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1 Introduction

Numerous parametric models are used in problems related to the analysis and modeling
of failure processes. The inverse Burr distribution (IBurr), which was proposed by Burr
(Burr, 1942), is widely used for modeling the real data in different sciences, including
economics, meteorology, agricultural and medicine. This distribution can be used as
an alternative model to many well known distributions such as Weibull, gamma and
lognormal. The cumulative distribution function and the probability density function
of the IBurr distribution with the shape parameters α > 0 and β > 0 are given by,
respectively

F (x;α, β) = (1 + x−β)
−α

; x > 0, (1)

f(x;α, β) = αβx−β−1(1 + x−β)
−(α+1)

; x > 0.

It is to be noted that the inverse Burr (or Burr III) and the Burr XII (BXII ) distributions
are related by an inverse transformation. Recent past, the IBurr and BXII distributions
have been focus of investigation for many authors, see for example, Kumar (2016), Al-
Moisheer (2016), Panahi and Sayyareh (2016), Cordeiro et al. (2017), Mdlongwa et al.
(2017) and Panahi (2017b). Moreover, in the recent decades the nanotechnology as a
clean technology has been widely applied in various disciplines of science. The spreading
of a nanodroplet on solid surfaces is important for a wide range of applications, including
propulsion, surface coating, spray painting, spray cooling, ink-jet printing, agricultural
sprays and biological sensors. We also know that the experimental data obtained in
engineering practice may be removed during the experiment (for different reasons such
as destruction of materials, precision of measurement and the high cost of experiment).
This reason leads us into the area of progressively censoring which enables us to remove
experimental units at points other than the terminal point of the experiment (Aggarwala
and Balakrishnan, 1998). The progressively censoring scheme saves time and cost of the
experiment. But, the progressively first-failure (PFF ) censoring scheme has a shorter
test time and a saving of resources than the progressively censoring scheme. A PFF
censoring scheme can be described as follows:
Suppose n units groups with k items within each group are put on test. Now at the
time of the first failure (X1:m:n:k), R1 groups and the group in which the first failure is
observed are randomly removed from the experiment. Continuing on, at the time of the
second failure (X2:m:n:k), R2 groups are randomly removed from the experiment along
with the group which contains the second failure item and finally when the mth failure
(Xm:m:n:k) is observed, the remaining groups are removed from the test. The observed
failure X1:m:n:k < X2:m:n:k < ... < Xm:m:n:k are called PFF censored sample with the
progressive censoring scheme R = (R1, ..., Rm). The PFF censoring scheme includes
various kinds of censoring scheme as:

• The complete sample when k = 1,m = n,Ri = 0; i = 1, ...,m.

• The progressively censoring scheme when k = 1.
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• The Type II first failure censoring scheme when k 6= 1, Rm = n −m,Ri = 0; i =
1, ...,m− 1.

• The Type II censoring scheme when k = 1, Rm = n−m,Ri = 0; i = 1, ...,m− 1.

Some of the earlier works on PFF censoring were conducted by Mohammed et al. (2017),
Dube et al. (2016), Lio and Tsai (2012), Wang and Shi (2012) and Wu and Kuş (2009).
Although several literatures have been studied about the IBurr distribution, but we
have not come across any work about the point and interval methods for estimating the
parameters of the IBurr distribution and examine its suitability in modeling the nan-
odroplet data under PFF censoring scheme. So in this paper, the estimation problem,
point and interval, have been studied. It is observed that the maximum likelihood esti-
mators cannot be obtained in explicit forms. So, we use the expectation-maximization
(EM) algorithm to compute the MLEs of the unknown parameters which involves solving
two one dimensional optimization problems rather than one two dimensional problem.
Since closed form expressions for the Bayes estimators cannot be obtained, we utilize
two approximations, namely Lindley’s approximation and Monte Carlo Markov chain
procedure to obtain them. Moreover, the asymptotic confidence interval for parameters,
the exact confidence interval for and the joint confidence region for the parameters are
constructed. The rest of the paper is organized as follows. In Section 2, the point estima-
tions are computed. Different interval estimations are presented in Section 3. Analyses
of nanodroplet spreading data appear in section 4 and finally we conclude the paper in
Section 5.

