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Forecasting is an important exercise in Time series analysis. For a sta-
tionary time series, there are theoretically strong forecasting methods which
can provide most accurate forecasts for the future (Karlin and Taylor, 1975).
For most non stationary time series Box Jenkins methodology is a useful
forecasting technique. Essentially, the Box Jenkins methodology assumes
that any non stationarity time series can be conveniently modeled as an
Autoregressive Intregrated Moving Averages (ARIMA) model with sufficient
number of “unit roots” in the linear stochastic difference equation generating
the time series. The non stationarity in such time series is then removed by
successively differencing of the series until one obtains a stationary series,
for which optimal forecasts can be computed. The forecasts for the original
series are then computed by ‘inverting’ the difference operators that were
used (Makridakis et al., 1998) on the forecasts computed for the stationary
series. The main objective of this study is to demonstrate that the Box
Jenkins methodology is not useful, especially in large time series, when the
non stationarity in the time series is due to ‘explosive’ roots. An alternative
method is proposed in such a situation and its performance is assessed both
on a simulated as well as on a real life data.

keywords: Stochastic difference equation, Unit and explosive roots, ARIMA
model,Rate of convergence in probability, Auxiliary processes.

1 Introduction

The unidirectional time dependence in time series paves way for forecasting the future,
given the current and past. The stochastic properties of a stationary time series have
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provided several theorems (Karlin and Taylor, 1975, Box and Jenkins, 1976, Dickey and
Fuller, 1979) that help computing efficient forecasts (like minimum mean square error
forecasts). For a non stationary time series the forecasting methodology due to Box
and Jenkins (BJ) (Box and Jenkins, 1976, Makridakis et al., 1998) has become a handy
tool in the hands of researchers. In this paper, we demonstrate that this methodology
will not be useful if the non stationarity in time series is due to the ‘explosive roots’
associated with the linear stochastic difference equation model that generates the time
series, especially in long time series. An alternative method for forecasting is proposed
which can be more accurate than the BJ method. The necessary theoretical background
for the new method has been presented in the next section. In Section 3, we highlight
some interesting features of the proposed estimates of the explosive roots. In Section 4,
we review the tools for evaluation of forecasts. A limitation of the Box Jenkins forecasting
methodology is highlighted in Section 5. Section 6 is devoted to the description of the
new forecasting method. Sections 7 and 8 discuss the relative performance of the new
forecasting method, in comparison to the BJ method through simulated as well as real
data sets. The last section (Section 9) is reserved for discussion.

2 Theoretical background

Let the time series X = {X(t); t = 0,±1,±2, . . .} be generated by a linear stochastic
difference equation given by

X(t) = α0 + α1X(t− 1) + · · ·+ αmX(t−m) + (εt + β1εt−1 + · · ·+ βqεt−q)

= α0 + α1X(t− 1) + · · ·+ αmX(t−m) + ηt, say (1)

where m and q are non negative integers, and {εt; t = 0,±1,±2, . . .} is a family of i.i.d
random variables with

E(εt) = 0 and V (εt) = σ2, for all t. (2)

In this context, a given set of time series data X(t); t = 1, 2, . . . , n is considered as a
partial realization of the time series X .

Strict and weak stationarity assumptions are well known in the literature. A simple
way to define a non stationary time series is that it is neither strictly or weakly stationary.

Generally stationarity is defined for a doubly infinite time series. But, in most situa-
tions, one may have to consider a time series when time epochs takes values only on the
positive side of origin. However, if one is interested in developing asymptotic theories,
like convergence, rate of convergence etc, then the series can be set on the right side of
origin. Such a series turns out to be asymptotically stationary in the sense that after
large values of t the time series behaves like a stationary time series.

To be precise a time series X is said to be asymptotically stationary (in the wide
sense) if (i) E(X(t))→ m ( a constant) as t→∞ and (ii) Cov{X(t), X(t+ h)} → c(h)
(a function of h only) as t→∞.



676 Chandra, Prabakaran

In many situations, while deriving the asymptotic results, the aggravated algebra
involved can be easily handled on assuming, without loss of generality, that X(t) = εt = 0
for t < 0.

