
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v11n2p506

Proposed methods in estimating the ridge regres-
sion parameter in Poisson regression model
By Alanaz, Algamal

Published: 14 October 2018

This work is copyrighted by Università del Salento, and is licensed un-
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Poisson regression model is considered as an important model among the
linear logarithm models. It is usually used to model the count dependent vari-
able. However, as in linear regression model, the multicollinearity problem
may be present leading to negatively affect the model parameter estimation.
In this study, several methods are proposed to estimate the ridge parame-
ter. Monte-Carlo simulation studies with different factors were conducted to
evaluate the performance of the used estimators. The results demonstrate
the better performance of the proposed estimator compared to other used
estimators in terms of mean squared error (MSE).

keywords: Multicollinearity; ridge estimator; Poisson regression model;
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1 Introduction

Poisson regression model is widely applied for studying several real data problems, such
as in mortality studies where the aim is to investigate the number of deaths and in health
insurance where the target is to explain the number of claims made by the individual
(Algamal, 2012; Cameron and Trivedi, 2013; De Jong and Heller, 2008). In dealing with
the Poisson regression model, it is assumed that the problem of multicollinearity does
not exist. However, when this problem exists, the maximum likelihood (ML) estimation
of the coefficients are become unstable with a high variance (Algamal, 2018a,b).
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Numerous procedures have been proposed to to deal with multicollinearity. The ridge
regression method (RR) (Hoerl and Kennard, 1970), among them, has been consistently
demonstrated to be a well-known procedures. RR tries to shrink the regression coeffi-
cients toward zero to decrease the large variance (Asar and Genç, 2017). This can be
done by adding a positively constant amount to the diagonal of XTX.

In classical linear regression models the following relationship is usually adopted

y = Xβ + ε, (1)

where y is an n × 1 vector of observations of the response variable, X = (x1, ...,xp) is
an n× p known design matrix of explanatory variables, β = (β1, ..., βp) is a p× 1 vector
of unknown regression coefficients, and ε is an n× 1 vector of random errors with mean
0 and variance σ2. In linear regression, the RR is defined as

β̂Ridge = (XTX + kI)−1XTy, (2)

where I is the identity matrix with dimension p × p and k ≥ 0 represents the ridge
parameter (shrinkage parameter). The ridge parameter, k, controls the shrinkage of β
toward zero.

2 Statistical methodology

2.1 Poisson ridge regression model

Count data often arise in epidemiology, social, and economic studies. This type of data
consists of positive integer values. Poisson distribution is a well-known distribution that
fit to such type of data. Poisson regression model is used to model the relationship
between the counts as response variable and potentially explanatory variables (Algamal
and Lee, 2015; KaÇiranlar and Dawoud, 2017).

β̂Ridge = (XTX + kI)−1XTy, (3)

Let yi be the response variable and follows a Poisson distribution with mean θi, then
the probability density function is defined as

f (yi) =
e−θiθi

yi

yi!
, yi = 0, 1, . . . ; i = 1, 2, . . . , n. (4)

In a Poisson regression model, ln(θi) = xTi β is expressed as a linear combination of
explanatory variables xi = (xi1, ..., xip)

T . The ln(θi) is called as canonical link function
which making the relationship between explanatory variables and response variable lin-
ear. The most common method of estimating the coefficients of Poisson regression model
is to use the maximum likelihood method. Given the assumption that the observations
are independent, the log-likelihood function is defined as

`(β) =

n∑
i=1

{
yix

T
i β − exp(xTi β)− ln yi!

}
. (5)
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The ML estimator is then obtained by computing the first derivative of the Eq. (5) and
setting it equal to zero, as

∂`(β)

∂β
=

n∑
i=1

[
yi − exp(xTi β)

]
xi = 0. (6)

Because Eq. (4) is nonlinear in β, the iteratively weighted least squares (IWLS) algo-
rithm can be used to obtain the ML estimators of the Poisson regression parameters
(PR) as

β̂PRM = (XTŴX)−1XTŴv̂, (7)

where Ŵ = diag(θ̂i) and v̂ is a vector where ith element equals to v̂i = ln(θ̂i) + ((yi −
θ̂i)/θ̂i). The ML estimator is asymptotically normally distributed with a covariance
matrix that corresponds to the inverse of the Hessian matrix

cov(β̂PRM ) =

[
−E

(
∂2`(β)

∂βi ∂βk

)]−1

= (XTŴX)−1. (8)

The mean squared error (MSE) of Eq. (5) can be obtained as

MSE (β̂PRM ) = E(β̂PRM − β̂)T (β̂PRM − β̂)

= tr[(XTŴX)−1]

=
p∑
j=1

1
λj
,

(9)

where λj is the eigenvalue of the XTŴX matrix.