2 Different Point Estimations

2.1 Maximum Likelihood Estimation

Let X1:m:n:k, ..., Xm:m:n:k denote the PFF order statistics obtained from an experimental
test involving n units taken from a IBurr(α, β) distribution and (R1, ..., Rm) being the
censoring scheme. To simplify the notation, we will use Xi in place of Xi:m:n:k. Then
the likelihood function based on PFF censored sample can be obtained as:

l(α, β) = Akm
m∏
i=1

f(xi |α, β ) [1− F (xi |α, β )]k(Ri+1)−1; 1 ≤ i ≤ m ≤ n (2)

where, A = n(n−R1 − 1)....(n−R1 −R2 − ...−Rm−1 −m+ 1). Ignoring the additive
constant, the log-likelihood function from IBurr(α, β) can be written as

L(α, β) = m lnα+m lnβ − (β + 1)

m∑
i=1

lnxi − (α+ 1)

m∑
i=1

ln(1 + x−βi )

+
m∑
i=1

(k(Ri + 1)− 1) ln(1− (1 + x−βi )
−α

) (3)
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The MLEs of the unknown parameters can be obtained by taking derivatives with re-
spect to α and β of (3) and putting then equal to zero. It is observed that the MLE’s
cannot be obtained in closed form. Thus, we propose to use the EM algorithm to
compute the MLEs of α and β, treating it as a missing value problem. (see, Demp-
ster et al., 1977). Let us denote the observed, the censored and the complete data by
X = (X1:m:n, ..., Xm:m:n), Z = (Z11, ..., Zm1, ..., Zm(kRm+k−1)) and W = (X,Z) respec-
tively. Therefore, the log-likelihood function Lc = (W ;α, β) of the complete data after
ignoring the constants can be written as:

Lc(W ;α, β) = nk lnα+ nk lnβ − (α+ 1)
m∑
i=1

k(Ri+1)−1∑
j=1

ln(1 + z−βij )

−(α+ 1)
m∑
i=1

ln(1 + x−βi )− (β + 1)
m∑
i=1

lnxi − (β + 1)
m∑
i=1

k(Ri+1)−1∑
j=1

ln zij .

E-step:
This step involves the computation of the conditional expectation of the log-likelihood
with respect to the incomplete data given the observed data. For this purpose, we com-
pute the pseudo log-likelihood function as:

Ls (α, β) = E (Lc (W ;α, β)|X) = nk lnα+ nk lnβ − (β + 1)

m∑
i=1

lnxi

−(α+ 1)

m∑
i=1

ln(1 + x−βi )− (β + 1)

m∑
i=1

k(Ri+1)−1∑
j=1

E [lnZij |Zij > xi]

−(α+ 1)

m∑
i=1

k(Ri+1)−1∑
j=1

E
[
ln(1 + Z−βij ) |Zij > xi

]
, (4)

where, E [lnZij |Zij > xi] = A(xi, α, β) and E
[
ln(1 + Z−βij ) |Zij > xi

]
= B(xi, α, β) are

computed in Appendix.

M-step:
This step includes the maximization of the pseudo log-likelihood function (4). There-
fore, if at the sth stage the estimate of (α, β) is (α(s), β(s)), then (α(s+1), β(s+1)) can be
obtained by maximizing

L∗c (α, β) = nk lnα+ nk lnβ − (β + 1)
m∑
i=1

lnxi − (α+ 1)
m∑
i=1

ln(1 + x−βi )

−(β + 1)
m∑
i=1

(k(Ri + 1)− 1)A(xi, α
(s), β(s))
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−(α+ 1)
m∑
i=1

(k(Ri + 1)− 1)B(xi, α
(s), β(s)),

with respect to α and β. For this purpose first we evaluate β(s+1) by solving the fixed
point type equation (see, Kundu and Pradhan, 2009)

h(β) = β, (5)

where,

h(β) =

[
1

nk

m∑
i=1

lnxi −
α̂(β) + 1

nk

m∑
i=1

x−βi lnxi

1 + x−βi
+

1

nk

m∑
i=1

(k(Ri + 1)− 1)A(xi, α
(s), β(s))

]−1

α̂(β) =
nk

m∑
i=1

ln(1 + x−βi ) +
m∑
i=1

(k(Ri + 1)− 1)B(xi, α(s), β(s))

,

Finally after finding β(s+1) from (5), the estimate α(s+1) is derived as α(s+1) = α̂(β(s+1)).
Therefore if at the sth Step, the estimate of α and β are α(s) and β(s) respectively, then
the following algorithm can be used to proceed from the sth Step to (s+ 1)th Step.

Algorithm:
Step 1: Maximize L∗c(α, β) using the fixed point type equation (5). Continue the process
till it converges. At the (s+ 1)th Step, the value of β, that maximizes L∗c(α, β) is β(s+1).
Step 2: For fixed β(s+1), obtain α(s+1) as

α(s+1) =
nk

m∑
i=1

ln(1 + x−β
(s+1)

i ) +
m∑
i=1

(k(Ri + 1)− 1)B(xi, α(s), β(s))

.

