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Understanding population parameters are important tools for wildlife man-
agement, and one of the key objectives of ecological research. Motion sensor
cameras are a widely used tool to estimate abundance and densities of species
that are identifiable based on the natural markings on their bodies. Though
camera trapping provides information such as count data, on species that
are not individually identifiable, estimating population size using conven-
tional capture-recapture methodologies is not possible hindering estimating
population information of several wildlife species. However, recent method-
ologies help use camera trapping data to bridge this gap. Here we extend the
model of Chandler and Royle (2013), with suitable modifications, and used
camera trap detection data to estimate abundance and density of eight wild
prey, and five domestic prey species of leopards (Panthera pardus fusca). In
this context, a new procedure has been proposed, based on grouping of the
count data, which is useful in cases of large encounters.

The current model should apply widely to a range of other unmarked
wildlife species such as dholes, lions, golden jackal, Indian fox, ratel, to name
a few, that could help understand prey-predator relationships, competition,
trophic interactions, species interactions and other similar ecological ques-
tions. The methodology could also reduce costs, and maximise the utilisa-
tion of existing camera trapping data. The methodology helps understanding
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population parameters of several endangered, unmarked species to draw up
conservation strategies whose estimates are currently largely based on edu-
cational guess.

keywords: Abundance estimation, camera-trapping, count data, density,
ungulates, unmarked species.

1 Introduction

Understanding density and abundance are important tools for wildlife management, and
one of the key objectives of ecological research. It also acts as an important indicator
for evaluating wildlife management.

In the recent years motion sensor cameras are a widely used tool to collect infor-
mation on populations sizes, distribution, species richness and other useful information
especially on cryptic species (Champion, 1992; Griffiths and Van Schaik, 1993; Garshelis
et al., 1999). Importantly, it‘’s commonly used for estimating abundance and densities
of naturally marked animals. However, many other wildlife species are also captured
on the camera traps providing valuable data but are discarded, in most circumstances,
as estimating density or abundance of species that cannot be individually identifiable
(unmarked henceforth) is not possible under the current conventional capture-recapture
methodologies. This has hindered density estimation of species of several globally sig-
nificant wildlife species, or species that provide useful information on interrelatedness
amongst wildlife species such as prey-predator relationships (Karanth et al., 2004; Car-
bone et al., 2010), trophic interactions, linkages (Owen-Smith and Mills, 2008), harvest
quotas, diesease (Ramsey et al., 2015), or species interactions. Such monitoring is espe-
cially important for conservation and monitoring of endangered species (Campbell et al.,
2002).

Since abundance and density estimation of unmarked species is not possible through
the traditional capture-recapture, or the recently developed spatially-explicit capture-
recapture models that use photographic information of individually identifiable animals
through the natural markings on their bodies, trapping rate (photographs/trapping ef-
fort) is widely used as an alternative measure of relative abundance (Carbone et al.,
2001). However trapping rates does not account for imperfect detection hence limiting
their utility.

However, challenging conventional analytical sampling methods, Chandler and Royle
(2013) demonstrate that individual recognition of species is not obligatory for popula-
tion density estimation. The study uses spatially correlated count data of a species at
multiple sample locations in close proximity to derive density, and abundance estimates
for species that do not possess any natural markings. Hence this model used on un-
marked species is considered as an extension of the existing spatial capture-recapture
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models (Ramsey et al., 2015). In addition, the traditional capture-recapture, or spatial
capture-recapture methods use Binomial encounter data which is replaced by count data
based on Poisson encounters (aggregated over the unknown number of individuals). This
has a significant utility for researchers who encounter unmarked species in camera traps
to make inferences about animal population sizes.

1.1 Distance sampling versus spatial count models

The distance sampling methodology is widely used for the estimation of abundance of
unmarked animals. In fact the spatial capture-recapture models can be viewed as ex-
tension of distance sampling models (Royle et al., 2013). Further, the fact that the
distance sampling methodology does not need the explicit identity of the animal makes
it a competitor for the spatial count model discussed in this paper. Both methodologies
have their relative merits and demerits. But the distance sampling methods involve
relatively more human efforts, and measurements at various stages of data collection
that can contribute to non-sampling errors in the final inference. It is highly resource
consuming if data has to be collected over a vast area.