The time path of X depends on the roots of the characteristic polynomial P (z) given
by

P (z) = zm − α1z
(m−1) − · · · − αm (3)

associated with (1). Let us assume that out of the m roots of P (z) = 0, k are numerically
larger than 1, d are numerically equal to 1 and p are numerically less than 1, where k,
d, and p are non negative integers such that m = k + d+ p. For the sake simplicity let
us assume that the roots that are numerically greater than unity are real positive and
distinct. The roots that are numerically larger than one are called the explosive roots of
P (z) = 0. The roots that are numerically smaller than one are called the non explosive
roots of P (z) = 0. This assumption (the roots being real and distinct) can always be
relaxed for establishing asymptotic properties relating to the time series (Venkataraman,
1968) Let the m roots ρ1, ρ2, . . . , ρm of P (z) = 0 have the placement

ρ1 > ρ2 > · · · > ρk > 1

ρk+1 = ρk+2 = · · · = ρk+d = 1

|ρi| < 1, i = k + d+ 1, . . . ,m. (4)

Under this set up, the time series X is said to be purely explosive if k > 0, d = 0 and
q = 0, explosive if k ≥ 1, partially explosive if k ≥ 1, d = 0 and p ≥ 1 and non explosive
if k = d = 0.

It can be noted that the autoregressive (AR), the moving average (MA), the autore-
gressive with moving average errors (ARMA), the Autoregressive Integrated Moving
Average (ARIMA) models are particular cases of the model (1).

Note: The form of the characteristic polynomial P (z) in (3) is different from the one
given in standard text books (Kendall and Ord, 1990) on time series analysis. There
should not be any confusion if the reciprocal of the roots are used for classification of
explosive and non explosive roots.

The least squares estimation of the coefficients of (1) and their properties have been
extensively studied by Venkataraman (1968, 1973, 1974), under both explosive and par-
tially explosive assumptions. All results on least squares estimation relating to (1) use
the properties of the following auxiliary processes defined by Venkataraman (1968) for
the explosive case. With reference to the time series X = {X(t); t = 0,±1,±2, . . .} they
are recursively defined by

X1(t) = X(t)

X2(t+ 1) = X1(t+ 1)− ρ1X1(t)

.

.

Xk+1(t+ k) = Xk(t+ k)− ρkXk(t+ k − 1) (5)
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Note: The auxiliary processes are defined only for the explosive time series. It is not
difficult to conceptualize such processes for imaginary roots. The process {Xk+1(t+ k)}
becomes an ARIMA model if d > 0 else an ARMA model.

The following theorem summarizes an important property of these processes.

Theorem 1. Let the time series X be generated by the model (1). Then under the
underlying assumptions and notation in (2) to (5) and for each r = 1, 2, . . . , k.

ρ−tr Xr(t)
p−→ Vr as t→∞

where Vr is a random variable.

Proof. Let us assume, for the time being, that d = 0. For each r, (1 ≤ r ≤ k), the
assumptions in (4) lead to the factorization of P (z) as

P (z) = P1(z)P2(z) (6)

where P1(z) is a polynomial of degree (r − 1) with roots ρ1, ρ2, . . . , ρr−1 and P2(z)
is a polynomial of order (m − r + 1) with roots ρr, ρr+1, . . . , ρm. When r = 1, we set
P1(z) = 1. Let

P1(z) = zr−1 + γ1z
r−2 + · · ·+ γr−1

P2(z) = zm−r+1 + β1z
m−r + · · ·+ βm−r+1 (7)

This facilitates the identification of the stochastic difference equation generating the
auxiliary process Xr(t) as

Xr(t+m) = α0 +β1Xr(t+m− 1) +β2Xr(t+m− 2) + · · ·+βm−r+1Xr(t+ r− 1) + ηt+m

ηt being defined in (1). Since the above equation holds for all t ≥ 1 ,one can rewrite
the above equation, as given below, that will hold for all t ≥ r or say for all t ≥ m.
Statements hence forth hold for all r and t ≥ m.