Step 3: Check the convergence of (α(s+1), β(s+1)), if the convergence is met then the
current α(s+1) and β(s+1) are the maximum likelihood estimates of α and β via EM
algorithm; otherwise, order s = s+ 1 and go back to Step 1.

2.2 Bayesian Estimation

In this section, we compute the Bayes estimates of the unknown parameters of the
IBurr(α, β) distribution under the squared error (SE ) and Linex (LI ) loss functions. If
θ is the parameter to be estimated by an estimator θ̂, then the SE and LI loss functions
can be defined by

LSE(θ, θ̂) = (θ̂ − θ)2,

and

LLI(θ, θ̂) = ew(θ̂−θ) − w(θ̂ − θ)− 1, θ 6= 0.
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respectively. The Bayes estimates of θ with respect to the SE and LI loss functions are
obtained as the posterior mean and − 1

w ln
[
Eθ(e

−wθ |data)
]

respectively. The indepen-
dent prior distributions for the α and β are taken to be Gamma(a, b) and Gamma(c, d)
respectively. So, the joint prior distribution of α and β is of the form

π(α,β) ∝ αa−1e−bαβc−1e−dβ; α > 0, β > 0, a > 0, b > 0, c > 0, d > 0 (6)

So, the the joint posterior distribution of α and β is derived as

π(α, β |data) =
π(α, β)L(α, β)

∞∫
0

∞∫
0

π(α, β)L(α, β)dαdβ

= Aαm+a−1e
−α(b+

m∑
i=1

ln(1+x−βi ))
βm+c−1

×e
−β(d+

m∑
i=1

lnxi)
m∏
i=1

(1− (1 + x−βi )
−α

)
k(Ri+1)−1

(1 + x−βi )
−1
.

where A is the normalizing constant. Therefore, the Bayes estimate of α and β under
SE loss function are given, respectively, by

α̂SE = E(α |data) = A

∞∫
0

∞∫
0

αm+ae
−α(b+

m∑
i=1

ln(1+x−βi ))
βm+c−1

×e
−β(d+

m∑
i=1

lnxi)
m∏
i=1

(1− (1 + x−βi )
−α

)
k(Ri+1)−1

(1 + x−βi )
−1
dαdβ. (7)

and

β̂SE = E(β |data) = A

∞∫
0

∞∫
0

αm+a−1e
−α(b+

m∑
i=1

ln(1+x−βi ))
βm+c

×e
−β(d+

m∑
i=1

lnxi)
m∏
i=1

(1− (1 + x−βi )
−α

)
k(Ri+1)−1

(1 + x−βi )
−1
dαdβ. (8)

Furthermore, the desired Bayes estimator of α and β under LI loss function are derived
as

α̂LI =
−1

w
ln
[
E(e−wα |data)

]
=
−1

w
ln {A

∞∫
0

∞∫
0

αm+a−1e
−α(w+b+

m∑
i=1

ln(1+x−βi ))
βm+c−1

×e
−β(d+

m∑
i=1

lnxi)
m∏
i=1

(1− (1 + x−βi )
−α

)
k(Ri+1)−1

(1 + x−βi )
−1
dαdβ } . (9)
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and

β̂LI =
−1

w
ln
[
E(e−wβ |data)

]
=
−1

w
ln {A

∞∫
0

∞∫
0

αm+a−1e
−α(b+

m∑
i=1

ln(1+x−βi ))
βm+c−1

×e
−β(w+d+

m∑
i=1

lnxi)
m∏
i=1

(1− (1 + x−βi )
−α

)
k(Ri+1)−1

(1 + x−βi )
−1
dαdβ } .

(10)
It is clear that Equations 7-10 cannot be obtained analytically. Therefore, we consider

Lindley’s approximation and Monte Carlo Markov chain Method to compute Bayes es-
timates.

