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Recently Mahmoudi and Mahmoodian (2017a) introduced a new class of
distributions which obtained by compounding normal and power series class
of distributions. This class of distributions are very flexible and can be used
quite effectively to analysis skewed data. In this paper we proposed a new
bivariate class of distributions with the normal-power series distributions
marginals. Different properties of this new bivariate class of distributions
have been studied. Bivariate normal power series class of distributions has
five unknown parameters. The EM algorithm is used to determine the max-
imum likelihood estimates of the parameters. We illustrate the usefulness of
the new class of distributions by means of an application to a real data set.

keywords: Normal distribution; Power series distributions; EM algorithm;
Maximum likelihood estimation; Copula.

1 Introduction

The normal distribution is probably the most well-known statistical distribution and
widely used to model many phenomena. Notice that normal distributions is symmetric.
Many different fields of science such as engineering, economics, actuarial sciences and
medicine, used asymmetry and skew data that are outside of the range allowed by
the normal distribution, so it is necessary to introduce another model that can take
into account these issues. Due to this reason, Azzalini (1985) discussed formally and
popularized the univariate skew-normal distribution. A random variable Z is said to
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have a skew-normal distribution with parameter A € R, if its probability density function
(pdf) is given by
d(z;0) =2¢(2)P(N2), z€R,

where ¢(z) and ®(z) are the standard normal density and cumulative distribution func-
tions (cdf), respectively. This distribution and its variations have been discussed by
several authors including Azzalini (1986), Henze (1986), Branco and Dey (2001), Lop-
erfido (2001), Azzalini and Chiogna (2004), Arellano-Valle et al. (2006) and Sharafi and
Behboodian (2008). Recently, Mahmoudi and Mahmoodian (2017a) by compounding
normal and power series class of distributions introduced an alternative skewed model
and named it normal-power series (NPS) class of distributions. They obtained several
properties of the NPS distributions such as moments, maximum likelihood estimation
procedure via an EM-algorithm and inference for a large sample.

Recently, Kundu and Gupta (2014) introduced a new bivariate distribution by com-
pounding a bivariate Weibull distribution with a geometric distribution. The bivariate
generalized exponential-power series, the bivariate generalized linear failure rate-power
series, the bivariate Weibull-power series and the bivariate normal-geometric distribu-
tions introduced and studied by Jafari et al.  (2018), Roozgar and Jafari (2015),
Roozegar and Nadarajah (2016) and Mahmoudi and Mahmoodian (2017b).

In this paper, we introduce bivariate normal-power series (BNPS) class of distribu-

tions with the normal-power series distributions marginals. The BNPS class of distribu-
tions contain several lifetime models such as: bivariate normal-geometric (BNG), bivari-
ate normal-Poisson (BNP), bivariate normal-logarithmic (BNL) and bivariate normal-
binomial (BNB). Many properties of the joint distribution of order statistics can be
used in establishing different properties of the proposed bivariate normal power series
distributions. We provide the joint and conditional density functions, the joint cumula-
tive and survival functions. It is observed that the generation of random samples from
the proposed bivariate model is straightforward, hence simulation experiments can be
performed quite conveniently. The proposed bivariate class of distributions have five
parameters. We use an EM algorithm to estimate the model parameters. Moreover, it
has a physical interpretation also.
The main aim of this paper is to introduce a bivariate distribution with continuous
marginals and having a non-singular component which can be used to analyze data with
negative, negative-positive and positive values with no ties in data. The main advan-
tage of the proposed bivariate distribution is that it can have marginals with heavy tails.
The proposed model has some interesting physical interpretations also. Hence, it may be
more flexible than the existing models and it will give the practitioner one more option
to choose a model among the possible class of bivariate models for analyzing negative
and negative-positive data.

To begin with, we shall use the following notation throughout this paper: ¢(-) for the
univariate standard normal pdf, ¢, (- ; p, X) for the pdf of N, (u,X) (n -variate normal
distribution with mean vector p and covariance matrix %), @, (- ; u, ) for the cdf of
Np(p,X) (in both singular and non-singular cases), simply ®,,(- ; ¥) for the case when
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pu = 0. Furthermore, for r,k € N, let 1,, I, and 0,4 denote the vector of ones, the
identity matrix of dimension r, and r x k zero matrix, respectively.

The rest of the paper is organized as follows. In Section 2, we provide a brief review
of the univariate normal power series class of distributions. The bivariate normal power
series class of distributions are discussed in Section 3. In Section 4 different properties of
the proposed bivariate normal-power series are given. Section 5 devotes with the copula
form of these class of distributions. In Section 6, we present some special distributions
which are studied in details. EM algorithm is presented in Section 7. Simulation study
is given in Section 8. Applications to one real data set are given in Section 9. Finally,
Section 10 concludes the paper.

2 Univariate normal-power series class of distributions

Let X1,.., Xn be a random sample from normal distribution with mean g and variance
0?2 and N belongs to a power series distributions (truncated at zero) with the following
probability mass function
an 0™
P(N = n) — 2.1

where a, > 0 depends only on n, C(0) = > >° a,0" and 6 € (0,s) (s can be 00) is
such that C(#) is finite. Detailed properties of power series distributions can be found
in Noack (1950). Here, C'(6), C"(8) and C"(6) denote the first, second and third
derivatives of C'(f) with respect to 6, respectively. Moreover, N is independent of X;’s.
If X(y)=max(Xy,.., Xy), then the conditional cdf of X[V = n is given by

GX(N)|N:n(x) = (®($7 s U))na

where ®(-; i1, o) is cdf of normal distribution with mean g and variance o2. The normal-
power series class of distributions is defined by the marginal cdf of X x:

F(z)=)_
n=1

The corresponding pdf, survival and hazard rate functions are

and™ _ n_ C(0(x;p,0))
o) M) =Ty

, z€R.

flx) = 06(z;p, U)W’
C(0®(x;p,0))

S(x) = 1- co) )

and

C'(0¢(x; i, 0))
C(0) — C(0®(; p,0))

h(z) = 0¢(z; p, 0)
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Hereafter, this distribution will be denoted by NPS(u,o0,60). The moment generating
function (mgf) and mean of NPS(u,o,60) can be obtained as

1 >, a,0"
Mx(t) = —¢2 n &, (1, 1t: 1,1+ 1,117
x(t) exp (2 >n21 c(0) xXn 1( 13 1+ 11, 1)

1
= exp <2t2> E(NON_1(In_1t;In_1 + ].N,llj]\}fl)),

and

. 1 T
[+ o Z anen % (n - 1)@n72 (07 Lo+ §1n72T]-n—2) )
— C(@) 2ﬁq)n—1 (03 L1+ ]—n—l]-n_l)

This class of distributions contain several sub-models such as normal-geometric (NG),
normal-Poisson (N P), normal-logarithmic (VL) and normal-binomial (N B) distribu-
tions as special cases. Detailed properties of normal-power series class of distributions
can be found in Mahmoudi and Mahmoodian (2017a).