When the multicollinearity problem exist, the matrix XTŴX becomes ill-conditioned
leading to high variance and instability of the ML estimator of the Poisson regression
parameters. As a remedy, Månsson and Shukur (2011) proposed the Poisson ridge
regression model (PRRM) as

β̂PRRM = (XTŴX + kI)−1XTŴXβ̂PRM

= (XTŴX + kI)−1XTŴv̂,
(10)

where k ≥ 0. The ML estimator can be considered as a special estimator from Eq. (8)
with k = 0. Regardless of kvalue, the MSE of the β̂PRRM is smaller than that of β̂PRM
because the MSE of β̂PRRM is equal to Kibria et al. (2015)

MSE(β̂PRRM ) =

p∑
j=1

λj

(λj + k)2
+ k2

p∑
j=1

αj

(λj + k)2
, (11)

where αj is defined as the jth element of γ β̂PRMand γ is the eigenvector of the XTŴX
matrix. Comparing with the MSE of Eq. (5), MSE(β̂PRRM ) is always small for k > 0.
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3 Estimating the shrinkage parameter k

The efficiency of RR is depending on k which controls the amount of the shrinkage. When
k = 0, then ML estimates can be obtained. On the other hand, when k increasing, the
influence of k increases on the coefficient estimates. In our paper, a large number of
methods are considered to estimate the value of k in Poisson ridge regression model.
The idea behind all these methods is obtained from the work by Hoerl and Kennard
(1970), Kibria (2003), and Kibria et al. (2015).

1. Hoerl and Kennard (1970) (HK1 and HK2), which are, respectively, defined as

HK1 =
pσ̂2

α̂T α̂
, j = 1, 2, ..., p, (12)

HK2 =
σ̂2

α̂2
max

, (13)

Where α̂ is defined as the jth element of γ β̂GRMand γ is the eigenvector of the
XTŴX matrix, α̂maxis the maximum value of α̂, and σ̂2 = (yi − µ̂i)2/n− p− 1 .

2. Kibria et al. (2015) used several methods (K1-K12). They are, respectively, defined
as

K1 = max

{
1

mj

}
, (14)

K2 = max {mj} , (15)

K3 =

p∏
j=1

{
1

mj

} 1
p

, (16)

K4 =

p∏
j=1

{mj}
1
p , (17)

K5 = median

{
1

mj

}
, (18)

K6 = median {mj} , (19)

K7 = max

{
1

qj

}
, (20)

K8 = max {qj} , (21)

K9 =

p∏
j=1

{
1

qj

} 1
p

, (22)

K10 =

p∏
j=1

{qj}
1
p , (23)
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K11 = median

{
1

qj

}
, (24)

K12 = median {qj} , (25)

where mj =
√
σ̂2/α̂2

j and qj = λmax/(n− p)σ̂2 + λmaxα̂
2
j .

4 the Proposed Methods

In this section, we extend the idea of Asar et al. (2014) and Bhat (2016) to the Poisson
ridge estimator.

1. Asar et al. (2014) proposed five modifications of ridge parameter. They are defined
as, respectively

A1 =
p2

λ2max

σ̂2

p∑
j=1

α̂2
j

, (26)

A2 =
p3

λ3max

σ̂2

p∑
j=1

α̂2
j

, (27)

A3 =
p

(λmax)1/3
σ̂2

p∑
j=1

α̂2
j

, (28)

A4 =
p

(
p∑
j=1

√
λi)

1/3

σ̂2

p∑
j=1

α̂2
j

, (29)

A5 =
2p√
λmax

σ̂2

p∑
j=1

α̂2
j

, (30)

2. Bhat (2016) proposed two modifications of HK1. They are defined as, respectively

B1 =
pσ̂2

α̂T α̂
+

1

λmaxα̂T α̂
, (31)