2.2.1 Lindley’s Method

Lindley (Lindley, 1980) proposed the procedure to approximate the ratio of two inte-
grals such as Equations 7-10. Utilizing the Lindley’s method, the Bayesian estimates
(BLindley) of α under SE and LI loss functions can be written as:

α̂Lindley−SE = α̂+
1

2

[
(2(

a− 1

α̂
− b) σ̂αα + 2(

c− 1

β̂
− d)σ̂αβ + σ̂2ααL̂ααα

+σ̂αασ̂ββL̂ββα + 2σ̂αβσ̂βαL̂αββ +σ̂αβσ̂ββL̂βββ)

]
,

and

α̂Lindley−LI = e−cα̂ +
1

2

[
c2e−cα̂σ̂αα +−ce−cα̂(2(

a− 1

α̂
− b) σ̂αα + 2(

c− 1

β̂
− d)σ̂αβ

+σ̂2ααL̂ααα + σ̂αασ̂ββL̂ββα + 2σ̂αβσ̂βαL̂αββ +σ̂αβσ̂ββL̂βββ)

]
,

respectively. Similarly, the Bayesian estimates of β under SE and LI loss functions are:

β̂Lindley−SE = β̂ +
1

2

[
(2(

c− 1

β̂
− d) σ̂ββ + 2(

a− 1

α̂
− b)σ̂βα

+σ̂2ββL̂βββ + 3σ̂ββσ̂αβL̂αββ +σ̂αασ̂βαL̂ααα)

]
,

and

β̂Lindley−LI = e−cβ̂ +
1

2

[
c2e−cβ̂σ̂ββ +−ce−cβ̂(2(

c− 1

β̂
− d) σ̂ββ + 2(

a− 1

α̂
− b)σ̂βα
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+σ̂2ββL̂βββ + 3σ̂ββσ̂αβL̂αββ +σ̂αασ̂βαL̂ααα)

]
,

respectively. Also, L̂αnβm = ∂n+mL(α, β)/∂αn∂βm; n,m = 0, 1, ... and σ̂ij are the (ij)th

elements of matrix
[
−∂2L(α, β)/∂α∂β

]−1
; i, j = 1, 2. In our problem we have

σ̂αα =
L̂ββ

L̂ααL̂ββ − L̂2
αβ

, σ̂ββ =
L̂αα

L̂ααL̂ββ − L̂2
αβ

, σ̂αβ = σ̂βα = −
L̂αβ

L̂ααL̂ββ − L̂2
αβ

.

L̂αβ =

m∑
i=1

x−βi lnx

1 + x−βi
+

m∑
i=1

k(Ri + 1)− 1)(
αx−βi (lnxi)(1 + x−βi )

−α−1
ln(1 + x−βi )

1− (1 + x−βi
−α

)

−
(1 + x−βi )

−α−1
x−βi lnxi

1− (1 + x−βi )
−α +

αx−β(lnxi)(1 + x−βi )
−2α−1

ln(1 + x−βi )

(1− (1 + x−βi )−α)
2 ),

L̂αα = −m
α2
−

m∑
i=1

(k(Ri + 1)− 1)
(1 + x−βi )

−α
ln2(1 + x−βi )

(1− (1 + x−βi )−α)
2 ,

L̂ββ = −m
β2
− (α+ 1)

m∑
i=1

x−βi ln2xi

(1 + x−βi )
2 −

m∑
i=1

(k(Ri + 1)− 1)

×(
αx−βi ln2xi(1 + x−βi )

−α−1 _
<i

1− (1 + x−βi )−α
+
α2xi

−2βln2xi(1 + x−βi )
−2α−2

(1− (1 + x−βi )−α)
2 ),

_

<i = [(α+ 1)(1 + x−βi )
−1
x−βi − 1].

L̂ααα =
2m

α3
+

m∑
i=1

(k(Ri − 1)− 1)(
2(1 + x−βi )

−2α
ln3(1 + x−βi )

(1− (1 + x−βi )
−α

)
3

+
(1 + x−βi )

−2α
ln3(1 + x−βi )

(1− (1 + x−βi )
−α

)
3 ),

L̂ααβ = −
m∑
i=1

(k(Ri − 1)− 1)(
−2α(1 + x−βi )

−2α−1
x−βi ln(xi) ln2(1 + x−βi )

(1− (1 + x−βi )
−α

)
3

+
α(1 + x−βi )

−α−1
x−βi ln(xi) ln2(1 + x−βi )

(1− (1 + x−βi )
−α

)
2 −

2(1 + x−βi )
−α−1

x−βi ln(xi) ln(1 + x−βi )

(1− (1 + x−βi )
−α

)
2 ), ...
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2.2.2 Monte Carlo Markov chain Method

In this subsection, we apply the Metropolis-Hastings algorithm to compute the Bayes
estimates. We generate random samples from the posterior distribution of α and β using
the Monte Carlo Markov chain and Metropolis-Hastings (M-H) algorithm (Metropolis
et al. (1953) and Hastings (1970)). We consider normal as the proposal distribution for α
and β with prescribed means and variances. we use the following algorithm to compute
the Bayes estimates.