3 The BNPS class of distributions

The bivariate normal-power series class of distributions can be construct as follows. Let
{X1,---,Xn} and {Y7,--- , YN} be two sequence of mutually independent and identi-
cally distributed (i.i.d.) from N (u1,0%) and N(uz,03), respectively. Also N has a power
series distribution (truncated at zero) with the probability mass function given in (2.1)
and is independent of X;’s and Y;’s. Let

U; = max(Xq,---,Xy) and Us = max(Yy, -+, Yn).
The joint cdf of (U, Us) is

Fuy v, (u1,u2) =P(Ur < up,Us < ug)

00 on §
_nz:l % [P (u1; p1, 01)P(u2; p2, 02)]

_C(0D(uy; p1, 01)P(ug; pa, 02))
_ o0 . (3.1)

The bivariate random vector (Uj,Usz) is said to have a bivariate normal power series
distributions, denoted by BN PS(u1, p2,01,09,0), if (Uy,Us) has the joint cdf (3.1).
The following interpretation can be given for the BNPS class of distributions.

Let X1, , Xy and Y7, ,Yy Dbe the failure times of the N components in two inter
independent systems then (Uy,Usz) = (max(Xy, -+, Xn), max(Y1,---,Yn)) will be the
failure times of the two systems if the components in both systems work in parallel case.
It is quite simple to generate samples from a BNPS distribution. We present the following
simple algorithm to generate (U, Us) from the BN PS(pu1, p2,01,02,0).
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Step 1 Generate N from the power series distributions and call its observed value equal
n.

Step 2 Generate {X1,---, X, } and {Y7,---,Y,} from N(u1,07) and N(uz,03).
Step 3 Obtain U; = max(Xy,---,X,) and Uy = max(Y1,---,Y,), independently.

Step 4 Replicate Steps 1-3, m times to obtain a random sample of size m of BNPS class
of distributions.

The joint probability distribution and survival functions of (Uy,Us) are given by

foou,(ur,u2) = 9¢(U15M1706112£(U2;M2,02) 01(9@(u1;u1,01)<I>(u2;,u2,02))

1

+ 0P (ur; p1, 01)P(ug; p2, 02)C (0P (ur; pr, 01) P(ug; po, 02))} )

and
St = 1 LN Gt CO)
C (09 (ug; p2, 02))
C(9) ’
respectively.

Proposition 1. As § — 0% we have

C (0P (u1; p1, 01)P(ug; 2, 02))

lim F; = 1
. C(6)
— lim Yoy a0 [®(ug; 1, 1) P(ug; po, 02)]"
0—0+ Zzozl an 0"

m S0 @0 [®(ug; pa, 01) @ (un; pio, 02)]"
0—0+ Z;_:ll and™ + a0¢ + ZZO:CJrl a,0m
act® [®(ur; p, 1) P(ug; po, 02)]°
S @b+ ache + 3000 L andn
© lim Yoo 0" [®(ur; pu1, 01) P (ug; p2, 02)]"
6—0+ 22;11 an 0" + ahc + Zzo:cH a, 0"
= [®(u1; p1, 01) P (u2; p2, 02)]%,

where ¢ = min{n € N: a,, > 0}.

The following theorem provides the marginal and conditional distributions of the
BNPS class of distributions.
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Theorem 1. If (Uy,Us) ~ BNPS(p1, po2, 01,02,0), then
(Z) Uz NNPS(,[LZ',O'i,Q), 1= 1,2.

(i) The conditional pdf of Uy given Uy = ug is

d(uy; pr,01)C (0D (uy; pr, 01)®(uz; pra, 02))
C' (0 (ug; p2, 02))
0D (ur; 11, 01) D (ug; pa, 09)p(ur; pi1, 01)C" (0D (ur; pr, 01)®(uz; pia, 02))

fUl\Uz (u1|u2) =

+

C’(H(I)(u2; 2, 02))
(i)

) = D (uy; 1, 01)

? C/(9¢(u2;p2,02))

Proof. The proof of parts (i) and (ii) can be obtained in a routine matter. For part (iii),
we can write

P(U1 <u | UQ =Uu X Cl(eib(ul;,ul,al)@(uQ;,ug,ag)).

P(U; < U, =
P <uy | Up —up) = LULEwle=us)

P(UQ ZUQ)
(e e}
= Y P(U1<u | N=nUp=up) x P(N=n|Up = up)
n=1

(@ (u1; f11,01))" 00 (P (un; pio, 02))" "
C,(Q@(U% H2, 02))

3
Il
N

D(up;pr,01) 1 .
’ ) 9” ) o . n
C' (0P (ug; pa, 02)) Znan P (u1; pr, 01)P(u2; p2, 02))

_ (p(ula/“él)o-l) ’ ) .
-~ CN(09(ug; p2, 02)) X C (0 (ur; p1, 01) ®(ug; p2, 02))-

O]

Remark 1. If we consider Vi = min(Xy,...,Xy) and Vo = min(Y3,...,Yy), another
class of bivariate distributions is obtained with the following joint cumulative survival
function:

FVl,VQ(/U].’/U2) _ P(Vvl > Ul,VQ > 'U2) _ 0(0(1 - (I)(Uhﬂl,oc-,l()e))(l - @(u2;/£2,0‘2)))'

4 Properties

To better motivate the results developed in this section, we first provide a brief definition
of the multivariate unified skew-normal (SUN) distributions. Let V; and V2 be two
random vectors of dimensions m and n, respectively, and

() (()(35))
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The n-dimensional random vector Z is said to have the SUN distribution with parameter
a=(&n QT A), where £ € R" and n € R™ are location vectors, 2 € R"*" and
I' € R™*™ are dispersion matrices, and A € R™*"™ is a skewness/shape matrix, denoted
by Z ~ SUNypm ( §,1,Q,T,A) or simply by Z ~ SUN,, ,,, (), if

2LV, | (Vy>0).