B2 =
pσ̂2

α̂T α̂
+

1

2
(√

λmax/λmax

)2 , (32)

5 Simulation study

In this section, a Monte Carlo simulation experiment is used to examine the performance
of these methods in Poisson ridge with different degrees of multicollinearity.
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5.1 Simulation design

The response variable of n observations is generated from Poisson regression model by

θi = exp(xTi β), (33)

where β = (β0, β1, ..., βp) with
p∑
j=1

β2j = 1 and β1 = β2 = ... = βp (Månsson and Shukur,

2011; Kibria, 2003). In addition, because the value of intercept, β0, has an effect on
θi, three values are chosen β0 ∈ {1, 0,−1}, where decreasing the value of β0 leads to
lower average value of θi, which leads to less variation (Månsson and Shukur, 2011).
The explanatory variables xTi = (xi1, xi2, ..., xin) have been generated from the following
formula

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, j = 1, 2, ..., p, (34)

where ρ represents the correlation between the explanatory variables and wijs are inde-
pendent standard normal pseudo-random numbers. Because the sample size has direct
impact on the prediction accuracy, three representative values of the sample size are
considered: 30, 50 and 100. In addition, the number of the explanatory variables is
considered as p = 3 and p = 7 because increasing the number of explanatory variables
can lead to increase the MSE. Further, because we are interested in the effect of multi-
collinearity, in which the degrees of correlation considered more important, three values
of the pairwise correlation are considered with ρ = {0.90, 0.95, 0.99}. For a combination
of these different values of n, p, β0, and ρ the generated data is repeated 1000 times and
the averaged mean squared errors (MSE) is calculated as

MSE(β̂) =
1

1000

1000∑
i=1

(β̂ − β)T (β̂ − β), (35)

where β̂ is the estimated coefficients for the used estimator.

5.2 Simulation results

The estimated MSE of Eq. (35) for all the different selection methods of k and the com-
bination of n, p, and ρ, are respectively summarized in Tables 1-3. Several observations
can be obtained as follows: ”

1. In terms of ρ values, there is increasing in the MSE values when the correlation
degree increases regardless the value of n and p.

2. Regarding the number of covariates, it is easily seen that there is a negative impact
on MSE , where there is increasing in its values when the p increasing from three
covariates to seven covariates.

3. With respect to the value of n, the MSE values decrease when n increases, regard-
less the value of ρand p.
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4. All the selection methods of k are superior to the ML estimator in terms of MSE.

5. Clearly, in terms of MSE, K2 and K8 improved the performance of the Poisson
ridge regression compared to ML estimator in all the cases without any domination.
In contrast, A2 estimator attained poor results comparing with the other used
estimators in all cases.

6. For comparisons between the modification estimators of HK1, i.e. B1 and B2, it
is seen that B2 achieves the lowest MSE compared to B1 .

”

Table 1: MSE values when n = 30

Method p = 3 p = 7

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 1.703 3.064 3.713 9.806 12.633 13.65

HK1 1.571 3.131 3.304 4.688 5.088 6.118

HK2 1.622 3.224 3.371 4.484 10.014 11.031

K1 1.637 1.652 3.174 5.516 4.238 5.255

K2 1.349 2.549 3.228 1.438 1.476 2.493

K3 1.681 2.881 2.941 9.012 9.705 10.722

K4 1.523 2.723 2.967 3.17 3.21 4.234

K5 1.658 2.858 3.028 8.86 8.994 10.011

K6 1.565 2.765 3.203 3.441 3.922 4.939

K7 1.694 2.894 3.129 2.599 3.722 4.739

K8 1.341 2.541 3.308 1.969 2.045 3.062

K9 1.7 2.9 3.099 9.018 9.674 10.691

K10 1.374 2.574 2.991 3.161 3.183 4.2

K11 1.698 2.898 2.945 9.241 9.658 10.675

A1 1.704 2.904 3.713 9.806 12.632 13.649

A2 1.706 2.906 3.715 9.809 12.633 13.65

A3 1.672 2.872 3.52 8.538 10.533 11.55

A4 1.644 2.844 3.299 7.358 8.571 9.588

A5 1.678 2.878 3.55 8.879 11.088 12.105

B1 1.57 2.77 2.796 4.687 5.076 6.093

B2 1.565 2.765 2.793 4.629 4.996 6.013
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Table 2: MSE values when n = 50