We also note that the distance sampling cannot be applied to collect data on some
species due to their inherent behaviour such as nocturnal activity, low visual detection
rates during data collection, and other similar characteristics. This has hindered pop-
ulation estimates of key wildlife species such as sloth bears (Melursus ursinus), dholes
(Cuon alpinus), and others. These limitations coupled with the requirement of large
data for efficient analysis in distance sampling methodology, do enhance the practical
utility of using spatial count data.

2 Materials and methods

2.1 Study area

The study was carried out in the contiguous forests of Bukkapatna (142.8 km2), Suvar-
namukhi (22.5 km2), Muthagadahalli (4.4 km2), Mathikere (2.4 km2) reserved forests,
and other adjoining unprotected forests in southern India Figure 1. The habitat is
largely woodland savannah, scrub forests, and supports a wide variety of dry habi-
tat wildlife species including leopard (Panthera pardus fusca), striped hyaena (Hyaena
hyaena), sloth bear (Melursus ursinus), golden jackal (Canis aureus), and other carni-
vore species. Herbivore species includes Indian gazelle (Gazella bennetti), four-horned
antelope (Tetracerus quadricornis), blackbuck (Antilope cervicapra), wild pig (Sus scrofa),
and others.

2.2 Camera trapping

In this study, we use existing camera trap data of 12 unmarked species to estimate den-
sity and abundance of leopard prey species, and for sloth bear by adopting the recently
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Figure 1: Study area, and locations of camera traps (indicated by open circles) at Bukka-
patna and adjoining areas in southern India. The polygon surrounding the
camera trap locations defined the area of the state-space used for inference.

developed Chandler and Royle (2013) method with suitable modifications. Data was
collected as a by-product while carrying out population estimation studies on leopards
using Panthera V4 passive infrared motion detection digital cameras (Panthera Corp.
NY, USA).

Camera traps were placed at 99 locations for 16 trap days (24 hour period). All
cameras were deployed along forest roads or trails and secured to trees approximately
45 cm above ground. Cameras operated 24 h per day and were checked every day to
retrieve data and to ensure functionality of the units. The actual study area was 221.3
km2, and a two km buffer around the convex hull over trap locations yielded a super
area of 525.4 km2.
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2.3 Sampling design and data

In this study we assume that there are J traps (camera traps) monitored on K occasions
involving N (unknown) individuals. Denoted by zijk the encounter data on the ith

individual by the jth trap on the kth occasion (i=1,2,...,N; j=1,2,...,J; k=1,2,...,K), we note
that, especially in the case of unmarked individuals, the individual-specific encounter
data is not available. What is observed of, is the count data

njk =
N∑
i=1

zijk

and that N (which is our primary interest) is unknown. If one assumes that each
zijk is a realization of a Poisson random variable with (rate) parameter λij , and the
underlying distributions are independent, we have

njk ∼ Poisson(Λ)

where Λj =
∑N

i=1 λij . Therefore the analysis based on the count data { njk } may
not directly depend on the non-observable latent data on { zijk }. But in practical situ-
ations it may open out some statistical issues which will be elaborated later in this paper.

Towards making the underlying model behind the count encounter data spatially ex-
plicit, we assume that each individual has an activity center si (not known apriori)
identified uniquely by its (x,y) co-ordinates, in relation to the given study area. Sim-
ilarly if xj indicates the location of the jth trap (which is known uniquely through its
co-ordinates) then the Euclidean distance between si and xj given by dij plays a vital
role in the most commonly used modeling of the encounter rate given by

λij = λ0

{
N∑
i=1

e−
d2ij

2σ2

}

Since N is unknown, the data augmentation approach Royle et al. (2013) introduces
two more quantities: M a conveniently chosen known upper limit to N, and a parameter,
(0 < ψ < 1), the data augmentation parameter. In fact, if wi is the binomial random
variable indicating whether the ith individual is the member of the population with
parameter , it is easy to see that N =

∑M
i=1wi and that ψ = E(N)/M . Thus the final

shape of the model is

wi ∼ Bernoulli(ψ)

zijk ∼ Poisson(λijwi) ; k=1,2,...,K
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λij = λ0

{
M∑
i=1

e−
d2ij

2σ2

}

njk ∼
M∑
i=1

zijk

There are three parameters σ, λ0 and ψ and two sets of latent (unobservable) random
variables z, and w in the model leaving the Bayesian methodology as the only option for
the estimation of the parameters.