Step 1: Choose (α(0), β(0)) as an initial value for stating the algorithm.

Step 2: Using M-H generate α(j) and β(j) fromNormal(α(j−1), να) andNormal(β(j−1), νβ)
respectively.

Step 3: Evaluate the acceptance probabilities

P = min

[
1,

π(α(j), β(j) |data)

π(α(j−1), β(j−1) |data)

]
.

Step 4: Repeat steps 2-3, M times.
Here, for remove the affection of the selection of initial values, the first M0 samples have
been burned-in. Finally based on this method, the Bayes estimates of α under SE as
well as LI loss functions can be obtained as

α̂MH−SE =

M−M0∑
i=1

αi
M −M0

, β̂MH−SE =

M−M0∑
i=1

βi
M −M0

(11)

and

α̂MH−LI = − 1

w
ln

[
M−M0∑
i=1

e−wαi

M −M0

]
, β̂MH−LI = − 1

w
ln

[
M−M0∑
i=1

e−wβi

M −M0

]
, (12)

For more details about the MCMC technique, see, for example, Sel et al. (2018),
Mohammed et al. (2017) and Panahi (2017a).

3 Interval Estimation

In this section, the asymptotic confidence interval, the exact confidence interval for β
and the exact confidence region for the unknown parameters have been studied.

3.1 Asymptotic Confidence Interval

Let X1:m,n, ..., Xm:m,n denote the corresponding lifetimes from IBurr distribution. The
observed Fisher information matrix IX(θ) is obtained by using the missing information
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principle of Louis (Louis, 1982) as:

IX(θ) = IW (θ)− IW |X (θ), (13)

where, IW (θ) and IW |X (θ) denote the complete and the missing information matrix
respectively. It is to be noted that IW (θ) can be expressed as:

IW (θ) = −E
[
∂2Lc(W ; θ)

∂θ2

]
=

[
a11 a12

a21 a22

]
,

where,

a11 =
nk

α2
, a12 = a21 = −nkαβ

∞∫
0

x−2β−1(1 + x−β)
−α−2

lnxdx,

a22 =
nk

β2
+ nαβ(α+ 1)

∞∫
0

x−2β−1(1 + x−β)
−α−2

ln2xdx.

Also, the Fisher information in one observation is given by

I
(i)
W |X (θ) = −EZij |Xi

[
∂2 ln fZij (zij |xi, θ)

∂θ2

]
=

[
b11(xj ;α, β) b12(xj ;α, β)

b21(xj ;α, β) b22(xj ;α, β)

]

where, b11(xi;α, β), b12(xi;α, β) = b21(xi;α, β) and b22(xi;α, β) can be computed using
the conditional distribution of Zij |Xi = xi which is given by

fZ|X (zij |Xi = xi ) =
f(zij |α, β )

1− F (xi |α, β )
; zij > xi, j = 1, ..., k(Ri + 1)− 1, i = 1, ...,m.

Thus, the total missing information is given by

IW |X (θ) =
m∑
i=1

(k(Ri + 1)− 1)IiW |X (θ)

So, the 100(1− γ)% asymptotic confidence intervals (ACI) for α and β can be obtained
respectively, by

α̂± Zγ/2
√
ν(α̂) and β̂ ± Zγ/2

√
ν(β̂). (14)

where ν(α̂) and ν(β̂) are the elements on the main diagonal of I−1X (θ̂)
∣∣
θ=(α,β) and zγ/2

is the standard normal variate.
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3.2 Exact confidence interval

Suppose that X1:m:n:k, ..., Xm:m:n:k is a PFF censored sample from the IBurr distribu-
tion. Let Q∗i:m:n:k = kα ln(1 + x−βi:m:n:k); i = 1, ...,m. It is clear that the Q∗1:m:n:k >
Q∗2:m:n:k > ... > Q∗m:m:n:k is a progressively censored order statistics from an exponential
distribution with mean 1. Now we utilize the following transformation:

Y1 = nQ∗m:m:n:k, Y2 = (n−R1 − 1)(Q∗m−1:m:n:k −Q∗m:m:n:k), ...,

Ym = (n−R1 − ...−Rm−1 −m+ 1)(Q∗1::m:n:k −Q∗2:m:n:k)

The generalized spacings Y1, Y2, ..., Ym are independent and identically distributed as an
exponential distribution with mean 1. Using the independent property of η = 2Y1 ∼
χ2(2) and υ = 2

m∑
i=2

Yi ∼ χ2(2m− 2), we can introduce the following pivotal quantities:

U =
υ

(m− 1)η
=

m∑
i=1

(Ri + 1)(Q∗i:m:n:k −Q∗m:m:n:k)

n(m− 1)Q∗m:m:n:k

, (15)

and

V = 2
m∑
i=1

(Ri + 1)Q∗i:m:n:k = 2kα
m∑
i=1

(Ri + 1) ln(1 + x−βi:m:n:k). (16)

We know that that U has an F distribution with (2(m − 1), 2) degrees of freedom and
V has chi-squared distribution with 2m degrees of freedom. Also, U and V are inde-
pendent.