The density function of Z is [see Arellano-Valle and Azzalini (2006), Arellano-Valle et
al. (2006) and Arellano-Valle and Genton (2010)]

bn (2:€,9) O (n+ ATQ ! (2 £);T — ATQ1A)
Dy (m;T)

Furthermore, when Z ~ SUN,, ,,, (), the mgf of Z is available in an explicit form and
is given by

fSUN,..m (23 00) =

exp (STS—i—%STﬂs) D, (n + ATs; F)
@y, (m; T)

MSUNn,m (s;a) = . (4.1)

Now, let X and Y be two random vectors of dimensions n, and (X”,Y?) having a
multivariate normal distribution

<}Y{,> NNQn(l"’72>7

p= 1,01 and 3 = U%In Ozxn .
1,00 UQIn

If Xy = max(Xy,---,X,) and V() = max(Y1,---,Y,) be the largest order statis-
tics obtained from X and Y respectively, then the joint pdf of (X(,),Y(,)) is given by
Pourmousa and Jamalizadeh (2014).

where

IX () Yy (U1, U2) = fSUN, 5,5 (U1, u2; @), (4.2)
where o = (£,0,Q,T, A), with

2.0
e = ("M)=" .
M2 0 oy

r — 0—% (In—l + 1n—11£_1 0n—1xn-1
03 (L1 + 1,117 )

A = ]-nflo'% 0p—1xn—1
= 5 .

In the following proposition, we present the mixture representation of f, 1, (u1, u2).
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Proposition 2. The densities of BNPS class of distributions can be written as

fun v, (w1, u2) Z P(N =n)[fx )Y (U1, u2), (4.3)

where fx v, (u1,uz) is the joint density function of (X, Y(n)) in (4.2).

Proposition 3. If the random vector (Uy,Us) ~ BN PS(u1, po, 01,02,0), then
(i) The mgf of (Uy,Us) is given by (for s € R?*2 )

o0

a0  exp (ETS + STQS) Py,_o (ATS; I‘)
X .
— C(0) ®y,—2 (0;T)

MU17U2 (S) =

(i) The product moment E(U Us) is given by

E(UlUQ) =
> q,0" n(n —1)oy 1 T
= _— (p — O'In— 7171— 171—
n=1 0(9) |:M1 * 2\F ? ( ’ 2t 2 ’ ’
nn—1)o 1

Proof. (i) we can write

oo

an, 0"
MU17U2 (S) @MX(,,L),Y(M (S)

=1

> a,0"
= - MSUNQ 2n— Q(S a)

n=1 0(0)

> a,0"  exp (€7s + 3sTQs) oo (ATs;T)
_ x '

— C(@) (I>2n—2 (0; F)

The proof of (ii) can be obtained as follows:

and™

Q)

E(thlUy) = E(BEXxnYw | N=n)=>

n=1

2. a0 n(n —1)oy 1 T
= —_— 7¢TL— )ITL— 7]_”— 1 —

nn—1)o 1
%i[u24‘()2¢“’2 (O;In_z%-an—21g;2>}'

d

The stress-strength parameter, R = P(U; < Us), is useful for data analysis purposes.
The following result gives the stress-strength parameter of BNPS models.
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Proposition 4. If (Uy,Us) ~ BNPS(u1, u2,01,092,0), then
R=PU <U,) = @FSUNI,QTL—Q (0;"),

n=1

where FSUN, o,_, (-3 %) is the cdf of the univariate SUNy 2, 2(e*) distribution, and
o* = (1 — p2,0,02 + 03, T, A), with

T = O'% (I”—l + 171—11571) 0n—1xn—-1
- , . ’
03 (Tn—1+ 1,117 _4)

A — 1n—10'% 0p—1xn—1
= ) .
1n_102

Proof. We have

oo
anf™

n=1 C(e)

P(U1 < Ug) = P(X(N) < Y'(N)) = P(X(n) < Y'(n))

Now, we compute P(X (n) < Y(n)) For this purpose, let X and Y be partitioned as
X; Y;
X = , Y = .
X_; Y_;

n n
P(Xpy <Yp) = Y. Y Py Xi—X_;>01, ,¥,-Y_;>0)x
i=1 j=1
P(X;-Y; < 0]1,1X;i—X_;>0,1, ,Y;-Y_; >0),

We then have

Since, fori=1,--- ,nand j=1,---,n

1, 1X; — X
1,1 —-Y N- 0 T A
-1 — X5 ~ iV2n ) )
! XZ-]—YJ- ’ 1 — 2 o} + o3

by using the definition of the univariate SUN distribution, we have
P(Xl - }/J <0 | 1,1X; —X_; >0, 1n71)/j - Y—j > O) = FSUNI,Qn—2 (O; a*) )

and
n n
Y PAuaXi-Xi>01,,Y;-Y_;>0)=1,
i=1 j=1

which completes the proof. O
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Proposition 5. If (Ui, Us) ~ BNPS(u1, u2,01,02,0), then
(i) The cdf and pdf of max(Uy, Us) is

C(0D(u; 1, 01)®(u; pa2, 02))
C(6) ’

Frax(Uy,vs)(w) = P(U1 < u, Uy <u) =

and

— [00(us pr, 01) P (us pg, o) + 09 (us pa, 02) P (u; pa, 01)]
fmax(U1,U2)(u) - C(e)

X C (0D (u; p1, 01) @ (us pia, 2)).
(ii) The cdf and pdf of min(Uy,Us) is given by
C(0P (u; p1,01))

Fmin(Ul,Uz)(u) = P(min(UlvUQ) < u) = 0(9)
L GO (uips,00))  COD(us 1, 01)B(u; pi2, 02))
C(0) C(0) ’
and
. _ 09 (uipn,00) C(0® (w1, 01)) | ¢ (us pu,01) C (6D (us pa, 02))
fmln(Ul,Ug)(u) - 0(9) + 0(0)

fmax(U1,U2) (U)

5 Special cases of BNPS class of distributions

In this section four important sub-models of BNPS class of distributions are studied in
details. These models are bivariate normal-geometric (BNG), bivariate normal-Poisson
(BNP), bivariate normal-logarithmic (BNL) and bivariate normal-binomial (BNB) dis-
tributions.

5.1 Bivariate normal-geometric distribution
In the geometric case, i.e., when a,, = 1 and C(0) = % (0 < 6 < 1), we obtain bivariate
normal-geometric distribution, denoned by BNG(u1, p2, 01, 09, 6), with cdf

(1 — 0)®(u1; p1,01)P(u2; 2, 02)
L — 0®(ug; p1, 1) P (ug; 2, 02)

Fu, v, (u1,u2) =

The probability density and survival functions are

(1 = 0)p(ur; p1, 01)P(u2; p2, 02)

(1= 0D (uy; pr, 01)P(ug; 2, 02))?
200 (uy; p1, o1) P (uz; p2, 02)

(1 = 0D (uy; p1, 01)P(uz; p2, 02))

fon,vs (w1, u2)

X 1+
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and
(1=0)®(ur;p1,01) (1= 0)P(ug; 2, 02)
- 1- _
St (1, 12) 1 —0®(ur; p1,01) 1 — 0 (ua; p2, 02)
(1 —0)®(u1; p1,01)P(u2; 2, 02)
1 — 0D (uy; p1,01)P(ug; po, 02)
respectively.
If (Uy,U) ~ BNG(u1, p2, 01,09, 6), then mgf of (Uy, Us) is given by
My, v,(s) = > _(1=0)0""Mgun,,_,(s;0)
n=1
e’} T .
_ Z(l e x exp (¢''s+3s7Qs) @op_o (ATs;T) '
n—1 (I>2n—2 (O,F)

Figures 1 and 2 show the BNG density function and contour plots for selected values 6

where p; = puo = 0 and 01 = 092 = 1, respectively.