It may be noted that, unlike in marked data sets, the interpretation of σ and λ0 is not
straightforward. However, Chandler and Royle (2013) highlight that σ is an indicator
of the degree of spatial correlation among counts and the information in this spatial
correlation facilitates, indirectly, to obtain encounter rate parameters and the density.

2.4 Data application

Analyses was carried out on nine of the commonly camera trapped wild prey species
that had no natural markings that would help in individual identification. Species in-
cluded four-horned antelope (Tetracerus quadricornis), blackbuck (Antilope cervicapra),
chinkara (Gazella bennetti), wild pig (Sus scrofa), Indian crested porcupine (Hystrix
indica), black-naped hare (Lepus nigricollis), bonnet macaque (Macaca radiata), Indian
peafowl (Pavo cristatus), all important wild prey species for leopards. In addition, we
considered cow (Bos taurus) and buffalo (Bubalus bubalis) both combined and termed
as large livestock, sheep (Ovis aries) and goat (Capra aegagrus hircus) combined and
called as small livestock, and domestic dog (Canis lupus familiaris). Since the area has
a population of sloth bears, and sufficient data was available during this study it was
included into the analyses.

Considering the mobility of the specific species the buffer area was identified for data
analysis. For all species (except for porcupine and blackbuck) a two km buffer was used.
For porcupine a buffer of 500 meters was used as we assumed the species has smaller
home ranges, and would not use agricultural fields in the study area. Since blackbuck
is found within the woodland savannah habitat and extensively uses agricultural fields
surrounding the study area, the entire super area was considered as habitat.

Potential activity centers, being centroids of suitably chosen pixels in the super area
were identified after dichotomising the entire area into habitat and non-habitat regions.
For all species other than domestic dogs, small and large livestock, and blackbuck, the
habitat region accounted for 221.3 km2 mostly consisting of open woodland savannah,
and dry deciduous habitats. In case of domestic dogs, small and large livestock which
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normally spill over to forest area from non-forest areas, necessary changes in the in-
terpretation of their activity centers and densities have been suitably adopted. Since
blackbuck are found both within the open woodland savannah and agricultural fields
the entire super area was assumed as their habitat.

2.5 The R code used for the analysis

We have used the Metropolis-within-Gibbs algorithm developed by Chandler and Royle
(2013) in which the algorithm is unconditional on latent encounter frequencies which is
the most suitable algorithm for our study data. The original algorithm was modified to
facilitate the input data in the csv format, and to include the goodness of fit (Freeman-
Tukey type) statistics based both on the “individual x trap frequencies” and on the “trap
frequencies” (Royle et al., 2013) for computing the Bayesian p-values. The Bayesian p-
values arising out of these statistics are denoted by p1 and p2 respectively. Although
we have presented both the values, with at least one of them within the interval (0.05,
0.95), the second statistic mentioned above leading to the p2 value has been claimed to
be more appropriate fit statistic in the analysis of spatial count models (Royle et al.,
2013). We had to modify the procedure to update the activity centers (S), since there
was a necessity to use “habitat mask” for our analyses. The MCMC diagnostics were
also incorporated into the code using the package CODA, a library within R. Since the
code required a larger computational time, necessary changes had to be incorporated to
hasten the computations, wherever possible.

2.6 Analysis and issues

The modified algorithm used for the analysis requires two data input files: Trap-wise
encounter counts across the sampling occasions with trap locations (co-ordinates) and
potential activity centers as centroids of suitably constructed pixels covering the super
area (sampled area and the buffer), with species specific habitat masks (coded as ‘1’ for
habitat, and as ‘0’ for non-habitat).

An inevitable issue that prevails is that of the ‘large encounters’ that can either be due
to ‘influential observations’ and/or ‘outliers’ in the count data. Outliers do occur when
animals, especially as noted for some of species in this study, tend to move in groups
of varying sizes (ex: livestock, wild pigs) for obvious reasons. Although the Poisson
law theoretically allows relatively large values as “possible values”, the fit may not be
statistically acceptable, both in terms of Log Likelihood (LL) as well as the Bayesian
p-values. We tried several strategies for dealing with such situations as listed below, and
one or more of the following could be incorporated in the analyses.

