τi ĥ1mle ĥ1BS(t) ĥ1BL(t) Ŝ1mle Ŝ1BS(t)

1.4 0.5392 0.5737 0.5846 0.7642 0.7515

1.8 0.8086 0.7376 0.7463 0.6681 0.6934

2.2 0.9882 0.9015 0.9058 0.6109 0.6269

2.6 1.1679 1.0654 1.0631 0.5585 0.5899

3 1.3476 1.2293 1.2183 0.5168 0.5451
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Table 3: The mean squared errors and the mean percentage errors of the Bayesian esti-
mators when the common shape parameter γ = 1.5, number of intervals k = 5,
fixed interval length = 1.5.

Rate of

n Error λ̂1BS λ̂2BS λ̂3BS λ̂1BL λ̂2BL λ̂3BL Censoring

45 MSE 0.0076 0.0079 0.0083 0.0081 0.0087 0.0103 5%

MPE 0.0243 0.0368 0.0492 0.0385 0.0421 0.0508

MSE 0.0094 0.0099 0.0112 0.0108 0.0123 0.0167 10%

MBE 0.0252 0.0387 0.0511 0.0387 0.0433 0.0510

MSE 0.0099 0.0108 0.0188 0.0117 0.0129 0.0132 15%

MBE 0.0264 0.0398 0.0547 0.0390 0.0446 0.0531

72 MSE 0.0058 0.0062 0.0076 0.0061 0.0076 0.0089 5%

MPE 0.0238 0.0357 0.0476 0.0258 0.0374 0.0562

MSE 0.0087 0.0092 0.0105 0.0098 0.0101 0.0126 10%

MBE 0.0246 0.0361 0.0488 0.0287 0.0393 0.0552

MSE 0.0091 0.0094 0.0112 0.0104 0.0115 0.0138 15%

MBE 0.0251 0.0369 0.0492 0.0294 0.0407 0.0561

102 MSE 0.0039 0.0043 0.0053 0.0034 0.0041 0.0049 5%

MPE 0.0164 0.0243 0.0321 0.0157 0.0233 0.0244

MSE 0.0062 0.0078 0.0091 0.0075 0.0075 0.0084 10%

MBE 0.0173 0.0251 0.0335 0.0168 0.0247 0.0281

MSE 0.0083 0.0091 0.0106 0.0081 0.0089 0.0102 15%

MBE 0.0176 0.0261 0.0342 0.0171 0.0258 0.0287



702 Migdadi, Abu-Shawiesh, Almomani

Table 4: The mean squared errors and the mean percentage errors of the Bayesian esti-
mators when the common shape parameter γ = 1.5, number of intervals k = 7,
fixed interval length = 1.

Rate of

n Error λ̂1BS λ̂2BS λ̂3BS λ̂1BL λ̂2BL λ̂3BL Censoring

45 MSE 0.0072 0.0076 0.0079 0.0077 0.0082 0.0094 5%

MPE 0.0232 0.0289 0.0411 0.0362 0.0417 0.0501

MSE 0.0087 0.0088 0.0090 0.0089 0.0097 0.0098 10%

MBE 0.0239 0.0295 0.0423 0.0373 0.0431 0.0552

MSE 0.0091 0.0096 0.0104 0.0095 0.0103 0.0108 15%

MBE 0.0252 0.0311 0.0439 0.0386 0.0440 0.0562

72 MSE 0.0055 0.0057 0.0064 0.0058 0.0065 0.0084 5%

MPE 0.0227 0.0264 0.0381 0.0326 0.0408 0.0483

MSE 0.0074 0.0078 0.0081 0.0082 0.0083 0.0090 10%

MBE 0.0278 0.0283 0.0389 0.0381 0.0412 0.0493

MSE 0.0087 0.0091 0.0095 0.0083 0.0094 0.0098 15%

MBE 0.0285 0.0299 0.0391 0.0392 0.0426 0.0502

102 MSE 0.0034 0.0039 0.0047 0.0032 0.0038 0.0042 5%

MPE 0.0211 0.0243 0.0383 0.0208 0.0239 0.0366

MSE 0.0058 0.0059 0.0063 0.0044 0.0052 0.0056 10%

MBE 0.0255 0.0269 0.0388 0.0246 0.0251 0.0375

MSE 0.0062 0.0065 0.0076 0.0060 0.0062 0.0073 15%

MBE 0.0268 0.0271 0.0390 0.0257 0.0293 0.0384
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Table 5: The mean squared errors and the mean percentage errors of the Bayesian esti-
mators when the common shape parameter γ = 1, number of intervals k = 6,
fixed interval length = 3.