Method p = 3 p = 7

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 1.6159 2.9769 3.6259 9.7189 12.5459 13.5629

HK1 1.4839 3.0439 3.2169 4.6009 5.0009 6.0309

HK2 1.5349 3.1369 3.2839 4.3969 9.9269 10.9439

K1 1.5499 1.5649 3.0869 5.4289 4.1509 5.1679

K2 1.2619 2.4619 3.1409 1.3509 1.3889 2.4059

K3 1.5939 2.7939 2.8539 8.9249 9.6179 10.6349

K4 1.4359 2.6359 2.8799 3.0829 3.1229 4.1469

K5 1.5709 2.7709 2.9409 8.7729 8.9069 9.9239

K6 1.4779 2.6779 3.1159 3.3539 3.8349 4.8519

K7 1.6069 2.8069 3.0419 2.5119 3.6349 4.6519

K8 1.2539 2.4539 3.2209 1.8819 1.9579 2.9749

K9 1.6129 2.8129 3.0119 8.9309 9.5869 10.6039

K10 1.2869 2.4869 2.9039 3.0739 3.0959 4.1129

K11 1.6109 2.8109 2.8579 9.1539 9.5709 10.5879

A1 1.6169 2.8169 3.6259 9.7189 12.5449 13.5619

A2 1.6189 2.8189 3.6279 9.7219 12.5459 13.5629

A3 1.5849 2.7849 3.4329 8.4509 10.4459 11.4629

A4 1.5569 2.7569 3.2119 7.2709 8.4839 9.5009

A5 1.5909 2.7909 3.4629 8.7919 11.0009 12.0179

B1 1.4829 2.6829 2.7089 4.5999 4.9889 6.0059

B2 1.4779 2.6779 2.7059 4.5419 4.9089 5.9259
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Table 3: MSE values when n = 100

Method p = 3 p = 7

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 1.5538 2.9148 3.5638 9.6568 12.4838 13.5008

HK1 1.4218 2.9818 3.1548 4.5388 4.9388 5.9688

HK2 1.4728 3.0748 3.2218 4.3348 9.8648 10.8818

K1 1.4878 1.5028 3.0248 5.3668 4.0888 5.1058

K2 1.1998 2.3998 3.0788 1.2888 1.3268 2.3438

K3 1.5318 2.7318 2.7918 8.8628 9.5558 10.5728

K4 1.3738 2.5738 2.8178 3.0208 3.0608 4.0848

K5 1.5088 2.7088 2.8788 8.7108 8.8448 9.8618

K6 1.4158 2.6158 3.0538 3.2918 3.7728 4.7898

K7 1.5448 2.7448 2.9798 2.4498 3.5728 4.5898

K8 1.1918 2.3918 3.1588 1.8198 1.8958 2.9128

K9 1.5508 2.7508 2.9498 8.8688 9.5248 10.5418

K10 1.2248 2.4248 2.8418 3.0118 3.0338 4.0508

K11 1.5488 2.7488 2.7958 9.0918 9.5088 10.5258

A1 1.5548 2.7548 3.5638 9.6568 12.4828 13.4998

A2 1.5568 2.7568 3.5658 9.6598 12.4838 13.5008

A3 1.5228 2.7228 3.3708 8.3888 10.3838 11.4008

A4 1.4948 2.6948 3.1498 7.2088 8.4218 9.4388

A5 1.5288 2.7288 3.4008 8.7298 10.9388 11.9558

B1 1.4208 2.6208 2.6468 4.5378 4.9268 5.9438

B2 1.4158 2.6158 2.6438 4.4798 4.8468 5.8638

6 Conclusion

In this paper, several selection methods of the k are investigated in Poisson ridge regres-
sion model. According to simulation studies, it has been seen that some of these selection
methods can make improvement relative to others, in terms of MSE. In conclusion, the
use of K2 and K8 is recommended when multicollinearity is present in the Poisson ridge
regression model.
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Kibria, B. M. G., Månsson, K., and Shukur, G. (2015). A simulation study of some bi-
asing parameters for the ridge type estimation of poisson regression. Communications
in Statistics - Simulation and Computation, 44(4):943–957.
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