The contour plots can show the dependency between components (U;,Us) and their
skewness. As seen in Figure 2 for § = 0.01 (left top graph) the dependency between
(U1,Us) is very poor and the graph shows the symmetry, as 6 increases, the positive
dependency is increased and the marginal distributions of U; and U, are left skew.

5.2 Bivariate normal-Poisson distribution

In the Poisson case, i.e, when a, = 3 and C(0) = ¢’ — 1 (# > 0), we obtain bivariate

normal-Poisson distribution, denoned by BN P(u1, p2, 01,02, 0), with cdf
0P (uasp1,01) P (uz;p,02) _ q
e —1

The probability density and survival functions are

FUl,UQ (uly u2) -

0(uy; pa, 01)P(uz; pa, o2) (14 0P (uy; pa, 01)P(u2; 2, 02))

fU1,U2(u17u2) - et —1

w  fP(ursp1,01)®(ug;pz,02)

)

and
0 (u1sp1,01) 4 0 (u2;p2,02) + 0P (ursp1,01) P (ugip2,02) _
SU1,U2(ulau2) =1- 66 1
respectively.
If (Ul, Ug) ~ BNP(ul, U2, 01,09, (9), then the mgf of (Ul, Uz) is
(o) en
MUl,UQ(S) = ; mMSUNM_Q(S; 9)
B
- nl(e? — 1) ®on—2 (0;T) '
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Figure 1: The pdf of BNG distribution when py = pg = 0, 01 = 03 = 1 and 6 = 0.01
(left top), @ = 0.3 (right top), 6 = 0.8 (left bottom), § = 0.99 (right bottom).

Figures 3 and 4 show the BNP density function and contour plots for selected values 6
where py = po =0 and o1 = 09 = 1.

As seen in Figure 4 for 6 = 0.01 (left top graph) the dependency between (Uy, Us) is
very poor and the graph shows the symmetry, as 6 increases (from 6 = 2 till § = 8), the
positive dependency is increased and the marginal distributions of U; and Us are left
skew. In BNP distribution the dependency between components is weaker than BNG
distribution.

5.3 Bivariate normal-binomial distribution

In the binomial case, i.e, when a, = < " ) and C(0) = (6 +1)™ —1 (6 > 0), where
n

m (n < m) is the number of replicas, we obtain bivariate normal-binomial distribution,
denoned by BN B(p1, p2,01,02,0), with cdf

(0D (ur; p1, 01)P(ug; po, 02) +1)™ — 1
O+ 1)m—1 '

FU1,U2 (ula UQ) -
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1.0

-3k, . . , . , 2L . , . , , . ,
-3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 4 5

Figure 2: The contour plots of BNG distribution when py = s = 0, 01 = 09 = 1 and
6 = 0.01 (left top), # = 0.3 (right top), @ = 0.8 (left bottom), & = 0.99 (right
bottom).

The probability density and survival functions are given by
Ome(ui; pn, 01)p(ug; prg, 02) (0P (us; p1, 01) P(ug; pia, 02) +1)™ 1
(1+6)m—1)
(m — 1)0P(uy; p1, 01)P(ug; p2, 02)
(0P (u1; p1, 1) P(uz; pa, 02) + 1)

fUl,UQ (ulv UQ) -

X |1+

I

and

(0P(ur; p1,01) + 1) (0P(ug; p2,00) +1)™

S, = 1- _
s 2 (11, 2) @+1)m—1 @+1)m—1
(0P (u1; pr, 01)P(ug; p2,02) +1)™ — 1
@+ 1)m -1 '

respectively.
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Figure 3: The pdf of BNP distribution when u; = po = 0, 01 = 02 = 1 and 6 = 0.01
(left top), @ = 2 (right top), @ =5 (left bottom), § = 8 (right bottom).

If (Uy,Us) ~ BNB(u1, p2,01,02,0), then the mgf of (U, Us) is

([ m on
Muy,,v,(s) = Z( )(eHyn_lMSUNz,n2(s;0)

n=1 n
B i m on " exp (ETer%sTﬂs) Dy,_9 (ATS; 1")
o =\n O+ -1 ®oy,—2 (0;T) '

Figures 5 and 6 show the BNB density function and contour plots for selected values 6
where ;3 = puo =0 and 01 =09 =1 and m = 5.

As seen in Figure 6 for 8 = 0.1 (left top graph) the dependency between (Uy,Us) is
poor and the graph shows the symmetry (approximately), as € increases (from 6 = 2 till
6 = 8), the positive dependency is increased and the marginal distributions of U; and
U, are left skew. In BNB distribution the dependency between components is weaker
than BNG distribution.
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Figure 4: The contour plots of BNP distribution when p; = pg = 0, 01 = 02 = 1 and
6 = 0.01 (left top), 6 = 2 (right top), @ = 5 (left bottom), § = 8 (right bottom).

5.4 Bivariate normal-logarithmic distribution

In the logarithmic case, i.e, when a, = 1 and C(f) = —log(1—6) (0 < 6 < 1), we obtain
bivariate normal logarithmic distribution, denoted by BN L(u1, p2, 01, 02,0), with cdf

log(1 — 0@ (uy; p1, 01) P (ug; p2, 02))
FU1,U2 (U]_,UQ) = 10g(1 _ 9) *

The probability density and survival functions are

3 O0d(u1; pi1, 01)P(u2; p2, 02)
log(1 —0) (1 — 0P (uy; p1,01)P(uz; 2, 02))
0P (uq; pn, 01) P(ug; p2, 02)

(1= 0P (urs p1, 01) P (u2; p2, 02))

fUl,UQ(u17u2) ==

X |14
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Figure 5: The pdf of BNB distribution when p; = po =0, 01 = 09 =1 and 6 = 0.1 (left
top), @ = 2 (right top), =5 (left bottom), = 8 (right bottom) .

and
log(1 — 0®(uy; p1,01))  log(l — 0P(ug; e, 02))
S = 1- -
1,02 (11, 2) log(1 —0) log(1 —0)
log(1 — 0P (uq; 1, 01) P (ug; 2, 02))
log(1 — 6) ’
respectively.

