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In this paper, an estimator of the finite population variance S2
y is proposed. The

proposed estimator is exactly unbiased estimator for S2
y ; further, the mean squared

error (MSE) of the proposed estimator is derived. Empirical studies from real data
sets are used to compare the proposed estimator and other estimators proposed in the
literature. The proposed estimator is stable among other families and practically has
minimum MSE among other estimators.
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1 Introduction

Consider the finite population U of N units indexed by the set {1, 2, . . . , N} . For the ith unit,
let yi be the value of the interest variable Y, and xi be the value of the auxiliary variable X.
For i = 1, . . . , N, define ri = yi/xi be the values of the variable R. Under simple random sample
without replacement (SRSWOR) design, draw a random sample s of size n from U. The ith unit
(yi, xi, ri) ∈ s is assumed to be known.

The finite population ratio θyx is defined by

θyx =
ȳu
x̄u

=
ty
tx

(1)

where ty =
∑N

i=1 yi and ȳu = ty/N are the finite population total and mean for the variable of

interest Y, respectively. Furthermore, tx =
∑N

i=1 xi and x̄u = tx/N are the finite population total
and mean for the auxiliary variables X, respectively.
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A well known exactly unbiased estimator for θyx is the HR estimator proposed by Hartley and
Ross (1954) and is given by

θ̂yx = r̄s +
n (N − 1)

N (n− 1) x̄u
(ȳs − r̄sx̄s) , (2)

where x̄u is assumed to be known. ȳs, x̄s, and r̄s are the sample means of Y, X, and R, respectively.

The HR estimator has been used and generalized in different directions. Recently, many authors
are interested in the HR estimator. Under general sampling design Al-Jararha (2008) has gener-
alized the HR estimator. When the information of the auxiliary variable are available, Rao and
Swain (2014) has constructed an alternative HR unbiased estimator for ȳu. Other authors have
been considering this estimator in different directions.

To our knowledge, the HR is used to estimate the finite population ratio and can be modified to
estimate parameters can be written in term of the population ratio. Our aim is to adopt the HR
estimator for estimating S2

y .

In this paper, the main notations are given in Section 2. Section 3 is devoted to the literature
review. The proposed estimator and the main results are given in Section 4. Section 5 and Section
6 are devoted to the empirical studies and Concluding Remarks, respectively.

2 Notations

Let S2
y =

∑N
i=1 (yi − ȳu)2 / (N − 1) , S2

x =
∑N

i=1 (xi − x̄u)2 / (N − 1) and S2
r =

∑N
i=1 (ri − r̄u)2

/ (N − 1) be the finite population variances for Y, X, and R, respectively. The covariance between
X and Y is defined by Syx =

∑N
i=1 (yi − ȳu) (xi − x̄u) / (N − 1) . Further, define Cy = Sy/ȳu,

Cx = Sx/x̄u, and Cyx = Syx/ȳux̄u. On the sample level, let s2
y =

∑n
i=1 (yi − ȳs)2 / (n− 1) ,

s2
x =

∑n
i=1 (xi − x̄s)2 / (n− 1) , and s2

r =
∑n

i=1 (ri − r̄s)2 / (n− 1) be the sample variances of
the variables Y, X, and R, respectively. The sample covariance between X and Y is syx =∑n

i=1 (yi − ȳs) (xi − x̄s) / (n− 1) . Similar formulas can be defined for other variables.

Let

ξx = x̄s−x̄u
x̄u

, ξy = ȳs−ȳu
ȳu

and ξr = r̄s−r̄u
r̄u

Therefore,

E (ξx) = E (ξy) = E (ξr) = 0

and

E
(
ξ2
x

)
= 1−f

n Cxx, E
(
ξ2
y

)
= 1−f

n Cyy, E
(
ξ2
r

)
= 1−f

n Crr, E (ξyξx) = 1−f
n Cyx,

and E (ξyξr) = 1−f
n Cyr,

where f = n/N. Furthermore, define the following terms:

β∗2(x) = β2(x) − 1, β∗2(y) = β2(y) − 1, β2(x) = µx.4
µ2
x.2
,

β2(y) =
µy.4
µ2
y.2
, λ∗wv.st = λwv.st − 1, λwv.st = µwv.st

µ
s/2
w.2µ

t/2
v.2

,

µw.s = 1
N

∑N
i=1 (wi − w̄u)s , and µwv.st = 1

N

∑N
i=1 (wi − w̄u)s (vi − v̄u)t ,

for s and t being non-negative integers.
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3 Literature Review

The traditional sample variance s2
y is an unbiased estimator for the population variance S2

y . However,
this estimator dose not use the availability of the auxiliary information. The MSE of s2

y is

MSE
(
s2
y

)
= var

(
s2
y

)
=

1

n
S4
yβ

∗
2(y). (3)

Gupta (1983) considered the two sampling designs, SRSWOR and simple random sample with
replacement (SRSWR) design, and proposed unbiased estimators for estimating S2

y , the estimators
are using the availability of the auxiliary information. Further, Gupta (1983) considered two cases:
when x̄u is known and x̄u and S2

x are known. When the design is SRSWOR and the case x̄u and
S2
x are known, the estimator is defined by

s2
gpta =

n (N − 1)

N (n− 1)

[
N − 1

N
s2
y + v̄S2

x +
(N − n)

N (n− 1)
ȳ2
s −

n (N − 1)

N
s2
x −

n2 (N − 1)

N (n− 1)
(x̄s − x̄u)2

]
, (4)

where vi = y2
i / (xi − x̄u)2 , and v̄ =

∑n
i=1 vi/n. However, the MSE was not reported for this

estimator.
Prasad and Singh (1992) proposed a family of estimators for estimating S2

y . The proposed family
is defined by

s2
pras = s2

y − a
s2
x

S2
x

+ a. (5)

Where a, is a constant or function of known parameters of the auxiliary variable, the family s2
pras

is unbiased for S2
y with

var
(
s2
pras

)
= var

(
s2
y

)
+ a2 var

(
s2
x

)
S4
x

− 2a
cov

(
s2
y, s

2
x

)
S2
x

=
1

n
S4
yβ

∗
2(y) +

a2

n
β∗2(x) − 2

a

n
S2
yλ

∗
yx.22. (6)

However, Prasad and Singh (1992) considered a = 1.
Singh and Solanki (2013) summarized and proposed classes of estimators for estimating S2

y .
Different estimators and classes of estimators are proposed for estimating S2

y . The class of estimators

t = s2
y

(
aS2

x + b

as2
x + b

)
(7)

is proposed to estimate S2
y , where a and b are either constants or functions of known parameters

of the auxiliary variable X. The minimum MSE of the class of estimators t is given by

MSEmin (t) =
1

n
S4
yβ

∗
2(y)

(
1− ρ∗2

S2
yS

2
x

)
= var

(
s2
y

) (
1− ρ∗2

S2
yS

2
x

)
, (8)

where

ρ∗S2
yS

2
x

=
λ∗yx.22√
β∗2(x)β

∗
2(y)

(9)
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is the correlation coefficient between s2
x and s2

y.

Estimators ti for i = 0, 1, . . . , 9 discussed by Singh and Solanki (2013) are members of the t class.
Such estimators are given in Table (1).

Table 1: Different estimators for estimating S2
y .

Estimator Remark

t0 = s2
y The sample variance estimator.

t1 = s2
y

(
S2
x
s2x

)
Isaki (1983).

t2 = s2
y

(
S2
x+β2(x)

s2x+β2(x)

)
Upadhyaya and Singh (1996)

t3 = s2
y

(
S2
x−Cx

s2x−Cx

)
Kadilar and Cingi (2006)

t4 = s2
y

(
S2
x−β2(x)

s2x−β2(x)

)
Kadilar and Cingi (2006)

t5 = s2
y

(
S2
xβ2(x)−Cx

s2xβ2(x)−Cx

)
Kadilar and Cingi (2006)

t6 = s2
y

(
S2
xCx−β2(x)

s2xCx−β2(x)

)
Kadilar and Cingi (2006)

t7 = s2
y

(
S2
x+Cx

s2x+Cx

)
Singh and Solanki (2013)

t8 = s2
y

(
S2
xβ2(x)+Cx

s2xβ2(x)+Cx

)
Singh and Solanki (2013)

t9 = s2
y

(
S2
xCx+β2(x)

s2xCx+β2(x)

)
Singh and Solanki (2013)

The difference type estimator

td = s2
y + ω2

(
S2
x − s2

x

)
, (10)

where ω2 is suitably chosen constant, has the same minimum MSE as the t class, i.e. the

MSEmin (td) = MSEmin (t) ,

and MSEmin (t) is defined by Eq. (8).