Xr(t+m−r+1) = α0+β1Xr(t+m−r)+β2Xr(t+m−r−1)+· · ·+βm−r+1Xr(t)+ηt+m−r+1

(8)
Let us, for algebraic simplicity, assume that X(t) = εt = 0 for t < 0. Solving the above
difference equation, we have

Xr(t) = α0

t−1∑
j=0

λ(j) +

t−1∑
j=0

λ(j)ηt−r (9)

It is easy to check that, λ(0) = 1 and for j > 1

λ(j)− β1λ(j − 1)− β2λ(j − 2)− · · · − βm−r+1λ(j − (m− r + 1)) = 0 (10)

Solving (10) we get λ(j) =
∑m−r+1

i=1 ciρ
j
r+i−1 where c′s are well defined constants. In

other words for each j, λ(j) is a linear combination of jth powers of ρr, ρr+1, . . . , ρm.
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On noting that ρr is the largest explosive root of P2(z) = 0, we can rewrite (9) as

Xr(t) = α0ρ
t
r

t−1∑
j=0

ρ−tr λ(j) + ρtr

t−1∑
j=0

ρ−tr λ(j)ηt−r. (11)

Setting u = t− j, we have

ρ−tr Xr(t) = α0

t−1∑
j=0

(
λ(j)

ρtr

)
+

∞∑
j=0

(
λ(j)

ρtr

)
ηt−j −

∞∑
j=t+1

(
λ(j)

ρtr

)
ηt−j

= α0

t−1∑
j=0

(
λ(j)

ρtr

)
+
∞∑
u=1

(
λ(t− u)

ρtr

)
ηu −

∞∑
u=t+1

(
λ(t− u)

ρtr

)
ηu. (12)

On recalling the assumptions on εt, the placement of roots in (4) and the structure
of λ(.), it can be checked that, as t → ∞ (i) the first term on the left hand side (LHS)
of (12) has a finite limit, (ii) the second term converges in mean square to a random
variable and (iii) the third term converges in mean square to 0. Hence the theorem
holds on appealing to standard convergence theorems (Bhat, 1999, Venkataraman, 1968,
Venkataraman, 1974). In fact the structure of Vr can be checked to be

Vr =

∞∑
j=0

(
λ(j)

ρtr

)
+

∞∑
j=0

(
λ(j)

ρtr

)
ηt−j . (13)

Note: The theorem holds even when d > 0, on a slight modification in λ(j) and on
using the fact that

∑∞
j=0 ρ

−t
r t a is convergent for a > 0 when ρr > 1.

Suresh Chandra et al. (1994, 1999) and Suresh Chandra and Janhavi (2008) have
discussed the estimation of the explosive roots of (1). With reference to the partial real-
ization of the time series X(1), X(2), . . . , X(n), let φ̂1, φ̂2, . . . φ̂k be proposed as estimates
of the explosive roots ρ1, ρ2, . . . , ρk, recursively computed as follows:

φ̂1 =

∑n−1
t=1 X(t+ 1)X(t)∑n−1

t=1 X(t)2

φ̂i =

∑n−i+1
t=1 X∗i (t+ i)X∗i (t+ i− 1)∑n−i

t=1 [X∗i (t+ i− 1)]2
, i = 2, 3, . . . , k, (14)

where
X∗i (t+ i+ 1) = X∗i−1(t+ i+ 1)− φ̂i−1X∗i−1(t+ i), i = 2, 3, . . . , k. (15)

Note: {X∗i (t) t = 1, 2, . . . , n − i + 1}, i = 2, 3, . . . , k are essentially the estimated
auxiliary processes associated with the given time series X and φ̂2, φ̂3, · · · φ̂k are the
second raw moments of these estimated auxiliary processes.

The following theorem, established by Suresh Chandra et al. (1999), which plays a
crucial role in the sequel, is stated without proof.
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Theorem 2. Let the time series X be generated by the model (1). Then under the basic
assumptions and notation in (2) to (5) and (14), each of

{(a(i))n(φ̂i − ρi)}, i = 1, 2, . . . , k

is bounded in probability, where

a(i) = min

{
ρi
ρi+1

,
ρi−1
ρi

}
, i = 1, 2, . . . , k

on setting ρ0 =∞ and ρk+1 = 1.

There are two points to be noted at this stage. The quantities a(i) are numerically
larger than unity. The quantities (a(i))n are the rates of convergence in probability of
φ̂i to ρi respectively.