If (Uy,Us) ~ BN L(u1, pi2, 01, 02, 6), then the mgf of (Uy,Us) is

o0

en
My, v,(s) = =) nlogd —0) - Msun,,,,(s;0)

n=1
L i on L &P (¢7s+2s7Qs) o, (ATs;T)
- = nlog(1—90) 9,2 (0;T)

Figures 7 and 8 show the BNL density function and contour plots for selected values 6
where p; = o = 0 and 07 = 092 = 1.
As seen in Figure 8 for # = 0.01 (left top graph) the dependency between (Uy, Us) is



562 Mahmoudi, Mahmoodian, Khalifeh

-2F, . , . , 2L . , , , , ,
-2 -1 0 1 2 3 -2 -1 0 1 2 3 4

Figure 6: The contour plot of BNB distribution when p; = pus = 0, 07 = 09 = 1 and
0 = 0.1 (left top), @ = 2 (right top), = 5 (left bottom), § = 8 (right bottom)

very poor and the graph shows the symmetry, as 6 increases (from 6 = 0.3 till § = 0.99),
the positive dependency is increased and the marginal distributions of U; and Us are left
skew. In BNL distribution the dependency between components is stronger than BNP
and BNB distributions.

6 Copula representation

Let Fxy be a joint distribution function with continuous marginals Fix and Fy. Then
there exists a unique copula A : [0,1] x [0,1] — [0, 1] such that

Fxy(z,y) = A(Fx (2), Fy (y))-

Moreover,

A(u,v) = Fxy (Fx'(u), Fy ' (v)).
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Figure 7: The pdf of BNL distribution when p1 = pus = 0, 01 = 02 = 1 and 6 = 0.01
(left top), @ = 0.3 (right top), 6 = 0.8 (left bottom), § = 0.99 (right bottom).

It can be shown by some calculation that if (U, Uz) ~ BNPS(u1, p2,01,02,60), then the
corresponding copulas A(u,v) is

C [3C1(uC(9)C~H(wC (6))]
C(0) ’

for all u,v € [0,1]. For example, in the geometric case, i.e, C'(6) = % (0<0<1), we

have
UV

A = -y i =)

This copula is a member of the Archimedean family of copulas with the strict generator
o(t) = log (@) and it is known as the Ali-Mikhail-Haq copula (see Ali et al. |,

1978).
In the Poisson case when C(0) = e — 1(6 > 0), we have

6% log(1+u(e? —1)) log(1+v(e? —1)) _ 1

A(u,v) = -
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Figure 8: The contour plot of BNL distribution when p1 = po = 0, 01 = 02 = 1 and
6 = 0.01 (left top), # = 0.3 (right top), @ = 0.8 (left bottom), & = 0.99 (right
bottom) .

This copula is a member of the Archimedean family of copulas with the strict generator
0_
o(t) = —log (bg(t(eel)"'l)

In the binomial case when C(0) = (0 +1)" —1 (0 > 0), we have

{$[w@+nm -1+ 07 1] [e@+)m -+ 17 —1] +1}" -1

Alu,v) = @+ 1)m—1

This copula is a member of the Archimedean family of copulas with the strict generator

p(t) = —log [[t((“l)’"—nglm—l L1l

In the logarithmic case when C(0) = —log(1 —#), (0 < 6 < 1), we have

—0*u —0*v __
A(u,v) = —g—l*log (1 + (e 6_22(5 1 1)> ;




Electronic Journal of Applied Statistical Analysis 565

where 0* = —log(1 — 6). This copula is a member of the Archimedean family of copulas
. . —607t o

with the strict generator ¢(t) = — log (66_97*71) and it is known as the Frank copula, see

Frank (1979).

7 Inference

In this section, we consider estimation of unknown parameters of the BNPS distribu-
tions. Let {(u11,u21), -, (u1n,u2n)} be a bivariate sample of size n from BNPS with
parameters W = (u1, 01, 2, 02, 6). The log-likelihood function can be written as

l, = n(¥)=nlog(d)—nlog(C(#)) —nlog(c1) —nlog(c1) — 2nlog(2m)

1 n 1 n n ,
T 9 ZZ%Z D) Zzgz + Zlog{C (0 (urs; i, 01) P (ugi; p2, 02)
i=1

i=1 i=1
+ Q‘I)(Uu;M1701)¢’(U2i;ﬂz,Uz)C”(e‘I’(uu;Ml,01)‘1)(“21';/@,02))}, (7.1)
where z1; = “1H and z9; = “2£2 The maximum likelihood estimators (MLEs) can be

obtained by maximizing (7.1) with respect to the unknown parameters. Clearly, MLEs
cannot be obtained in closed forms. We propose to use EM algorithm to compute the
MLEs. The EM algorithm is a very powerful tool in handling the incomplete data prob-
lem (Dempster et al. , 1997; McLachlan and Krishnan , 1997). Let the complete-data
be (U11,U21), ..., (U1n, Ua,) with observed values (u11,u21), ..., (U1n, u2,) and the hypo-
thetical random variable Z1, ..., Z,,. We define a hypothetical complete-data distribution
with a joint probability density function in the form

a,0* o
g(z,u1,ug; ¥) = C(g)ZQGb(Ul?M1701)¢(U25#2702) [©(urs 1, 01) @ (uz; pi2, 02)7 1

where p1, 12 € R, 01, o9 > 0 and z € N. Suppose (") = (,ugr), Jgr),ugr),ay), 6()) is the
current estimate (in the rth iteration) of . Then, the E-step of an EM cycle requires
the expectation of (Z| Uy, Us; W). Consider 0, = 0®(uy;p1,01)P(ug; p2,02), then the
probability density function of Z given Uy = uy, Us = us is given by

a2 0,71

C’(0:) + 6.C7(6,)’

g(z|ur,ug) =

and its expected value is given by

02C" (6,) + 30,C"(6,) + C'(6,)
E(Z ;W) = =
( |u17u2> ) C/(e*)+0*0//(9*)
By using the maximum likelihood estimation over ¥, with the missing Z’s replaced by

their conditional expectations given above, the M-step of EM cycle is completed. The
log-likelihood of the model parameters for the complete data set is
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l*(u17u27Z‘M1 p2,01,02,0)

1 n
o Zzzlog«? —nlogoy —nlogoy — 5o 2 Z uy; — Ml) — ﬁz(“% _ M2)2
i=1 2 =1
n n
+Z — 1) log ®(uis p1, 1) + Y (2 — 1) log (ugi; 12, o2) — nlog(C(6)).
i=1
and the components of the score vector, Uc (ug, ug, z; ¥), are

ol 1 & . ¢(u1is i, 01)

= =) (wi—m)—) (z—1)=Z—F,
O o? ; ‘ ; ’ P (w145 pi1,01)
alx 1 - P (ugi; pi2, 02)

= SN (g — ) = S (- 1) 202,92
O 03 ;( 2~ H2) ;( i~ 1) P (ugi; p2, 02)
aly, n 1 o s 1 ¢ (u1; — ) Puas; p1, 01)