The class of estimators for estimating S2
y proposed by Singh et al. (1988) defined by

ts = ω1s
2
y + ω2

(
S2
x − s2

x

)
, (11)

where ω1 and ω2 are suitably chosen constants. The minimum MSE of ts is given by

MSEmin (ts) =
MSEmin (td)

1 +
(
MSEmin (td) /S4

y

) (12)

where MSEmin (td) is defined by Eq.(8).

Singh and Solanki (2013) proposed the following classes of estimators

tsg =

[
ω1s

2
y − ω2

(
s2
x − S2

x

S2
x

)](
aS2

x + b

as2
x + b

)
, (13)
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and

T = ω1s
2
y

[
cS2

x − ds2
x

(c− d)S2
x

]γ
+ ω2s

2
y

[
(a+ b)S2

x

aS2
x + bs2

x

]δ
, (14)

for estimating S2
y , where ω1 and ω2 are suitably chosen constants and a, b, c, and d are either

constants or functions of known parameters of the auxiliary variable X. The minimum MSE of tsg
and T are given by

MSEmin (tsg) =
n−1S4

yβ
∗
2(y)

(
1− ρ∗2

S2
yS

2
x

)(
1− n−1η∗2β∗2(x)

)
1 + n−1

[
β∗2(y)

(
1− ρ∗2

S2
yS

2
x

)
− η∗2β∗2(x)

] (15)

and

MSEmin (T ) = S4
y

[
1− BD2 − 2CDE +AE2

AB − C2

]
, (16)

respectively, where

A = 1 +
1

n

[
β∗2(y) + γη2β

∗
2(x) (η2 (2γ − 1)− 4λ)

]
, (17)

B = 1 +
1

n

[
β∗2(y) + δη1β

∗
2(x) (η1 (2δ + 1)− 4λ)

]
, (18)

C = 1 +
1

n

[
β∗2(y) + β∗2(x)

(η
2
− 2 (δη1 + γη2)λ

)]
, (19)

D = 1 +
1

n
γη2β

∗
2(x)

(
η2 (γ − 1)

2
− λ

)
, (20)

E = 1 +
1

n
δη1β

∗
2(x)

(
(δ + 1) η1

2
− λ

)
, (21)

η1 =
b

a+ b
, (22)

η2 =
d

c− d
, (23)

η∗ =
aS2

x

aS2
x + b

, (24)

λ =
λ∗xy.22

β∗2(x)

. (25)

The estimators tsg1, . . . , tsg10 are members from the tsg class and defined in Table(1), Singh and
Solanki (2013) and T1, . . . , T10 are members from the T class and defined in Table(2) from the same
reference.

Under the constrain ω1 +ω2 = 1, the class of estimators T reduces to the new class of estimators

T ∗ = ω1s
2
y

[
cS2

x − ds2
x

(c− d)S2
x

]γ
+ (1− ω1) s2

y

[
(a+ b)S2

x

aS2
x + bs2

x

]δ
, (26)

with minimum MSE given by Eq.(8).
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Under two-phase sampling and based on the auxiliary variable in the presence of non-response,
Bhushan (2012) proposed a class of modified exponential-ratio type estimators for estimating the
population mean. Shabbir and Khan (2013) the prior information about the auxiliary variable are
used to introduce ideas for estimating the mean of the variable Y, unbiasedly.

Most of the classes of estimators mentioned in this summary, are originally proposed to estimate
the finite population mean, total, and ratio modified to estimate S2

y . To our knowledge, none of
them adopted the approach of well known behaves estimator proposed by Hartley and Ross (1954)
for estimating the population ratio θyx. The proposed estimator will modify the HR estimator to
estimate S2

y .