3 Some interesting features of the estimates of the
explosive roots

3.1 Exponential rate of convergence

The rates of convergence of the estimates of the roots are exponential in nature. The
exponential rates portray fast convergence of the estimates making the estimates very
precise even at moderately large sample sizes.

As it is analytically difficult to derive the exact sampling distribution of φ̂i. An
extensive simulation study (Prabakaran, 2015) was carried out for the case m = 1, p = 0
and q = 0 so that k = 1 varying ρ in the interval [ 1 < ρ < 1.2 ]. The data size for
the simulation study were set at n= 50, 100 and 250 (matching the values set in Dickey
and Fuller, 1979). The standard deviation of the error term were set at 1, 10 and 50.
These simulations are simple and easy to carry out in R environment and the details
are omitted for the sake of brevity. Important features of the outcome of the simulation
study are that the sampling distribution of φ̂i are (i) unimodal (ii) free from the variance
of the error term (as expected even from a theoretical point of view), (iii) degenerate
(even at sample size=100) and shift to the right asρ increases and (iv) the effect of the
constant term on the estimate diminishes exponentially as sample size increases.

3.2 Unit root tests and explosive roots

Unit root tests, especially the Dickey-Fuller test or the Augmented Dickey-Fuller (ADF)
test (Dickey and Fuller, 1979), are constructed to test the null hypothesis H : a root of
the stochastic difference equation generating the given time series is equal to one against
the alternative K : that root is less than one.

For any unit root test, the left tail is used as the critical region to test H : ρ = 1 under
the alternative K : ρ < 1 (as in the case of Dickey Fuller tests). The degeneracy and
the shifts to right (as ρ increases from unity) of the sampling distributions of φ̂i revealed
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in the simulation study, suggest that, that (i) any level α test for H against K is also
a level α test for testing H1 : ρ ≥ 1 against K and (ii) the power of the level α test
for H against K is larger than any level α test for testing H1 : ρ ≥ 1 against K. This
information can lead us to the empirically justifiable conclusion that the distribution of
φ̂i when ρ = 1 is least favourable (vide Lehmann, 1986, p.105).

Hence it is possible to conclude that, even in moderately large samples, the acceptance
of the null hypothesis H in unit root tests can indicate presence of explosive roots and
the rejection of the hypothesis will certainly reject the presence of explosive roots. This
finding is of practical relevance in the determination of a stopping rule in the recursive
estimation of φ̂i and hence the value of k.

4 Evaluation of the forecasts

There are several criteria for assessing the performance of a forecasting model based on
the difference between the observed value and the forecast value. Since we normally do
not have the observed value for a future time, the evaluation should be based on the
differences observed when both observation and forecast are available. For this reason,
a commonly used procedure is to divide the period of observation into two mutually
exclusive intervals: a training set and a test set. Usually the test set is identified very
near to the forecast horizon and the training set is a period just before the test set.
The observations in the training set are used to develop a forecast model, in terms of
estimation of the coefficients in the assumed model and the training set for the evaluation
of the forecasts. Let et denote the difference between observed value and the forecast
value at time t in the test set. Some of the commonly used absolute measures (Makridakis
et al., 1998) for the evaluation of a forecasting method are listed below.

Mean Error = ME = {(1/r)
∑r

t=1 et }
Mean Absolute Error = MAE= {(1/r)

∑r
t=1 | et |}

Mean Square Error = MSE=
{

(1/r)
∑r

t=1 e
2
t

}
where r is the number of observations in the test set.

5 The inadequacy of the Box Jenkins forecasting
methodology for explosive models

ARIMA models are the most frequently used by researchers for analyzing a non sta-
tionary time series data.Typically (with reference to the underlying stochastic difference
equation) an ARIMA model has three specification parameters: p = the number of the
non explosive roots which are numerically less than one, d = the number of unit roots
and q = the length of the moving average error.

The Box-Jenkins (BJ) methodology provides a systematic procedure to identify the
values of the specification parameters, p, d and q. A simple heuristic proof to the fact
that differencing does not eliminate the explosive root follows from Theorem 1. For
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large t, X(t) ∼ ρt1 which implies that (X(t + 1) −X(t)) ∼ ρt1, thereby both series have
the same explosive path. Alternatively, from (1), a simple algebra will reveal that the
characteristic polynomial of the differenced series will be the same as that of the original
series unless there is a unit root, in which case the differencing would remove that root
keeping others unchanged. This fact has motivated the search for an alternative method
of forecasting for explosive models.