Lemma: For a given sample X1:m:n:k, ..., Xm:m:n:k, the U is a strictly increasing
function of β. Also, the following equation has a unique solution for any β > 0.

U(β) =

m∑
i=1

(Ri + 1)(
ln(1+x−βi:m:n:k)

ln(1+x−βm:m:n:k)
− 1)

n(m− 1)
= a

Proof: It is clear that
ln(1+x−βi:m:n:k)

ln(1+x−βm:m:n:k)
is a strictly increasing function of β when β > 0

(see, Wu and Kuş (2009)). So, U(β) is a strictly increasing function of β. Moreover, we
have

lim
β→0

U(β) = 0 and lim
β→∞

U(β) =∞.

Therefore, U(β) = a; a > 0 has a unique solution for some β > 0.
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3.2.1 Exact confidence interval for β

In this Subsection, we introduce the 100(1 − γ)% exact confidence interval for β using
the following Theorems.

Theorem 1: Suppose that X1:m:n:k, ..., Xm:m:n:k is a PFF censored sample from a
cumulative density function (1). Then for any 0 < γ < 1,[

φ
(
X1:m:n:k, ..., Xm:m:n:k, F1−γ/2(2m− 2, 2)

)
, φ
(
X1:m:n:k, ..., Xm:m:n:k, Fγ/2(2m− 2, 2)

)]
,
(17)

is a 100(1− γ)% exact confidence interval for β, where, Fγ(ι1, ι2) denote the upper per-
centile of F distribution with ι1 and ι2 degrees of freedom and φ (X1:m:n:k, ..., Xm:m:n:k, a)
is a solution of β for the following equation

m∑
i=1

(Ri + 1)(
ln(1+x−βi:m:n:k)

ln(1+x−βm:m:n:k)
− 1)

n(m− 1)
= a.

Proof: The proof follows obviously from the Lemma and equation (14).

3.2.2 Joint Confidence Region for the Parameters

The following Theorem has been used for constructing the 100(1− γ)% joint confidence
region for α and β.
Theorem 2: Let X1:m:n:k, ..., Xm:m:n:k be a PFF censored sample. Then the 100(1−γ)%
joint confidence region is given by:

φ
(
X1:m:n:k, ..., Xm:m:n:k, F(1+

√
1−γ)/2(2m− 2, 2)

)
< β

< φ
(
X1:m:n:k, ..., Xm:m:n:k, F(1−

√
1−γ)/2(2m− 2, 2)

)
χ2
(1+
√
1−γ)/2(2m)

2kα
m∑
i=1

(Ri + 1) ln(1 + x−βi:m:n:k)

< α <
χ2
(1−
√
1−γ)/2(2m)

2kα
m∑
i=1

(Ri + 1) ln(1 + x−βi:m:n:k)

Proof: Based on equations (14) and (15) and using the independent property of the
quantities U and V, the proof is straight forward.

4 Nanodroplet Data Analysis

The data set consists of the spreading of nanodroplet after impact with a solid surface.
Spreading of nanodroplets on solid surfaces is important in a wide variety of applications,
including ink jet printing, DNA synthesis and etc. The quality of nano coated surface
depends on the spreading of nanodroplets. For this reason, nanodroplet spreading data
impacting on non-wettable surface has been used in this paper. The data is obtained
by the computational fluid dynamics and molecular kinetic theory (CFD-MK) method.
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In this method the volume-of-fluid (VOF) technique is used to track the free-surface
of the nanodroplet. Molecular scale around the fluid solid contact line is simulated by
molecular kinetic theory equation. Dynamic contact angles are applied as a boundary
condition at the liquid- solid contact lines. The droplet with diameter 6nm has been
considered. The wetting and spreading of this droplet can be examined on surfaces
with high to low surface energies. This variation resulted in three different surfaces
are wettable, partially wettable and non-wettable when the static contact angle are less
than 40 (θ0 < 40), between 40 and 140 (40 < θ0 < 140) and greater than 140 (θ0 > 140)
respectively. Figure 1 presents the images of a nanodroplet impacting with a velocity of
1.25 m/s on a flate surface (Asadi, 2012).