4 Proposed Estimator

From Eq. (2), rewrite the HR estimator in terms ξx, ξy, and ξr, we have

θ̂yx = r̄u +
n (N − 1)

N (n− 1) x̄u
(ȳu − r̄ux̄u) + ayξy + arξr + axξx (1 + ξr) , (27)

where ay = n(N−1)
N(n−1)

ȳu
x̄u
, ar = − N−n

N(n−1) r̄u, and ax = −n(N−1)
N(n−1) r̄u. It is known that θ̂yx is exactly

unbiased estimator for θyx. This is also clear from Eq. (27), since

E (ξxξr) =
1− f
n

Cxr (28)

=
1− f
n

N

N − 1

ȳu − r̄ux̄u
r̄ux̄u

(29)

Therefore,

E
(
θ̂yx

)
= r̄u +

n (N − 1)

N (n− 1) x̄u
(ȳu − r̄ux̄u) + ax

1− f
n

N

N − 1

ȳu − r̄ux̄u
r̄ux̄u

= ȳu/x̄u = ty/tx.

In this case, the MSE of θ̂yx is the same as the variance of θ̂yx. Therefore, taking the variance of
both sides of Eq. (27), we have

MSE
(
θ̂yx

)
= V ar

(
θ̂yx

)
=

1− f
n

{
a2
yCyy + a2

rCrr + a2
xCxx + 2axayCxy + 2axarCxr + 2ayarCyr

}
=

1− f
n

{
a2
yCyy + a2

rCrr + a2
xCxx

+ 2axayCxy + 2ayarCyr + 2
N

N − 1

ȳu − r̄ux̄u
r̄ux̄u

axar

}
. (30)

Remark 4.1. The ratio estimator for estimating ȳu based on the HR estimator is

ȳhr = x̄ur̄s +
n (N − 1)

N (n− 1)
(ȳs − r̄sx̄s) . (31)

This estimator is exactly unbiased. The MSE of ȳhr is given by

MSE (ȳhr) = x̄2
uMSE

(
θ̂yx

)
, (32)

where MSE
(
θ̂yx

)
is given by Eq. (30).
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The ratio parameter of our interest is

θS2
yS

2
x

=
S2
y

S2
x

=

∑N
i=1 (yi − ȳu)2 / (N − 1)∑N
i=1 (xi − x̄u)2 / (N − 1)

=
ty̆
tx̆

(33)

which is a function of the population totals ty̆ and tx̆, where ty̆ =
∑N

i=1 y̆i =
∑N

i=1 (yi − ȳu)2 and

tx̆ =
∑N

i=1 x̆i =
∑N

i=1 (xi − x̄u)2 .

Therefore, to estimate θS2
yS

2
x

based on the HR approach, substitute (yi − ȳs)2 , (xi − x̄s)2 , and

(yi − ȳs)2 / (xi − x̄s)2 in Eq. (2) instead of yi, xi, and ri, respectively. Hence

θ̂S2
yS

2
x

= r̆s +
1

S2
x

(
s2
y − r̆ss2

x

)
(34)

is the HR approach for estimating the finite population ratio θS2
yS

2
x
, where

r̆s =
∑n

i=1

[
(yi − ȳs)2 / (xi − x̄s)2

]
/n for all xi ∈ s and xi 6= x̄s. The estimator θ̂S2

yS
2
x

is exactly

unbiased estimator for θS2
yS

2
x
.

The finite population variance S2
y can be estimated by the proposed estimator

s2
yhr =

N − 1

N
S2
xθ̂S2

yS
2
x
,

hence

s2
yhr =

N − 1

N
S2
xθ̂S2

yS
2
x

=
N − 1

N

[
s2
y + r̆s

(
S2
x − s2

x

)]
(35)

be the proposed estimator based on HR approach for estimating S2
y , where S2

x is assumed to be
known.