= ——+ = U1 — - — zi— 1 ,
doy O (i = 1) o1 ;( i~ P (13 pi1,01)
ol n 1 & 9 1 & (u2; — p2) P(uzi; pa, 02)

= S ) - — > (-1 ,
o oy 03 — (uzi = pi2) o2 ;( =1 D (ug;; p2, 02)
ol 1 — C'(9)

= =Y z—n .
o0 =" "0

=1

The maximum likelihood estimates can be obtained from the iterative algorithm given
by

1 - L)) % S(k) _ d(urs; ), 5M) _
(aY“))Q;( -i) ;<Z Y B a0, 60)
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GYZLI) o ((k+1 >SZ<U11 M1>

~(k ~(k
1 " (Uu - u§ )> ¢(U12,M§ )7 ( +1))
+ e o (B9 1) 8 A0 D) =0,
01 i=1 P (uris iy 04 )
n 1 ¢ (k)2
~(k+1) 3 U2i — Ho
O,g +1) (a\ék—f—l)) P ( )
~(k k
1 n (U2i - Mg )> ¢(U2Z,Mg )7 5! H))
t s (B0 1) 7 G0 =9
6'\2 i=1 (I)(u2za Ho 5O o )
e = OO $s gy
nC' (Ok+1)) = !
where ugk), ugk), A§k) Eék) and 0% are found numerically. Here, for ¢ = 1,...,n, we have

that
%f‘k) =FE (Z\Ul = u1, Uz = qu,uﬁk),uék), ( ) ék),G(k)) .

In this part we obtain the standard errors of the estimators from the EM-algorithm

by using the results of Louis (1982). The elements of the 5 x 5 observed information

matrix . (¥;up,ug,z) = — [W} are given by

O21* n n ) (“7_2“1> P(uis pa, 01) P (wrs; p1, 01) + ¢2(U1i; p1,01)
-1

noo_ 5
s o} Z(Z 2 (ui; p, 01)

)

(%) B(ugi; a2, 02) P (u; pa, 02) + ¢%(uai; p2, 02)

o2x n
- 4 ,
ou3 o3 Z D2 (ugi; p2, 02)

21 21
Op1001 301(37#1

1 (u1; ? (i3 1, 01
_ Zulz /1) 722 L) — 1)@ (wi; p )
1 .

o} — 2 (uy; p1,01)

Z( ((““;1“1 )? — 1) P(u1i; 1, 01) P (uas; pa, 01)
+ — zi—1 ,
of = 2 (w45 1, 01)




568 Mahmoudi, Mahmoodian, Khalifeh

oL 9
0200 D20
2 ¥ BN (ugi — p2)@? (uag; pia, 02)
U%;( o U% ZZ:; (I)Q(UQMN%O'Z)

)2 1) G (ui; p2, 02) P (ugi; o, 02)

+ %Z(Zi—l) (( =

)

D2 (ug;; pi2, 02)

2 =1
oRll n 1 o (w1 — ) d(uss pa, 01)
n o _ ' = . — 1 ) )
o} o? o? ; (2 ) D (uyi;p1,01)
3« 2 1o (u1i — p1)? 2 (uais pa, 01)
+ — U1y — + — zi — 1
Uil ;( 1= p) U% =1 ( ) D2 (uq; pa, 01)
1 i( ) (u1; — pa) ((u“(,i_l“l)2 - 1) P(uais 1, 01) @ (wass pin, 01)
+ — 7 )
a7 ] D2 (uj; p1,01)
o1 noo1g (ugi — 1) Pugs; pia, 02)
n o _ _ " = -1 ; )
903 03 03 ; (= 1) D (u2i; p2,02)
3 < (ugi — p2)? ¢ (ugs; p2, 02)
" o5 ; (uai = pa) o3 Z D2 (ug;; 2, 02)
1 i( ) (u2i — pi2) ((UQ’ Ch2)? 1) G (uai; 2, 02) P (usis 2, 02)
+ — 2 — ’
o3 = 2 (ugi; pia, 02)
P Z LCMO)C(0) - (C'(0))?
02 ~ @ C?(9) ’
er 321;; e e o o o
Oudpz — Opedpy  Opidoy  0o20p1 000 000u  Ougdo
_ 82l;kl B
 do10uy
72 . ) O Y. . LN ) (R o)1
80189 N 80'289 N 8/1269 N (9(96/12 N 802801 N 80280’1 N 89801
- 821;‘; B
9000y

Taking the conditional expectation of I. (¥;uy, us,z) given (ug, uz), we obtain the 5 x5
matrix
lc (‘I’, ui, 112) =F (Ic (‘I’, uj, ug, Z) ‘ (1117 112)) = [Ci]’] s (72)
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where
n Xn: (E(Zilug,uz) — 1) (%) G(u1i; i, 01) @ (wnis 1, 01) + ¢*(wai; p, 1)
c11 = — + 7
11 a% — D2 (w143 p1,01)
n z": (E(Zi] )—1) <ui'7_§#2> P (uai; pia, 02) P (uri; g, 02) + ¢ (uai; pia, o)
2 = —+ |u, uz) — ’
22 o3 i—1 R D2 (ugs; pi2, 02)
5 o w1 — p1) 9% (was; pa, 01
13 = c31 = ?Z(“” — ) Z (Zilaa, ) = 1)( Z ‘1)5(131"21 ZUS |
3 ) )
Ul —H1
. (T) — 1) P(u1i; 1, 01) P (w145 pa, 01)
+ = E(Ziluj,ug) —1 ’
af;( (Zilur, u2) — 1) ®2(u14; 1, 01)

e = en= 5> Z (Zifus, ) — 1) 2= 112022 12, 02)
24 42 = U;’ -~ 2 — [12) 2 1, U2 <I>2(u%;u2,02)

Upip2)2 _ 1) P (ugi; pi2, 02) P (uzi; p2, 02)

02

)

1 & <
+ — Zilug,ug) — 1
U%Z( (Zijur,u2) = 1) D2 (ug;; po, 02)

no 1 (u1i — p1) d(uis; a1, 01)
- S (E(Ziu,w) — 1
s 7 g ) = ) o)
3 — (ur; — p1)%¢* (was; pa, 01)
= ) E Z -1
+ ol Zil (i — o2 [u1, u2) = 1) D2 (u4; p1, 01)

(Uli — ) ((%)2 - 1) G(uris p1, 1) (wris pa, 01)
D2 (w13 1, 01)

9

Cag = —:% - 015 ; (B(Zfu,up) — 1) 12 ;?5;%:21752 =
+ %;(um p Z E(Zilui,u2) — 1) (uai _(I)'L;?Ziz:‘?;;;% 2)
+ Jlgizn;(E(Ziuh up) — 1) o 2 ) <(1L2022)q2>2zu13’i(::;;$27 T 02)7
Cs5 = 0% i E(Ziluy,az) + ”C/I(G)C(gg(;)(C/(e))Q,
cl2 = 21 zl015 =c51 =cC14 =41 = 23 = c32 = 0,