However, when the time series is not long enough and explosive root is nearer to unity,
the exponential path of the time series can be approximated by a polynomial trend by
virtue of the Stone-Weierstrass Theorem and hence the differencing may remove the effect
of the explosive root. But, if the explosive root is away from unity, the differencing can
not be useful.

6 The proposed forecasting procedure

A feature of an explosive time series is that it has an exponential growth so that the
values increase continuously. There are several examples for explosive time series. For
instance, the population size, some economic indicators like the Gross Domestic Product,
not to speak of examples in biology and nuclear science.

The auxiliary processes (5) are useful in eliminating explosive roots. The possibility
of consistently estimating the explosive roots and their properties as revealed in the
discussions in the Section 2 are exploited to describe the proposed forecasting procedure.

We retain the basic philosophy of Box-Jenkins methodology of identifying and remov-
ing the non stationary part of the given time series, not by differencing the series , but
by using the estimated auxiliary processes to eliminate the explosive roots. Thus, the
algorithm for forecasting is described as follows.

1. At the first instance, we compute φ̂1. If φ̂1 ≤ 1 , we proceed along Box-Jenkins
for identifying an ARIMA model and use it for forecasting. If φ̂1 > 1 we move to
stage 2.

2. We eliminate the largest explosive root,ρ1, by constructing the data X∗2 (t); t =
2, 3, . . . , n relating to the second order auxiliary process . Using this data, we
compute φ̂2 which is an estimate of the largest root of the process {X∗2 (t); t =
2, 3, . . . ,∞} which is, incidentally, the second largest root of the original process X.
If φ̂2 ≤ 1, we proceed along Box-Jenkins methodology for identifying an ARIMA
model and use it for forecasting for the series {X2(t)}. If φ̂2 > 1 we move to the
next stage, which is a repetition of this stage, but relating auxiliary process of
third order {X∗3 (t); t = 3, 4, ...,∞}.

3. We continue the process till we reach a stage φ̂r ≤ 1. At this stage k will be
equal to (r− 1) and, and we would have eliminated all explosive roots, so that the
resulting estimated auxiliary processes {X∗k+1(t); t = k+1, k+2, ...,∞}, is modeled
and forecasted as an ARIMA model, using the Box-Jenkins methodology.
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4. The forecasts for the given explosive time series is obtained from ARIMA forecasts
for the series X∗k+1(t); t = k + 1, k + 2, . . . , n, by inverting the operators used in
the definition of estimated auxiliary processes used up to this stage.

In order to elaborate what exactly we mean by inverting the operators used for auxil-
iary process we note from the defining equations in (5) for the auxiliary processes that,
for a specified k

Xk+1(t+ k) = X(t+ k)− a1X(t+ k − 1) + a2X(t+ k − 2)− · · · − (−1)kakX(t) (16)

where ar is the sum of products of ρ1, ρ2, . . . ρk taken r at a time, for r = 1, 2, · · · , k.
For forecasting the values for the original process (X), we use the estimated version of
(16) given by

X∗k+1(t+ k) = X(t+ k)− a∗1X(t+ k − 1) + a∗2X(t+ k − 2)− · · · − (−1)ka∗kX(t) (17)

where a∗r is the sum of products of φ̂1, φ̂2, · · · φ̂k, defined in (13) taken r at a time, for
r = 1, 2, . . . , k and X∗k+1(t+ k+ 1) is defined in (14). Let fk+1(t) denote the BJ forecast
at t. Let f(n+h) denote the (required) forecast at for a horizon (h > 1) for the original
process X. This can be computed using (16) recursively by

f(n+h) = fk+1(n+h)+a∗1X(n+h−1)−a∗2X(n+h−2)−· · ·+(−1)k+1a∗kX(n+h−k) (18)

If the previous values of X(t), used in (17) at any time point (n+h), is not known, then
it has to be replaced by its forecast. The recursive nature of computation suggests that
for any h, the procedure should start from t = 1.