(i) Ignore the entry or the entire data for the specific trap. This is not desirable since
the outliers do contribute to the abundance.

(ii) It appears that one can try large data augmentation parameter (M) to deal with
large encounters. If such encounters are not unduly large (say less than 6) this may
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work but will end up with very large or very small p-values. As noted in many
other studies increasing the value of M poses many computational difficulties.

(iii) Square root transformation of count data with subsequent normality assumptions.

(iv) Regrouping the encounter data. This procedure will be elaborated in the sequel.

(v) Treat outlier counts as “marked animals” and carry out the analysis as discussed
by Chandler and Royle (2013).

(vi) Set a uniform prior for ψ with a higher lower limit.

(vii) One can reduce the time duration of all sampling occasions so that the postulates of
the Poisson process get reasonably validated. This will result in increased number
of sample occasions. We could not try this for practical reasons. But such exercises
are known to be helpful in Queuing theories.

Since our main interest is the estimation of abundance/density, we were tracking the
LL and p-values for each option. Whenever the analysis based on the count data did not
provide statistically satisfactory p-values, we tried one or more of the above mentioned
alternatives, and chose the one with relatively large LL, and statistically acceptable
p-values. Regrouping the encounter count data was found to be a useful option in our
investigation. The features of this new procedure are highlighted in the following section.

2.7 Salient features of the proposed grouping procedure adopted in
the presence of large encounters

Since both influential observations and outliers, per se, have a direct impact on the es-
timate of abundance (and hence on the estimate of density), it is necessary to involve
them implicitly in the working model. The proposed procedure uses the count data on
the groups (or herds) of individuals encountered at each trap location/ on each occasion,
instead of the observed count data on the individuals, To elaborate the procedure, we
first identify the group size of the animal (based on data), ‘m’ (say) which in a way rep-
resents the optimal size of the group mobility. To be specific, we transform the variable
X representing the individual encounter data to another variable Y (encountered group
size)such that

Y = 0 if X = 0
Y = i whenever X = (i− 1)m+ 1 or (i− 1)m+ 2, ..., or im; for i = 1, 2, ...

For example, if m=3, the count data such as 1, 3, 0, 5, 2 will be transformed as 1, 1,
0, 2, 1 which represents the group sizes of animals encountered. In short, the individual
count data is recorded as count of groups of ‘m’ individuals, treating the residuals, if
any, with less than ‘m’ individuals also as a separate group.
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We assume that the transformed variable Y has a Poisson distribution. For this, Pois-
son assumption can be justified from two angles: (a) From a practical point of view, data
relating to the species with large encounters have supported the Poisson assumptions
on the transformed count data in terms of the resulting LL and Bayesian p-values. An
illustrative example is discussed in the sequel. (b) Efforts to use other distributional
assumptions like the normal and gamma did not yield satisfactory fit.

The transformed count data is analysed using the spatial count model to get the es-
timate for the group abundance (Ng say) which can be any measure of location of the
posterior distribution of group abundance. The estimate of the abundance (‘N’ ) of the
species is (on assuming that the group sizes less than ‘m’ are equally likely) then given by

N = Ngm

being the average number of individuals for the group size equal to Ng. The standard
error of the proposed estimate can be obtained from the standard deviation (SD) of the
posterior distribution of N. That is,

SD of N = m( SD of Ng)

In order to decide on the application of the grouping procedure one should know if the
data has outliers. There are indicators discussed in outlier theories applicable to specific
situation. A simple method applicable to Poisson encounters is based on the median
of square root transformed data. For the given data, say ∆, on encounters, one can
conclude the presence of large encounters if some of the observations exceed the value
[median(2*sqrt(∆))+3] where sqrt(∆) is the data obtained by taking the square root of
the observations in the data. This suggests that data sets with encounter rates around
2, we can expect Poisson assumptions to hold if the maximum encounter recorded is less
than 6.

Two important issues arise in the proposed grouping method: (a) the validity of the
crucial Poisson assumptions and (b) the determination of the group size in the analy-
sis. Towards this end we present the findings relating to an investigation based on a
real encounter data affected by some large encounters. The real data set used is the
encounter data on wild pig (Sus scrofa) in Bukkapatna forest area in Karnataka. We
used the encounter count data at the 99 camera trap locations recorded on 18 occasions.
Poisson distribution (not the spatial count model) was fitted for both the given and the
transformed data sets for different values of group size (m), on remembering the hetero-
geneous encounter rates across the trap locations. The values of Log Likelihood (LL)
and the p-values based on Freeman-Tukey goodness of fit statistic over 100000 iterations
are presented in Table 1.