Rate of

n Error λ̂1BS λ̂2BS λ̂3BS λ̂1BL λ̂2BL λ̂3BL Censoring

45 MSE 0.0080 0.0082 0.0087 0.0082 0.0089 0.0105 5%

MPE 0.0265 0.0369 0.0501 0.0380 0.0429 0.0517

MSE 0.0083 0.0086 0.0108 0.0089 0.0095 0.0123 10%

MBE 0.0274 0.0388 0.0519 0.0390 0.0431 0.0521

MSE 0.0087 0.0104 0.0166 0.0094 0.0112 0.0129 15%

MBE 0.0278 0.0391 0.0523 0.0397 0.0438 0.0528

72 MSE 0.0061 0.0064 0.0081 0.0068 0.0077 0.0089 5%

MPE 0.0254 0.0364 0.0371 0.0374 0.0423 0.0508

MSE 0.0072 0.0082 0.0104 0.0083 0.0091 0.0117 10%

MBE 0.0263 0.0379 0.0502 0.0381 0.0422 0.0514

MSE 0.0082 0.0100 0.0158 0.0089 0.0106 0.0115 15%

MBE 0.0267 0.0372 0.0517 0.0382 0.0426 0.0516

102 MSE 0.0059 0.0063 0.0079 0.0058 0.0062 0.0077 5%

MPE 0.0251 0.0347 0.0365 0.0243 0.0342 0.0358

MSE 0.0064 0.0068 0.0081 0.0061 0.0066 0.0083 10%

MBE 0.0261 0.0371 0.0500 0.0257 0.0379 0.0518

MSE 0.0084 0.0116 0.0161 0.0081 0.0113 0.0104 15%

MBE 0.0275 0.0364 0.0508 0.0266 0.0357 0.0492
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Table 6: The mean squared errors and the mean percentage errors of the Bayesian esti-
mators when the common shape parameter γ = 1, number of intervals k = 8,
fixed interval length = 2.5.

Rate of

n Error λ̂1BS λ̂2BS λ̂3BS λ̂1BL λ̂2BL λ̂3BL Censoring

45 MSE 0.0079 0.0081 0.0085 0.0081 0.0086 0.0101 5%

MPE 0.0261 0.0358 0.0498 0.0375 0.0419 0.0506

MSE 0.0081 0.0081 0.0100 0.0085 0.0091 0.0117 10%

MBE 0.0262 0.0372 0.0506 0.0383 0.0422 0.0514

MSE 0.0085 0.0089 0.0106 0.0088 0.0098 0.0121 15%

MBE 0.0269 0.0384 0.0511 0.0391 0.0428 0.0520

72 MSE 0.0059 0.0062 0.0074 0.0066 0.0072 0.0081 5%

MPE 0.0248 0.0347 0.0368 0.0369 0.0407 0.0485

MSE 0.0071 0.0079 0.0081 0.0078 0.0084 0.0096 10%

MBE 0.0257 0.0362 0.0481 0.0372 0.0416 0.0505

MSE 0.0065 0.0076 0.0079 0.0071 0.0080 0.0089 15%

MBE 0.0268 0.0366 0.0485 0.0377 0.0420 0.0497

102 MSE 0.0055 0.0060 0.0071 0.0058 0.0067 0.0076 5%

MPE 0.0242 0.0318 0.0345 0.0235 0.0308 0.0337

MSE 0.0058 0.0061 0.0073 0.0058 0.0060 0.0071 10%

MBE 0.0248 0.0320 0.0351 0.0247 0.0316 0.0318

MSE 0.0059 0.0063 0.0074 0.0059 0.0061 0.0073 15%

MBE 0.0251 0.0329 0.0359 0.0250 0.0321 0.0334
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Table 7: The mean squared errors and the mean percentage errors of the Bayesian esti-
mators when the common shape parameter γ = 0.8, number of intervals k = 8,
fixed interval length = 5.