Eq. (32) can be used to obtain the MSE of s2
yhr by using x̆, y̆, and r̆ instead of x, y, and r,

respectively. Therefore,

MSE
(
s2
yhr

)
= V ar

(
s2
yhr

)
=

1− f
n

(
N − 1

N

)2

S4
x

{
a2
y̆Cy̆y̆ + a2

r̆Cr̆r̆ + a2
x̆Cx̆x̆

+ 2ax̆ay̆Cx̆y̆ + 2ax̆ar̆Cx̆r̆ + 2ay̆ar̆Cy̆r̆} . (36)

Where
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ay̆ = n(N−1)
N(n−1)

S2
y

S2
x

ar̆ = − N−n
N(n−1)

¯̆ru ax̆ = −n(N−1)
N(n−1)

¯̆ru

¯̆yu = µy.2 ¯̆xu = µx.2 ¯̆ru = 1
N

∑N
i=1

(yi−ȳu)2

(xi−x̄u)2

Cx̆x̆ = N
N−1β

∗
2(x), Cy̆y̆ = N

N−1β
∗
2(y), Cr̆r̆ = N

N−1

 1
N

∑N
i=1

(yi−ȳu)4

(xi−x̄u)4

¯̆r2
u

− 1

 ,
Cy̆x̆ = N

N−1λ
∗
yx.22, Cy̆r̆ = N

N−1

 1
N

∑N
i=1

(yi−ȳu)4

(xi−x̄u)2

¯̆ruµy.2
− 1

 , and Cx̆r̆ = N
N−1

[
µy.2

¯̆ruµx.2
− 1
]
.

Analytically, it is not an easy task to compare the MSE’s of the other estimators mentioned in
this article and the proposed approach. Therefore, the empirical MSE will be computed from real
data sets for the proposed estimator and other estimators mentioned in Section (3).

5 Empirical Studies

The comparisons between the families of estimators discussed by Singh and Solanki (2013), Prasad
and Singh (1992) and the proposed approach will be made based on the empirical relative MSEs
studies from real data sets.

Remark 5.1. The empirical relative efficiency for each family is the ratio of the maximum MSE
to the minimum MSE of the estimators in that family. Further, the empirical relative efficiency

of the proposed estimator is the ratio of MSE
(
s2
yhr

)
to the minimum MSE of each family. The

empirical relative efficiencies are given in the boxes at the end of Tables (2), (3) and (4).

Consider the Apple data set considered by Kadilar and Cingi (2007). The summary of the data
set as reported by Singh and Solanki (2013) is given in the following table.

N = 104 n = 20 f = 0.192 β2(y) = 16.532 λyx.22 = 14.398

Ȳ = 6.254 Sy = 11.670 Cy = 1.866 β2(x) = 17.516 ρ∗s2ys2x
= 0.837

X̄ = 13931.683 Sx = 23026.133 Cx = 1.653 ρyx = 0.865 λ = 0.811

To compute the MSE of the proposed approach, the complete data set is needed to define the R
variable. However, the results are summarized in Table (2) and will be used in the comparisons.

Consider the Loblolly data set included in the R library data sets package. The variable of inter-
est Y is the tree heights (ft) and the auxiliary variable X is the tree ages (year). The Loblolly data
set consists from N = 84 observations. The sample size (n = 16) gives approximately the same
f = 0.192 for the Apple data set. The Loblolly data set is summarized by the following table.

N = 84 n = 16 f = 0.1905 Ȳ = 32.3644 X̄ = 13

S2
y = 427.3979 S2

x = 62.4096 Cy = 0.6388 Cx = 0.6077 ρyx = 0.9899

ρ∗s2ys2x
= 0.9366 β∗2(y) = 0.5422 β∗2(x) = 0.6361 λ∗yx.22 = 0.5500 ¯̆ru = 8.1881

Cr̆r̆ = 0.4907 Cy̆r̆ = −0.0871 Cx̆r̆ = −0.1656

The computations from Loblolly data set are summarized in Table (3).
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Table 2: Computations from Apple data sets when (n = 20).

t family tsg family T family estimator

Defined by Eq(7) Defined by Eq(13) Defined by Eq(14)

MSE (t0) = 14395.577︸ ︷︷ ︸
max

MSE (tsg1) = 1847.70︸ ︷︷ ︸
min

MSE (T1) = 672.903 MSEmin (t) = 4316.321

MSE (t1) = 4862.205 MSE (tsg2) = 1847.799 MSE (T2) = 77.054︸ ︷︷ ︸
min

MSE (td) = 4310.482

MSE (t2) = 4862.205 MSE (tsg3) = 1847.799 MSE (T3) = 79.434 MSE (ts) = 3497.623

MSE (t3) = 4862.205 MSE (tsg4) = 1847.799 MSE (T4) = 751.039 MSE (tg) = 2615.177

MSE (t4) = 4862.205 MSE (tsg5) = 1847.799 MSE (T5) = 1350.204 MSE (T ∗) = 4316.321