It may be noted that the grouping of counts reduces the variability among the en-
counters. While small grouping value (m) retains the effect of outliers, the larger values
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Table 1: Log likelihood and Bayesian p values

Group size (m) Log Likelihood (LL) p value

1 (given data) -900.5408 1

2 -649.5435 1

4 -535.6989 0.9959

6 -501.1819 0.7549

8 -485.515 0.4071

10 -489.1831 0.2959

11 -476.1362 0.2243

12 -476.1362 0.2243

40 (Bernoulli data) -461.7548 0.0877

can eventually transform the data to a Bernoulli (0,1) data. Initially the Log likelihood
values show a decrease but they tend to stabilize for larger values of m. The Bayesian
p-value shows that the fit may not be good for small and large values of m. Hence a good
strategy seems to be to select the grouping size which has the p value around 0.5, with a
stabilising value for the Log likelihood. But what ultimately decides is the performance
of the estimate of abundance/density it provides when such group sizes are selected.

Finally, this grouping procedure was adopted only when the Poisson model did not fit
the given count data in terms of the Bayesian p-value.

3 Results

Application of the model, perhaps for the first time in India, resulted in densities of 0.19
four-horned antelope, 0.07 blackbuck, 0.11 chinkara, 2.9 wild pigs, 0.44 Indian porcu-
pine, 2.42 black-naped hare, 0.04 bonnet macaque, 0.14 peafowl, 0.39 large livestock,
15.45 small livestock, and 0.23 domestic dogs/km2. We also extended the methodology
for sloth bear (Melursus ursinus), which yielded a density estimate of 0.26 animals/km2.

Tables 2 to 5 summarize the results for the 12 unmarked species taken up for analysis
under this study. The posterior distribution of N was seen to be mostly skewed to the
right, and hence one could use either the median, or the mean as a good measure of
location. Except for black-naped hare, large livestock, small livestock and wild pig, the
observed count data was used without any modification. Small log likelihood values
and large p1 and p2 values (away from 0.5) were mainly due to large counts in the
corresponding encountered count data.
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Table 2: Density and abundance of four-horned antelope (Tetracerus quadricornis),
blackbuck (Antilope cervicapra) and chinkara (Gazella bennetti) obtained from
spatially correlated count data.

Four-horned antelope Blackbuck Chinkara

Mean (SD) 95% HPDR Mean (SD) 95% HPDR Mean (SD) 95% HPDR

N 43.65 (16.08) 18 - 77 40.86 (15.55) 14 - 72 26.26 (9.03) 13 - 45

sigma 364 (74.56) 230.7 - 505.77 312.57 (45.11) 226.66 - 401.54 438.06 (72.83) 293.87 - 565.63

lam0 0.241 (0.076) 0.112 - 0.398 0.599 (0.336) 0.148 - 1.302 0.472 (0.174) 0.198 - 0.809

psi 0.438 (0.164) 0.168 - 0.789 0.410 (0.160) 0.144 - 0.745 0.267 (0.1) 0.107 - 0.469

LL (SD) -194.151 (5.42) -101.015 (3.5) -275.276 (5.48)

p1 , p2 values 0.858 , 0.566 0.890 , 0.510 0.820 , 0.569

Density (SD) 0.19 (0.07) 0.07 (0.03) 0.12 (0.04)

SD is standard deviation, 95% HPDR is highest posterior density region, N is the estimated number of individuals in the super
area and ‘Density’ is per kilometer square

Table 3: Density and abundance of wild pig (Sus scrofa), crested porcupine (Hystrix
indica) and black-naped hare (Lepus nigricollis) obtained from spatially corre-
lated count data.