7 Illustration based on simulated data

In this section we give an illustration based on a simulated data that exposes the better
performance of the proposed method when compared to BJ method. We simulated a
time series data of 115 observations generated by the model (1) setting k = 1, d = 1 and
p = 1 and q = 0. In the study the three roots associated with the generated data were
1.1, 1 and 0.5, with intercept α0 = 100. The error terms were assumed to be iid normal
random variables with mean 0 and variance 1. Simulated data is appended to this paper
as Appendix-I. The the data clearly indicates the explosive nature of the time series.

The first 100 observations were used as the training set to develop the model. The
observations 101-110 (test set) were used for evaluating the forecast. The last five obser-
vations (forecasting horizon) were forecasted on assuming that the observations were not
available. With reference to the simulated data, we will first illustrate the Box-Jenkins
forecasting procedure. To obtain stationarity the series required six successive differ-
encing (based on ADF tests) and at the end of the sixth differencing the best model
suited for the six times differenced series was obtained as an ARMA (1,1) with mean
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0. The estimates of the parameters were ar1=0.5111, ma1=-0.802and σ2 = 337.9 . The
goodness of fit indicators were Log-likelihood= -411.52, AIC=829.03, AICc=829.29 and
BIC=836.69.

It may be noted that, although the simulated series had only two roots larger than
or equal to unity, the Box-Jenkins Methodology required six successive differencing to
arrive at a stationary process. The increased number of differencings required for the
stationarity in the presence of explosive root has also been noted, as a feature when Box
Jenkins method is used for explosive time series, by Suresh Chandra et al. (1994).

Table 1: Forecasts by BJ and the proposed methods and their errors

Test set O BJ New BJ error New Method error

101 30452460 30452385.20 30452450.51 74.80 9.49

102 33497880 33497997.99 33497885.07 -117.99 -5.07

103 36847840 36847699.20 36847845.84 140.80 -5.84

104 40532790 40532864.70 40532790.08 -74.70 -0.08

105 44586240 44586162.40 44586240.30 77.60 -0.3

106 49045040 49045061.23 49045037.22 -21.23 2.78

107 53949710 53949660.63 53949716.95 49.37 -6.95

108 59344850 59344770.32 59344835.53 79.68 14.47

109 65279510 65279550.16 65279519.80 -40.16 -9.8

110 71807630 71807560.08 71807632.04 69.92 -2.04

Note: O : the simulated data, BJ : BJ forecasts and New : forecasts by the new method

We now proceed to illustrate the proposed forecasting procedure for the same data.
The ADF test for the data (as stated above) revealed non stationarity. To begin, the
value of φ̂1 turned out to be 1.100013244, which is very close to the value of φ1 = 1.1 that
we had set for simulation. One should recall that the closeness of the estimate is due to
the exponential rate of convergence in probability. Next step is to construct the second
order auxiliary series X∗2 (t); t = 2, 3, . . . , n using φ̂1. We then proceed to compute φ̂2 , the
estimate of the second largest root using (13). This estimate turned out to be 0.99682,
which is very close to the second value of we had set for simulation. Since this value
was less than unity, the BJ method was adopted to forecast the series X∗2 (t+ 1). While
doing so, it was observed that the series required two successive differencing to obtain
stationarity. The differenced series was modeled as an ARMA(1,1) model with a drift.
The estimates of the parameters were intercept = -0.4678, ar1=-0.9801, ma1=-0.6956
and σ2 = 6.007. The goodness of fit indicators were Log-likelihood=-225.4, AIC=458.8,
AICc=459.23 and BIC=469.1. The forecasts for the original series are obtained by
inverting procedure described earlier.

Table 1 summarizes the forecasts of both procedures for the test period, and their
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errors.

Flowing out from Table 1 is Table 2 which depicts the superiority of the new method
over the BJ method in terms of ME, MAE and MSE of forecasts.

Table 2: Evaluation of forecasts relating to simulated data

Criterion BJ method New method

ME 23.8084 -4.3350

MAE 74.6254 9.6814

MSE 6668.2809 153.5585

The forecast for the forecasting horizon 111-115 are presented in Table 3.