MSE (t5) = 4862.205 MSE (tsg6) = 1848.469︸ ︷︷ ︸
max

MSE (T6) = 1534.483︸ ︷︷ ︸
max

MSE
(
s2pras

)
= 14393.404

MSE (t6) = 4862.205 MSE (tsg7) = 1847.799 MSE (T7) = 1438.673

MSE (t7) = 4862.205 MSE (tsg8) = 1847.799 MSE (T8) = 966.107

MSE (t8) = 4862.205 MSE (tsg9) = 1847.813 MSE (T9) = 717.981

MSE (t9) = 4862.205 MSE (tsg10) = 1847.799 MSE (T10) = 911.452

MSE(t0)
MSE(t1)

= 2.9607
MSE(tsg6)
MSE(tsg1)

= 1.0004 MSE(T6)
MSE(T2)

= 19.9144

Table 3: Computations from Loblolly data sets when (n = 16).

t family tsg family T family estimator

Defined by Eq(7) Defined by Eq(13) Defined by Eq(14)

MSE (t0) = 6190.2︸ ︷︷ ︸
max

MSE (tsg1) = 757.26 MSE (T1) = 707.17︸ ︷︷ ︸
min

MSEmin (t) = 760.54

MSE (t1) = 893.51 MSE (tsg2) = 813.07 MSE (T2) = 748.47 MSE (td) = 760.54

MSE (t2) = 848.05 MSE (tsg3) = 690.9 MSE (T3) = 758.1 MSE (ts) = 757.38

MSE (t3) = 913.54 MSE (tsg4) = 824.57 MSE (T4) = 1194.58 MSE (tg) = 745.36

MSE (t4) = 951.69 MSE (tsg5) = 838.2︸ ︷︷ ︸
max

MSE (T5) = 760.35 MSE (T ∗) = 760.54

MSE (t5) = 864.32 MSE (tsg6) = 534.66 MSE (T6) = 7985.42 MSE
(
s2pras

)
= 6160.86

MSE (t6) = 996.88 MSE (tsg7) = 691.69 MSE (T7) = 747.79 MSE
(
s2yhr

)
= 240.92

MSE (t7) = 875.24 MSE (tsg8) = 835.96 MSE (T8) = 746.50

MSE (t8) = 882.14 MSE (tsg9) = 254.01︸ ︷︷ ︸
min

MSE (T9) = 758.53

MSE (t9) = 824.65︸ ︷︷ ︸
min

MSE (tsg10) = 823.74 MSE (T10) = 12088.74︸ ︷︷ ︸
max

MSE(t0)
MSE(t9)

= 7.5065
MSE(tsg5)
MSE(tsg9)

= 3.2999 MSE(T10)
MSE(T1)

= 17.0945
MSE(s2yhr)
MSE(tg)

= 0.3232
MSE(s2yhr)
MSE(t9)

= 0.2922
MSE(s2yhr)
MSE(tsg9)

= 0.9485
MSE(s2yhr)
MSE(T1)

= 0.3407

Consider the data set given by Cochran (1977), Table 6.9, Page 182. Let Y be numbers of not
inoculated children and X be numbers of placebo. The data is summarized by the following table.
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N = 34 n = 10 f = 0.2941 Ȳ = 8.3706 X̄ = 4.9235

S2
y = 74.0428 S2

x = 25.3855 Cy = 1.028 Cx = 1.0233 ρyx = 0.9014

ρ∗s2ys2x
= 0.58 β∗2(y) = 7.9325 β∗2(x) = 5.3911 λ∗yx.22 = 4.9802 ¯̆ru = 4.6354

Cr̆r̆ = 3.6483 Cy̆r̆ = 8.1729 Cx̆r̆ = −0.382

The computations are summarized in Table (4).