Wild pig1 Crested porcupine2 Black-naped hare3

Mean (SD) 95% HPDR Mean (SD) 95% HPDR Mean (SD) 95% HPDR

N 642.7 (359.3) 185.5 - 1425.5 90.85 (47.91) 21 - 182 536.51 (57.51) 416 - 599

sigma 213.05 (69.98) 126.19 - 340.38 250.31 (79.41) 128.29 - 402.47 342.77 (35.01) 281.91 - 413.95

lam0 1.327 (1.563) 0.013 - 3.942 0.307 (0.095) 0.151 - 0.488 0.390 (0.062) 0.275 - 0.514

psi 0.325 (0.178) 0.086 - 0.721 0.455 (0.239) 0.115 - 0.927 0.892 (0.097) 0.691 - 1

LL (SD) -74.859 (4.64) -200.324 (5.12) -763.943 (7.02)

p1 , p2 values 0.476 , 0.326 0.808 , 0.519 0.003 , 0.617

Density (SD) 2.9 (1.62) 0.45 (0.24) 2.42 (0.26)

SD is standard deviation, 95% HPDR is highest posterior density region, N is the estimated number of individuals in the super
area and ‘Density’ is per kilometer square
1Groups of 10 individuals was used as one count data.
2A 500 meter buffer with pixel size 316.22 ∗ 316.228 square meter was used.
3Groups of 3 individuals was used as one count data

Table 4: Density and abundance of sloth bear (Melursus ursinus), bonnet macaque
(Macaca radiata), peafowl (Pavo cristatus) and obtained from spatially cor-
related count data.

Sloth bear Bonnet macaque Peafowl

Mean (SD) 95% HPDR Mean (SD) 95% HPDR Mean (SD) 95% HPDR

N 58.06 (15.94) 28 - 89 9.834 (13.394) 1 - 39 33.68 (12.04) 12 - 56

sigma 256.46 (39.78) 190.46 - 337.87 222.31 (111.66) 73.23 - 348.32 321.77 (52.01) 237.68 - 434.44

lam0 0.410 (0.173) 0.138 - 0.791 3.837 (1.558) 0.585 - 6.035 0.677 (0.295) 0.288 - 1.432

psi 0.579 (0.163) 0.289 - 0.918 0.106 (0.134) 0 - 0.398 0.172 (0.065) 0.060 - 0.302

LL (SD) -147.353 (5.05) -15.383 (1.13) -234.151 (4.27)

p1 , p2 values 0.945 , 0.763 0.553 , 0.536 0.941 , 0.606

Density (SD) 0.26 (0.07) 0.04 (0.26) 0.15 (0.05)

SD is standard deviation, 95% HPDR is highest posterior density region, N is the estimated number of individuals in the super
area and ‘Density’ is per kilometer square
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Table 5: Density and abundance of large livestock (Bos taurus and Bubalus bubalis),
small livestock (Ovis aries and Capra aegagrus hircus) and domestic dog (Canis
lupus familiaris) obtained from spatially correlated count data.

Large livestock1 Small livestock2 Domestic dog

Mean (SD) 95% HPDR Mean (SD) 95% HPDR Mean (SD) 95% HPDR

N 87.74 (32.51) 29 - 142 3421.5 (1824) 1055.5 - 7555.5 52.48 (23.33) 24 - 100

sigma 161.34 (33.95) 116.93 - 235.48 291.81 (73.69) 176.04 - 446.15 401.37 (62.65) 266.49 - 518.36

lam0 1.271 (0.395) 0.491 - 1.994 0.475 (0.499) 0.052 - 1.885 0.337 (0.087) 0.185 - 0.513

psi 0.089 (0.034) 0.029 - 0.148 0.350 (0.190) 0.088 - 0.770 0.265 (0.119) 0.102 - 0.508

LL (SD) -228.575 (4.03) -98.197 (4.6) -331.942 (5.6)

p1 , p2 values 0.868 , 0.476 0.637 , 0.678 0.880 , 0.617

Density (SD) 0.39 (0.15) 15.45 (8.24) 0.23 (0.11)

SD is standard deviation, 95% HPDR is highest posterior density region, N is the estimated number of individuals in the super
area and ‘Density’ is per kilometer square
1Groups of 5 individuals was used as one count data
2Groups of 100 individuals was used as one count data

For each species, several iterations of the code was run across the varying values of
M, and data transformation (only when the encountered count data on hand did not
provide statistically acceptable p-values), and the final data presented is the one that
was the best from a statistical point of view.