Co5 = C52 = C34 = (43 = C35 = C53 = C45 = C54 = 0,
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Moving now to the computation of ,, (¥;u;, us) as
I (¥;;ur,u2) = Var[Uc (uy,uz,2; ) | ug, ug] = [vy],

where

vy = iVar(Z-|u1 u2)—¢2(u1i;ul’al)

P 02wy pa, 01)

n

¢2(U21;M270’2

V92 — Var(Z; m, ) -,

Z.z; (Z )‘I)Q(um;ﬂz,o’z)

1 < (u1; — p1)® % (ua; pua, 01)
V33 = —5 Var(Z; ui, us

o? ; (Z] ) D2(u14; p1,01)

1 « (ugi — p2)? ¢ (uai; pra, 02)
Vga = —5 Var(Z;ui,us ,

o3 ; (& ) D2 (ugi; pg, 02)

1 n
Vg5 — ﬁZVar(Zﬁul,uQ).

=1

Vg = UQIZivar(Z.,ul u2)¢(U1i;H1,U1)¢(U2i;M2,02)
— O (uag; p, 01) D (uai; i, 02)

(ur; — 1) ¢ (uis 1, 01)
D2 (uy4; pi1, 01)

1 n
V13 — Uglzfzva’l“(zihll,lu)
01 i—1

(ugi — p2) G(u1s; pr, 01)P(u2s; pi2, 02)

1 n
Vg = vy = — E Var(Z;juy,us)
922

1 — Ulq; 1, O
Z:1 (3 )

D (uy4; pr, 01) P (ugi; po, 02)

(w1 — p1) d(uis; p1, 01)P(u2s; o, 02)

1 n
= v =— S Var(Ziu,
8 T z; ar(Zifu, o) (u1; pa, 01) P (ugi; p2, 02)

(u2i — p2) @2 (ugi; 2, 02)
D2 (ug;; pi2, 02)

9

1 n

Vo4 = Vg = — ZVa'r(ZZ-]ul,ug)
9253

B(uzi; p2, 02)

1 n
veo= e _5ZVQT(Zi‘u1’u2)‘1>(U2"M2 02)’
1y )

i=1
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V34 = V43
n

1 i T i ) 7 )
= ZVGT(Zi\uLug)(ul p) (u2i — p2) d(ui; pa, o1)Pugis pa, o2)

o109 D (wri; pa, o1) P (uais p2, 02)

)

(w1s — p1) d(uis; p1,01)
D (uyi; p1,01)

1 n
Uss = Vs = g > Var(Zijw, uz)
i=1

(ugi — p2) d(ui; 2, 02)
D (ug;; po, 02)

1 n
Vg5 = 1154:—?‘22‘/&7“(21'\111,112)
i=1

and

Var(Zi|u1, UQ) = E(Zi2|u1, 112) — EQ(ZZ'|L11, 112)
g3C" (0,) + 602C"(0,) + 76.C"(0,) + C'(6.))
C'(6,) + 6.C"(6,)

, 2
620" (0,) + 30C"(8,) + C'(6,)
C"(0,) + 0.C" (05)

Applying (7.2) and (7.3), we obtain the observed information as
I(%5u1, 1) = I, (‘T’;u1,u2) —ln (‘T’;uhug) :

The standard errors of the MLEs of the EM-algorithm are the square root of the diagonal
elements of the I(¥;uy, uz).

8 Simulation

This section provides the results of simulation study. Simulations have been performed
in order to investigate the proposed estimators of, w1, 01, e, 02 and 6 of the proposed
EM method. We simulate 1000 times under the BNG distribution with three different
sets of parameters and sample sizes n =100, 300 and 500. For each sample size, we
compute the using EM algorithm. We also compute the standard error of the EM es-
timators determined through the Fisher information matrix. The simulated values of
se(fir), se(o1), se(fiz), se(o2), se(8), Cov(u1, 1), Cov(fir, fiz), Cov(pi1, 1), Cov(jiy, ),
Cov(liz,01), Cov(piz, 02), Cov(fiz, d), Cov(c1,02), Cov(a1,0) and Cov(os,60), obtained
by averaging the corresponding values of the observed information matrices, are com-
puted. All computations are done using R 3.2.1 software. We use the function ”nlminb”
in Package ”stats” for the numerical calculations.

The results for the BNG distribution are shown in Table 1 and Table 2. Some of the
points are quite clear from the simulation results: (i) Convergence has been achieved
in all cases and this emphasizes the numerical stability of the EM-algorithm. (ii) The
differences between the average estimates and the true values are almost small. (iii)
These results suggest that the EM estimates have performed consistently. (iv) As the
sample size increases, the standard errors of the estimators decrease.
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Table 1: Simulated means (AEs) and simulated standard errors (Std) of EM estimators
for the BNG distribution.

Average estimators Std

n | (p1,01,p2,02,0) | H1 G i G2 0 i g1 2 G2 0
100|{(0.0,1.0,0.0,1.0,0.1)|-0.0317 0.9896 -0.0334 0.9931 0.1409(0.0150 0.0070 0.0140 0.0070 0.0140
(0.0,1.0,0.0,1.0,3.0)| 0.0214 0.9894 0.0175 0.9949 0.2652|0.0160 0.0070 0.0160 0.0070 0.0160
(0.0,1.0,0.0,1.0,0.7)| 0.1287 0.9794 0.1519 0.9749 0.6113|0.0230 0.0070 0.0220 0.0080 0.0120
200((0.0,1.0,0.0,1.0,0.1)|-0.0129 0.9956 -0.0158 0.9969 0.1170(0.0073 0.0035 0.0068 0.0036 0.0076
(0.0,1.0,0.0,1.0,3.0)| 0.0203 0.9977 0.0258 0.9904 0.2689(0.0091 0.0036 0.0080 0.0036 0.0086
(0.0,1.0,0.0,1.0,0.7)| 0.1426 0.9791 0.1658 0.9686 0.6139(0.0123 0.0038 0.0109 0.0040 0.0060
500((0.0,1.0,0.0,1.0,0.1)|-0.0031 0.9973 -0.0058 0.9978 0.1052|0.0030 0.0015 0.0029 0.0014 0.0036
(0.0,1.0,0.0,1.0,3.0)| 0.0094 0.9976 0.0162 0.9977 0.2861(0.0036 0.0015 0.0033 0.0014 0.0036
(0.0,1.0,0.0,1.0,0.7)| 0.1394 0.9795 0.1587 0.9762 0.6216|0.0054 0.0014 0.0049 0.0016 0.0027

Table 2: Simulated covariance between the EM estimators for the BNG distribution.