Table 3: Evaluation of forecasts relating to simulated data

horizon Actual value BJ forecast New forecast

111 78988560 78988480.01 78988642.59

112 86887590 86887100.37 86887787.66

113 95576510 95574741.56 95576885.81

114 105134300 105129303.02 105134940.7

115 115647900 115635777.74 115648857.49

It can be seen that the proposed forecasting procedure performs better than Box-
Jenkins forecasting procedure even in the forecasting horizon. As expected, the fore-
casting errors in the period of horizon are numerically larger than in the test period
and increases as the horizon extends, with the new procedure having relatively smaller
numerical increase cautioning the reliability of forecasts in large horizons.

8 Illustration based on National crime data

The real life data used for demonstrating the utility of the proposed forecasting procedure
relates to the annual number of cases registered under Indian Penal Code,in India from
1955 to 2012. The source of the data is from the published records of National Crime
Records Bureau, New Delhi. The data is appended as Appendix-2. The data clearly
indicates the explosive nature of the time series.

The period of observations is 59 years of which the first 53 observations (1955-2007)
were used as the training set, next 5 observations (2008-2012) as the test set and the
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year 2013 was identified for forecasting horizon.

First, the the Box-Jenkins forecasting procedure was applied to the data. The ADF
test for the given data supported the existence of unit root. Hence the data was differ-
enced once and the ADF test was applied to the differenced series. The ADF test rejected
the unit root hypothesis (p = 0.01) and therefore we conclude that the first differenced
series was stationary. The model for the once differenced series was ARMA(0,0) with a
non zero mean of 27969.942 and σ2 = 2.52.(109). The goodness of fit measures turned
out to be Log-likelihood= -734.56, AIC=1471.12, AICc=1471.19 and BIC=1473.21. Us-
ing this ARMA (0,0) model with drift, the Box-Jenkins forecast for the original series
were computed.

In parallel, the new proposed forecasting method was used for forecasting the future.
The estimate φ̂1 of the largest root ρ1, which turned out to be 1.0198. Using this estimate,
the second auxiliary series X∗2 (t) ; t = 2, 3, ..., n was constructed. The estimate of φ̂2
was -0.079 which is numerically less than 1, leading to the conclusion that the second
auxiliary series was stationary. The model fitted for the auxiliary series was ARMA
(0,0) with mean zero and σ2 = 2.66.(109). The goodness of fit measures turned out
to be Log-likelihood= -638.05, AIC=1278.09, AICc=1278.17 and BIC=1280.04. The
following table summarizes the details of forecasting and errors involved in the two
methods.

Table 4: Forecasts by BJ and the proposed methods and their errors for the crime data

Test set O BJ New BJ error New Method error

2008 2093379 2017642.94 2024612.46 75736.06 68766.54

2009 2121345 2121348.94 2130139.58 -3.94 -8794.58

2010 2224831 2149314.94 2158596.68 75516.06 66234.32

2011 2325575 2252800.94 2263899.93 72774.06 61675.07

2012 2387188 2353544.94 2366413.04 33643.06 20774.96

Note: O : the simulated data, BJ : BJ forecasts and New : forecasts by the new method

Flowing out from Table 4 is the superiority of the new method in terms of ME, MAE
and MSE of forecasts as summarized below:

The forecast for the year 2013 (one step horizon) in the Box-Jenkins methodology was
2415157.942 and that in the proposed procedure was 2429107.99, the latter being closer
to 2647722, the actual value for the year 2013.

This application also exposes the superiority of the proposed procedure over the Box-
Jenkins methodology even when the explosive root is close to unity.
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Table 5: Evaluation of forecasts relating to crime data

Criterion BJ method New method

ME 257665.3 208656.31

MAE 257673.2 226245.47

MSE 17866544382 13428580029

9 Discussion

The forecasting procedure proposed in this paper for explosive models appears to be
simple and novel. It is an improvement of the earlier works in Suresh Chandra et al.
(1994); Suresh Chandra and Janhavi (2008) in terms of both theoretical and empirical
support it has. This methodology works mainly due to the possibility of estimating
the explosive roots with exponential rate of convergence and estimation of the auxiliary
processes.