Figure 1: Images of a 6 nm droplet impacting with velocity of 1.25 m/s on a flat wettable
surface.

The data are presented in Table 1. Before progressing, we have fitted the IBurr
distribution to the uncensored data set and compute the K-S distance between the
empirical and fitted distribution functions, it is 0.0803 and the corresponding p-value
is 0.821. The high p-value indicates the reasonability of the IBurr model for fitting
to this data. We have just presented the PP plot in Figure 2. We also want to check
the fitting of the proposed data set for the IBurr model over the inverse gamma (IG),
inverse Weibull (IW ), inverse Lindley (IL) and inverse exponential (IE ) models.

Table 2 lists the values of different adaptive measures for model discrimination, such
as Akaike information criterion (C1 ), Bayesian information criterion (C2 ), Kolmogrov-
Smirnov statistic (S1 ) and Cramer-von Mises statistic (S2 ).

These results show that the IBurr can be chosen as the best model more than any
other proposed models. We further compute the chi-square goodness of fit for testing
the following null hypothesis:
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Table 1: Nanodroplet spreading data.

0.2289300 0.5810291 0.6935846 0.7221355 0.7357869 0.7389012

0.7486177 0.7491848 0.7688918 0.7689745 0.7857656 0.7882443

0.7962973 0.7972708 0.8094872 0.8342509 0.8451560 0.8527647

0.8744825 0.8832821 0.8905104 0.8928568 0.9603346 0.9624409

0.9677539 0.9792698 0.9926678 1.0297182 1.0890227 1.0972401

1.1235326 1.1559192 1.1755080 1.1764967 1.1836366 1.1975052

1.2171928 1.2456470 1.2475189 1.3245510 1.3485822 1.3796668

1.3932774 1.4432065 1.4697339 1.4974976 1.5356593 1.5375506

1.5426158 1.5430411 1.5679230 1.6287098 1.6744305 1.6838840

1.7235515 1.7685406 1.7980336 1.8073133

Table 2: Values of different adaptive measures of model discrimination.

Models C1 C2 S1 S2

IBurr 55.0184 59.1393 0.08026 0.11334

IG 68.8039 72.9248 0.11649 0.13208

IW 91.9350 96.0559 0.20527 0.51772

IL 125.8046 127.8651 0.38829 2.01735

IE 133.8998 135.9602 0.41932 2.39897



Electronic Journal of Applied Statistical Analysis 355

H0 : The data are from the IBurr distribution.
In order to apply chi-square goodness of fit to this data set, the observed frequencies
and the expected frequencies are presented in Table 3.

Table 3: Observed and expected frequencies and chi-squared statistic.

Intervals Observed (O) Expected (E) (O − E)2/E χ2

0.00-0.769 10 9.6686 0.01136

0769-1.026 17 17.3747 0.00808

1.026-1.283 12 14.8821 0.55814 1.18422

1.283-1.540 9 8.0766 0.10556

1.540−∞ 10 7.9981 0.50108

It is observed that the calculated chi-square (1.18422) is less than the critical value
χ2
(2,0.095) = 5.9915. So, the null hypothesis cannot be rejected and the IBurr can be

used reasonably good to obtain inferential results from the proposed data. Now we have
created the PFF censored sample of size 19 out of 29 groups with 2 items within each
group of nanodroplet data as:

n = 29, k = 2, m = 19, R1 = R2 = R5 = R7 = R9 = 2; Ri = 0; i 6= 1, 2, 5, 7, 9

For this example, 10 groups of nanodroplet data are censored, and 19 first failures are
observed.

Based on the above censored samples, we have estimated the unknown parameters us-
ing the MLEs and the Bayes estimators. To compute the MLEs of parameters,we have
used the EM algorithm as described in Subsection 2.1 and stopped the iterative process
when the difference between two consecutive iterates is less than 10−6. For estimating
the unknown parameters using the Bayes estimators, we have assumed non-informative
priors, i.e., a = b = c = d = 0. For obtaining the Bayesian estimates using the MCMC
method (BMCMC), we generated the Markov chain with 104 observations and taken
the corresponding maximum likelihood estimations for α and β as an initial values for
running the algorithm. The results of different estimators for complete and censored
data are presented in Table 4.

Furthermore, we obtain the Kolmogrov-Smirnov statistic between the empirical dis-
tribution function and the IBurr distribution functions based on MLEs and BMCMC.
The results are presented in Table 5.
Based on the Table 5, it is observed that the IBurr provides a good fit for both complete
and PFF censored samples.
Now, we consider the interval estimations of the parameters. First, we obtain the 95%
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Figure 2: The PP plot for the nanodroplet data.