Rate of

n Error λ̂1BS λ̂2BS λ̂3BS λ̂1BL λ̂2BL λ̂3BL Censoring

45 MSE 0.0083 0.0087 0.0091 0.0086 0.0093 0.1080 5%

MPE 0.0282 0.0377 0.0514 0.0389 0.0431 0.0521

MSE 0.0079 0.0092 0.0103 0.0088 0.0101 0.0112 10%

MBE 0.0297 0.0386 0.0527 0.0391 0.0442 0.0529

MSE 0.0084 0.0098 0.0115 0.0093 0.0114 0.0120 15%

MBE 0.0318 0.0395 0.0532 0.0412 0.0458 0.0534

72 MSE 0.0064 0.0069 0.0085 0.0070 0.0081 0.0093 5%

MPE 0.0276 0.0371 0.0506 0.0402 0.0427 0.0529

MSE 0.0072 0.0079 0.0083 0.0085 0.0092 0.0104 10%

MBE 0.0295 0.0387 0.0511 0.0408 0.0433 0.0531

MSE 0.0076 0.0086 0.0088 0.0093 0.0097 0.0116 15%

MBE 0.0305 0.0392 0.0524 0.0411 0.0436 0.0544

102 MSE 0.0051 0.0058 0.0064 0.0047 0.0049 0.0058 5%

MPE 0.0262 0.0325 0.0487 0.0249 0.0315 0.0472

MSE 0.0056 0.0061 0.0073 0.0051 0.0059 0.0065 10%

MBE 0.0275 0.0327 0.0482 0.0271 0.0318 0.0476

MSE 0.0061 0.0067 0.0075 0.0059 0.0060 0.0068 15%

MBE 0.0283 0.0334 0.0491 0.0275 0.0324 0.0486



706 Migdadi, Abu-Shawiesh, Almomani

Table 8: The mean squared errors and the mean percentage errors of the Bayesian esti-
mators when the common shape parameter γ = 0.8, number of intervals k = 10,
fixed interval length = 4.

Rate of

n Error λ̂1BS λ̂2BS λ̂3BS λ̂1BL λ̂2BL λ̂3BL Censoring

45 MSE 0.0080 0.0085 0.0089 0.0082 0.0088 0.0102 5%

MPE 0.0274 0.0370 0.0502 0.0376 0.0428 0.0518

MSE 0.0083 0.0094 0.0103 0.0084 0.0091 0.0105 10%

MBE 0.0285 0.0376 0.0522 0.0384 0.0434 0.0521

MSE 0.0085 0.0098 0.0115 0.0091 0.0097 0.0113 15%

MBE 0.0291 0.0386 0.0529 0.0392 0.0439 0.0534

72 MSE 0.0062 0.0067 0.0084 0.0068 0.0072 0.0091 5%

MPE 0.0264 0.0355 0.0486 0.0331 0.0395 0.0492

MSE 0.0076 0.0081 0.0087 0.0078 0.0075 0.0098 10%

MBE 0.0270 0.0362 0.0493 0.0345 0.0410 0.0511

MSE 0.0078 0.0084 0.0091 0.0081 0.0087 0.0106 15%

MBE 0.0279 0.0368 0.0500 0.0351 0.0418 0.0523

102 MSE 0.0051 0.0055 0.0061 0.0046 0.0047 0.0054 5%

MPE 0.0255 0.0294 0.0489 0.0252 0.0287 0.0477

MSE 0.0054 0.0063 0.0075 0.0052 0.0061 0.0066 10%

MBE 0.0259 0.0317 0.0494 0.0255 0.0293 0.0482

MSE 0.0056 0.0065 0.0076 0.0053 0.0063 0.0070 15%

MBE 0.0261 0.0321 0.0502 0.0260 0.0231 0.0493