The assumption of real root can always be relaxed (Venkataraman, 1973) since the
imaginary roots occur in pairs. Corresponding modification may not be conceptually
difficult both in terms of estimating the roots and defining the auxiliary processes and
estimating them.

The proposed method of forecasting can also be viewed as an extension of the Box
Jenkins forecasting methodology. In fact, we settle down to BJ methodology once the
series is free from explosive roots. This fact has also been clearly shown in the appended
flow chart.

It is well known that both conventional and not so conventional procedures are adopted
for forecasting the future values of the time series with the sole aim to get forecasts as
close as possible to the realized values of the time series. In this context, it is perhaps
necessary to evaluate a new forecasting methodology with all known and used forecasting
procedures. But, we have chosen to compare the new methodology with Box-Jenkins
methodology. This comparison was not only because of its popularity, but also because
of the philosophical similarity among the two procedures.

Finally it is interesting to note that, in both applications, the new method provided a
better fit for the stationary part of the model than the BJ method. Since the stationary
part plays a crucial role in the forecasting methodology for non stationary time series
this observation is relevant.
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Flow chart of steps in the proposed forecasting procedure
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APPENDIX-1

Table 6: Simulated time series data

t x t x t x t x

1 260.42 31 36680.42 61 671086.5 91 11739670

2 461.6 32 40542.66 62 738375.8 92 12913810

3 695.16 33 44790.1 63 812395.5 93 14205370

4 959.7 34 49461.07 64 893817.7 94 15626080

5 1252.18 35 54597.38 65 983383 95 17188860

6 1574.33 36 60245.17 66 1081905 96 18907920

7 1929.35 37 66456.63 67 1190279 97 20798890

8 2319.63 38 73289.55 68 1309490 98 22878950

9 2749.29 39 80806.02 69 1440620 99 25167020

10 3221.41 40 89072.69 70 1584863 100 27683890

11 3741.95 41 98165.06 71 1743528 101 30452460

12 4315.51 42 108166.7 72 1918058 102 33497880

13 4946.22 43 119169.1 73 2110041 103 36847840

14 5640.37 44 131271.4 74 2321224 104 40532790

15 6404.91 45 144585.3 75 2553524 105 44586240

16 7247.39 46 159230.7 76 2809053 106 49045040

17 8174.88 47 175342 77 3090134 107 53949710

18 9195.73 48 193065 78 3399322 108 59344850

19 10318.15 49 212561.4 79 3739427 109 65279510

20 11552.04 50 234007.3 80 4113542 110 71807630

21 12909.37 51 257597.3 81 4525070 111 78988560

22 14402.75 52 283546.4 82 4977753 112 86887590

23 16046.3 53 312090.3 83 5475705 113 95576510

24 17853.75 54 343486.8 84 6023452 114 105134300

25 19842.17 55 378020.7 85 6625974 115 115647900

26 22028.31 56 416006 86 7288747 - -

27 24432.18 57 457788.6 87 8017798 - -

28 27073.84 58 503748.3 88 8819754 - -

29 29977.91 59 554303.3 89 9701905 - -

30 33169.93 60 609914.4 90 10672270 - -
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APPENDIX-2

Table 7: Number cases registered under Indian Penal Code

Year Number of cases Year Number of cases

1955 535236 1985 1384731

1956 585217 1986 1405835

1957 581371 1987 1406992

1958 614184 1988 1440356

1959 620326 1989 1529844

1960 606367 1990 1604449

1961 625651 1991 1678375

1962 674466 1992 1689341

1963 658830 1993 1629936

1964 759013 1994 1635251

1965 751615 1995 1695696

1966 794733 1996 1709576

1967 881981 1997 1719820

1968 861962 1998 1778815

1969 845167 1999 1764629

1970 955422 2000 1771084

1971 952581 2001 1769308

1972 984773 2002 1780330

1973 1077181 2003 1716120

1974 1192277 2004 1832015

1975 1160520 2005 1822602

1976 1093897 2006 1878293

1977 1267004 2007 1989673

1978 1344968 2008 2093379

1979 1336168 2009 2121345

1980 1368529 2010 2224831

1981 1385757 2011 2325575

1982 1353904 2012 2387188

1983 1349866 2013 2647722