Table 4: Different estimations for the parameters for α and β.

Data Parameters MLE BLindley BMCMC

α 1.20228 1.19663 1.21177

(1.1883) (1.2105)

Complete data

β 4.70108 4.68622 4.72102

(4.6548) (4.7035)

α 1.18435 1.14456 1.19813

(1.1276) (1.1898)

Censored data

β 4.57145 4.51758 4.61012

(4.4938) (4.5973)

Note: In each cell of the two last columns, the first and second rows
represent the Bayesian estimations based on the SE and LI loss

functions.
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Table 5: Kolmogrov-Smirnov distances and corresponding p-values for MLEs and BM-
CMC.

Data Methods Kolmogrov-Smirnov p-values -Log-likelihood

MLE 0.0803 0.8200 25.5092

Complete data

BMCMC 0.0802 0.8207 25.5126

MLE 0.1513 0.7774 12.4662

Censored data

BMCMC 0.1512 0.7778 12.5888

asymptotic intervals of α and β under PFF censored sample, they are (0.35426, 2.0175)
and (3.88273, 9.01584) respectively. Now, we consider the 95% exact confidence interval
of β and the 95% joint confidence region for α and β. For this purpose, we need the
following percentiles:

F0.0127(114, 2) = 0.220375, F0.9873(114, 2) = 78.23032, F0.025(36, 2) = 0.24426,

F0.975(36, 2) = 39.470, F0.0127(36, 2) = 0.202379, F0.9873(36, 2) = 78.2113,

χ2
(0.0127)(116) = 84.646, χ2

(0.9873)(116) = 152.674,

χ2
(0.0127)(38) = 21.221, χ2

(0.9873)(38) = 60.083.

According to the equation (16), the 95% confidence interval of β under PFF censored is
(3.27378, 10.35218). Furthermore, the 95% joint confidence region for α and β are given
in two different cases as:

Case 1 (complete data,Ri = 0):
4.669079 < β < 13.35324

84.646

2
58∑
i=1

(Ri+1) ln(1+x−βi:m:n:k)

< α < 152.674

2
58∑
i=1

(Ri+1) ln(1+x−βi:m:n:k)

,

and
Case 2 (censored data):

3.044495 < β < 11.36941
21.221

2k
19∑
i=1

(Ri+1) ln(1+x−βi:m:n:k)

< α < 60.083

2k
19∑
i=1

(Ri+1) ln(1+x−βi:m:n:k)

.
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Figure 3 show the 95% joint confidence regions of α and β based on PFF censored
sample. It is observed that the region is small when β is large.

Figure 3: Joint confidence region for α and β under the PFF censored data.

5 Conclusions

In this article, the point estimations of the unknown parameters of the IBurr have been
earned using the EM algorithm, BLindley and BMCMC (M-H algorithm) under PFF
censored sample. In interval estimation viewpoint, we computed the asymptotic confi-
dence intervals of the unknown parameters using the missing information principle and
also introduced two pivotal quantities for constructing an exact confidence interval and
an exact confidence region for the parameters based on PFF censoring scheme. The
developed methods are also applied to a real data set based on the spreading of nan-
odroplet after impact with a solid surface. Using different graphical methods and testing,
it is found that the IBurr distribution is suitable for the nanodroplet spreading data in
contrast to any other proposed distribution.

Appendix:
From Ng et al. (2002), we have

fZ|X (zj |X1 = x1 , ..., Xi = xi) = fZ|X (zij |Xi = xi )

=
f(zij |α, β )

1− F (xi |α, β )
; zij > xi, j = 1, ..., k(Ri + 1)− 1, i = 1, ...,m

Now, we can write

E (lnZij |Zij > d) =
αβ

1− F (d |α, β )

∞∫
d

ln(x)x−β−1(1 + x−β)
−α−1

dx, put x = d/y
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=
αβ

dβ(1− F (d |α, β))

1∫
0

ln(d/y)y−αβ−1(y−β + d−β)
−α−1

dy

and

E
(

ln(1 + Z−βij ) |Zij > d
)

=
αβ

1− F (d |α, β )

∞∫
d

ln(1 + x−β)x−β−1(1 + x−β)
−α−1

dx

=
αβ

dβ(1− F (d |α, β ))

1∫
0

ln(1 + (
d

y
)
−β

)y−αβ−1(y−β + d−β)
−α−1

dy.
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