4 Discussion

Using the approach developed by Chandler and Royle (2013) we were able to use field
data to derive density and abundance estimates of a wide range of species. To our
knowledge, this is the first time in India such population density estimates for unmarked
species, which is one of the most challenging issues in population ecology, have been
obtained using detection/non-detection data .

In India most studies undertaken to estimate abundance and densities of wild ungu-
lates are carried out mostly within protected areas (Varman and Sukumar, 1995; Karanth
and Nichols, 2000; Biswas and Sankar, 2002; Jathanna et al., 2003; Bagchi et al., 2004;
Gopal et al., 2010; Dave and Jhala, 2011; Kumara et al., 2012), and such results are
unavailable for habitats outside protected areas despite several wildlife species are found
beyond the boundaries of protected areas. Since carrying out distance sampling is both
time and resource consuming, especially over wider areas, our paper highlights that
by using existing camera trapping protocols, population density and abundance of un-
marked species is a possibility for many ungulate species which was hitherto discarded
or unutilised to it’s true potential.

Our density results, except for wild pig, fall below the reported densities that used
distance sampling for prey species monitoring (Karanth and Nichols, 2000; Bagchi et al.,
2004). But the studies cited here were all carried out within protected areas where
protection against threats such as poaching, that have an impact on ungulate densities
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(Madhusudan and Karanth, 2002; Karanth et al., 2004), is perhaps better inside these
protected zones leading to higher ungulate densities.

In addition, we have also been able to estimate density and abundance of sloth bear,
a unmarked species of high conservation relevance due to its role as a key seed disperser
(Sreekumar and Balakrishnan, 2002). Secondly, in India sloth bears are a highly conflict-
prone species, and data on its abundance can play an important role in its management
and conflict mitigation. The only study that estimated abundance of sloth bears was
based on radio collar data (Garshelis et al., 1999) which is highly resource consuming.
Previous attempts to estimate sloth bear abundance using camera trap data have not
provided fruitful results (Gopalaswamy, 2006). In addition, distance sampling is also
not a useful methodology for estimating population parameters of sloth bears due to
extremely low visual detection rates. Hence this methodology could be replicated to
understand population of sloth bears, and several other such species.

As noted by Chandler and Royle (2013), and as expected due to Poisson encoun-
ters, the results exhibited relatively large variances, and highly positively skewed poste-
rior distributions when compared to analyses for marked individuals using the conven-
tional abundance estimation software such as SPACECAP and SECR that uses capture-
recapture framework. We first tried to assess the validity of the algorithm by comparing
the results based on SPACECAP, with results obtained by using the same data using the
code developed by us for unmarked animals. Although the 95% HPD (Highest Posterior
Density) regions for our estimate covered the SPACECAP estimate of abundance, the
posterior distribution was highly dispersed, and positively skewed.

The anticipated large variances and high positive skewness in the posterior distribu-
tion of N prompt large number of iterations during MCMC operations. The MCMC
diagnostics did offer some help in this context. However the larger spread of the pos-
terior distribution suggests larger values for M. But in that case, in addition to the
increased computing time, one should have larger number of potential activity centers
in the habitat area. To meet this requirement we tried to reduce the pixel sizes in order
to increase the number of activity centers in the habitat to accommodate large M.

As widely commented, it is a challenge to venture into the inference for unmarked an-
imals using spatial count data. From the data analysis point of view, it is more so when
we have to move from the data based on Binomial encounters to Poisson encounter count
data. Perhaps several approaches of analysis arising from different statistical/ecological
perspectives, may be necessary to deal with count data before arriving at a plausible
outcome.

The theoretically sound methodology requires planning for a realistic and executable
sampling design which is both species specific as well as area specific. This will be our
endeavour for the future.
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The grouping method suggested and adopted in this exercise was the best option,
among many other strategies, in dealing with large encounters. The classical root trans-
formation of count data and the subsequent use of normality assumptions did not perform
well when compared to the new grouping procedure mainly due to the fact that the in-
herent skewness in count data gets aggravated by the presence of large encounters. The
poisson assumptions in the latter retain the skewness flavour in the data. It appears
that there is scope for further theoretical probes in this direction.

Overall the methodology used in this paper can now provide highly valuable results
using camera trap data that are currently used on a variety of wildlife species both
within and outside protected areas. Now the by-catch data of these studies can prove
invaluable.
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