Cov

n | (p1,01,p2,02,0) |(B1,01) (A1, R2) (B1,02) (#1,0) (f2,51) (A2,52) (A2,0) (61,02) (51,0) (52,0)
100((0.0,1.0,0.0,1.0,0.1)| -0.0016 0.0102 -0.0004 0.0138 -0.0002 -0.0013 0.0134 -0.0001 -0.0007 -0.0004
(0.0,1.0,0.0,1.0,3.0)| -0.0011 0.0159 -0.0013 0.0194 0.0001 -0.0027 0.0196 0.0004 0.0004 -0.0015
(0.0,1.0,0.0,1.0,0.7)| -0.0070 0.0442 -0.0096 -0.0225 -0.0027 -0.0131 0.0220 0.0010 -0.0013 -0.0046
200((0.0,1.0,0.0,1.0,0.1)| 0.0001 0.0054 -0.0002 0.0079 0.0002 -0.0004 0.0072 -0.0001 0.0004 0.0001
(0.0,1.0,0.0,1.0,3.0)| -0.0011 0.0104 -0.0005 0.0126 -0.0003 -0.0011 0.0109 0.0000 -0.0004 -0.0005
(0.0,1.0,0.0,1.0,0.7)| -0.0044 0.0231 -0.0044 0.0071 -0.0019 -0.0058 0.0113 0.0005 -0.0009 -0.0021
500((0.0,1.0,0.0,1.0,0.1)| -0.0001 0.0026 -0.0001 0.0041 -0.0001 -0.0001 0.0040 0.0000 -0.0002 0.0000
(0.0,1.0,0.0,1.0,3.0)| -0.0002 0.0045 -0.0004 0.0053 -0.0001 -0.0007 0.0047 0.0001 0.0000 -0.0004
(0.0,1.0,0.0,1.0,0.7)| -0.0017 0.0120 -0.0021 0.0067 -0.0008 -0.0026 0.0060 0.0002 -0.0005 -0.0011




Table 3: Kolmogorov-Smirnov statistic and the associated P-value.

Table 4: Parameter estimates, AIC and BIC for air pollution data.
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Dist.] | X1 X

NG | 0.0637 (0.9956) | 0.1466 (0.3275)
NP 0.0864 (0.9123) | 0.1462 (0.3309)
NL 0.1177 (0.6052) | 0.1467 (0.3265)
N 0.1319 (0.4577) | 0.1491 (0.3079)

Dist. Parameter estimates — log(L) AIC BIC
BNG | fi1=-76.90, 51=40.62, fia=-35.69, 52=11.99, 6=0.99 | 305.2414 | 620.4827 | 629.1711
BNP [1=56.87, 61=19.38, i2=3.06, 52=6.63, 6=3.96 306.4793 622.9587 631.647
BNL | fii= 66.78, 51=16.45, fis= 6.82, 3= 5.63, 6=0.76 308.7014 | 627.4028 | 636.0911
BN fiy= 73.85 5,=17.33, fia= 9.40, Go= 5.56, p=0.319 307.8487 | 625.6973 | 634.3857
IBN p1= 73.85 51=17.33, fia= 9.40, 5o= 5.56 310.104 628.208 635.159
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9 Application

In this section, we try to illustrate the better performance of the proposed model. We fit
BNG, BNP and BNL models to a real data set. We also fit the bivariate normal (BN) and
independent bivariate normal (IBN) distributions to make a comparison with the NPS
models. This data, taken from Johnson and Wichern (1992), are related to air pollution.
Here, we consider two variables of these data, viz., Solar rad (X1) and O3 (X3). We first
test the fitting of marginal distributions. To fit the marginal distributions to this data
set, we firstly, compute the KS (Kolomogrov-Smirnov) statistic between the empirical
and fitted cumulative distribution functions. The associated P-value (in bracket) of KS
statistic for X; and Xs have been given in Table 3. These results suggest that NG, NP,
NL and normal distributions, as the marginal distributions of X; and X, can give a
reasonable fit to this data.

For comparison purposes, we estimate parameters by numerically maximizing the
likelihood function. The MLEs of the parameters, the maximized log likelihood, the
AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) for the
BNG, BNP, BNL, BN and IBN models are given in Table 4.

As is well known, a model with a minimum AIC value is to be preferred. Therefore
BNG distribution provides a better fit to this data set than the other distributions and
hence could be chosen as the best distribution. Now we would like to check whether
the BNG distribution fits the bivariate data set or not. For that we have used a copula

goodness-of-fit test. Genest et al. (2009) presented a review and comparison on the
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Figure 9: The contour plot of fitted BNG distribution versus air pollution bivariate data

goodness of fit for copulas. One can construct test

n

Sp = Z (Cr(ui, vi) — Cg(ui,vz‘))2,

i=1

where C, and Cj are the empirical copula and the fitted copula of the data respectively,
with
rank of x; among x1, ..., Ty rank of y; among y1, ..., yYn
u; = and wv; =
n+1 n+1

The statistic .5, is called Cramer-von Mises statistic. This statistic measures how close
the fitted copula is from the empirical copula of data. approximate P-values can be
obtained via parametric bootstrap procedure described in Appendix A of Genest et al.
(2009). The bootstrap values G§*() . §*(1000) of the Cramer-von Mises test statistic
are generated and approximate P-value is given by ﬁ Z}S;OI (S*(i) > S’n). For air
pollution date we obtained S,, = 0.0673 and P-value= 0.8021. Thus we may conclude
that BNG distribution performs a good fit to this data set. Figure 9 show that the BNG
distribution gives a good fit to the air pollution bivariate data.

10 Conclusion

In this paper we have introduced the bivariate normal-power series class of distributions
whose marginals are normal power series distributions. Several statistical properties of
this new bivariate distribution have been studied. The estimation of the unknown param-
eters of the proposed distribution is approached by the EM-algorithm. Finally, we fitted
BNPS models to a real data set to show the potential of the new proposed class. Now we
briefly discuss a generalization of the proposed model. Let {(X1,, Xon);n =1,2,...} be
sequence of mutually independent and identically distributed (i.i.d.) bivariate normal

. . . . H1
random variable with mean vector g and covariance matrix 3, where pu = and
K2
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2

2

o 010

3= ( L po1o2 ) Suppose N is a power series distribution. Let
03

U1 = maX(X117X12, "'7X1N) and U2 == maX(Xgl,ng, ...,XQN).
The joint cdf of (U, Us) is
C(0Pa(ur, ug; p, X))
c()

for uy,ug€R. Here ®o(- ; p, X) is cdf of bivariate normal distribution with mean vector
p and covariance matrix 3.
We are currently working on this subject and hope to report these findings in a future

paper.
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