Table 4: Computations for Table 6.9, Cochran (1977), when (n = 10).

t family tsg family T family estimator

Defined by Eq(7) Defined by Eq(13) Defined by Eq(14)

MSE (t0) = 4348.85︸ ︷︷ ︸
max

MSE (tsg1) = 1211.36 MSE (T1) = 451.83 MSEmin (t) = 1826.69

MSE (t1) = 1843.86 MSE (tsg2) = 1227.44 MSE (T2) = 838.4 MSE (td) = 1826.69

MSE (t2) = 1872.79 MSE (tsg3) = 1215.5 MSE (T3) = 1243.05 MSE (ts) = 1370.16

MSE (t3) = 1868.00 MSE (tsg4) = 1194.85︸ ︷︷ ︸
min

MSE (T4) = 1079.92 MSE (tg) = 1166.82

MSE (t4) = 2330.09 MSE (tsg5) = 1195.89 MSE (T5) = 1292.14︸ ︷︷ ︸
max

MSE (T ∗) = 1826.69

MSE (t5) = 1831.03 MSE (tsg6) = 1241.08︸ ︷︷ ︸
max

MSE (T6) = 196.63︸ ︷︷ ︸
min

MSE
(
s2pras

)
= 4275.64

MSE (t6) = 2305.57 MSE (tsg7) = 1222.27 MSE (T7) = 1272.25 MSE
(
s2yhr

)
= 719.32

MSE (t7) = 1830.84︸ ︷︷ ︸
min

MSE (tsg8) = 1235.21 MSE (T8) = 1383.2

MSE (t8) = 1841.15 MSE (tsg9) = 1219.21 MSE (T9) = 1090.25

MSE (t9) = 1870.12 MSE (tsg10) = 1221.7 MSE (T10) = 383.07

MSE(t0)
MSE(t7)

= 2.38
MSE(tsg6)
MSE(tsg4)

= 1.04 MSE(T5)
MSE(T6)

= 6.57
MSE(s2yhr)
MSE(tg)

= 0.62
MSE(s2yhr)
MSE(t7)

= 0.59
MSE(s2yhr)
MSE(tsg4)

= 0.60
MSE(s2yhr)
MSE(T6)

= 3.66

6 Concluding Remarks

In this section, the main results for the proposed approach and other approaches are summarized.
Based on Tables (2), (3) and (4), we have the following concluding remarks.

1. For the t family, the MSE of the estimators do not attain MSEmin (t) in all examples. Indeed,
the estimators in this family are depending on the choice of the parameters of the auxiliary
variable as can be seen from Tables (3) and (4).

2. The families are not stable between themselves. Since there are significant difference between
the minimum MSE and the maximum MSE of the estimators for each family. This is also
clear from the relative efficiency for each family; for example, the relative efficiency for the T
family are 19.9144, 17.0945, and 6.57 from Tables (2), (3) and (4), respectively.

3. There is no clear way to depend on a specified family and on a specified estimator from that
family. Among the families (t, tsg, and T ): In Table (2), the minimum MSE among all other
estimators is for the estimator T2 from the T family. From Table (3), this minimum is for
tsg9 from the tsg family. Further, T6 has the minimum MSE as can be seen from Table (4).
At the same time, T6 has the maximum MSE from Table (2).
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4. From Table (3), The proposed estimator s2
yhr has the minimum MSE among all estimators

and families and the 3rd best on Table (4). At the same time, the fact that T6 and T10 are
not stable estimators can not be ignored since T6 has the maximum MSE in Table (2) and
T10 has the maximum MSE in Table (3). Based on this, the emphasis on using s2

yhr as an

estimator for S2
y should be raised.

5. The relative efficiency of the s2
yhr is more stable than the relative efficiency between the

families themselves.

6. The estimator s2
yhr is simple to apply in practical applications and needs only one assumption

S2
x to be known. However, other estimators and families need more assumptions.

As final conclusions, the proposed estimator s2
yhr is derived based on the Hartley and Ross

(1954) approach. s2
yhr is exactly unbiased, stable for estimating the finite population variance

S2
y , has minimum MSE among the discussed estimators and families, and behaves as the original

estimator proposed by Hartley and Ross (1954).
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