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Some goodness of fit tests for logistic distribution based on Phi-divergence
are developed. The powers of the introduced tests are compared with some
traditional goodness of fit tests including Kolmogorov-Smirnov, Anderson-
Darling and Cramer-von Mises tests for logistic distribution using Monte
Carlo simulation. It is shown the proposed tests have good performance as
compared with their competitors in the literature. A real data set is used for
illustration.
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1 Introduction

A random variable X is said to have logistic distribution with location parameter µ ∈ <
and the scale parameter σ > 0 if it has the cumulative distribution function (CDF)
defined as

F (x;µ, σ) =
1

1 + e−
x−µ
σ

; −∞ < x <∞. (1)

The corresponding probability density function (PDF) is given by

f(x;µ, σ) =
e−

x−µ
σ

σ
(

1 + e−
x−µ
σ

)2 ; −∞ < x <∞. (2)
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Note that the PDF of the logistic distribution is symmetric about its location parameter
µ. Throughout this paper, the logistic distribution will be denoted by Lo(µ, σ). For
the Lo(µ, σ) distribution, the mean, median and the mode are all equal to µ and the

variance is given by σ2π
3 .

Phi-divergence between two probability distributions Q and G was firstly introduced
by Csiszar (1963) and is given by

Lφ (Q|G) =

∫
φ

(
dQ

dG

)
dG, φ ∈ Ψ, (3)

where Q is absolutely continuous with respect to G, Ψ is the class of all convex functions
and φ(.) is an arbitrary convex function, φ : [0,∞) → <

⋃
{∞} such that φ(1) = 0 and

φ′′(1) > 0. It can be shown that if Q = G then Lφ (Q|G) = 0. For more details about
these properties see Csiszar (1967) and Vajda (1989).

Alizadeh Noughabi and Balakrishnan (2016) was the first who utilized Phi-divergence
for goodness-of-fit tests for normal, exponential, uniform and laplace distributions which
were followed by Zamanzade and Mahdizadeh (2017) for Rayleigh distribution. However,
the problem of goodness of fit tests has been already considered by many researchers in
the literature including Puig (2000), Zhang and Cheng (2003), Zamanzade and Arghami
(2011), Zamanzade and Arghami (2012), Alizadeh Noughabi and Arghami (2016), Za-
manzade (2015), Al-Omari and Haq (2016), Al-Omari and Zamanzade (2016), Alizadeh
Noughabi and Park (2016), Mahdizadeh and Zamanzade (2017a), Mahdizadeh and Za-
manzade (2017b), Al-Omari and Zamanzade (2017) and Zamanzade (2018).

The rest of this paper is organized as follows. In Section 2 the tests of fit based on
Phi-divergence for the logistic distribution are presented. In Section 3, critical values
of the suggested tests are obtained, and they are compared with the competitor tests
in terms of power. A real data example is provided and analyzed in Section 4. Some
conclusions are given in Section 5.

2 Tests of fit for logistic distribution based on
Phi-divergence

Let f0 and f be probability density functions under null and alternative hypotheses,
respectively. We can construct goodness of fit tests by choosing different convex functions
for φ(.) in Lφ (Q|G). Some well-known measures are obtained as follows:

1. Kullback-Liebler (KL) distance is obtained by choosing φ(z) = z log z which yields
to

KL =

∫
f(x) log

(
f(x)

f0(x)

)
dx = Ef

(
log

(
f(x)

f0(x)

))
.

2. Hellinger (H) distance is obtained by choosing φ(z) = 1
2 (
√
z − 1)

2
which yields to

H =
1

2

∫ (√
f(x)−

√
f0(x)

)2
dx =

1

2
Ef

(√f0(x)

f(x)
− 1

)2
 .
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3. Jeffreys (J) distance is obtained by choosing φ(z) = (z − 1) log z which yields to

J =
∫

(f(x)− f0(x)) log
(
f(x)
f0(x)

)
= Ef

[(
1− f0(x)

f(x)

)
log
(
f(x)
f0(x)

)]
.

4. Total variation (TV) distance is obtained by choosing φ(z) = 1
2 |z − 1| which yields

to TV =
∫
|f(x)− f0(x)| dx = Ef

(∣∣∣1− f0(x)
f(x)

∣∣∣).

5. Chi-square (χ2) distance is obtained by choosing φ(z) = (z − 1)2 which yields to

χ2 =

∫
(f(x)− f0(x))2

f0(x)
dx = Ef

[(
f(x)− f0(x)

f0(x)f(x)

)2
]
.

Let X1, X2, ..., Xn be a simple random sample size n from the population of interest.
Suppose that we are interested in testing the null hypothesis

H0 : f(x) = f0 (x;µ, σ) = e−
x−µ
σ

σ

(
1+e−

x−µ
σ

)2 ; −∞ < x <∞ for some µ ∈ <, σ ∈ <+,

against the alternative hypothesis

H1 : f(x) 6= f0 (x;µ, σ) for all µ ∈ <, σ ∈ <+.

We propose to use the sample version of Phi-divergence as follows

Ln =
1

n

n∑
i=1

f0 (xi; µ̂, σ̂)

f̂ (xi)
φ

(
f̂ (xi)

f0 (xi; µ̂, σ̂)

)
,

where µ̂ and σ̂ are maximum likelihood estimators of µ and σ, respectively, f̂(x) =
1
nh

∑n
r=1 k

(
x−xr
h

)
is kernel density estimator of f(x), and the density of standard normal

distribution is used as kernel function k(.), and the bandwidth is selected to be as h =(
4s2

3n

)0.2
, which is proposed by Silverman (1986). The maximum likelihood estimators

of µ and σ are obtained using optim() function in R statistical software.

Therefore, the null hypothesis which states that the parent distribution follows a
logistic distribution is rejected if

Ln ≥ Ln(1− α),

where Ln(α) is the αth quantile of distribution of Ln under null hypothesis.

Consistency of the above test statistic follows from the fact that µ̂ and σ̂ are both
consistent estimator of µ and σ, respectively. Therefore, f0 (x; µ̂, σ̂) → f0 (x;µ, σ) and
f̂ (x)→ f (x) in probability as n goes to infinity. Thus, the consistency of the proposed
test statistic follows from the law of large numbers.

3 Simulation study

In what follows, we denote the test statistics obtained using φ(.) function corresponding
to Kullback-Liebler, Hellinger, Jeffrey, Total variation and Chi-square distances as KLn,
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Table 1: Critical values of different goodness of fit tests based on phi-divergence for
logistic distribution

n α KLn Hn Jn TVn χ2
n

0.01 0.158 0.031 0.282 0.297 1.270

10 0.05 0.114 0.022 0.187 0.284 0.453

0.10 0.091 0.018 0.150 0.277 0.281

0.01 0.140 0.021 0.200 0.280 1.559

20 0.05 0.103 0.016 0.138 0.254 0.432

0.10 0.082 0.014 0.115 0.241 0.250

0.01 0.117 0.016 0.152 0.262 1.468

30 0.05 0.087 0.013 0.110 0.234 0.357

0.10 0.072 0.011 0.095 0.220 0.215

0.01 0.100 0.013 0.125 0.244 1.261

40 0.05 0.076 0.011 0.095 0.219 0.319

0.10 0.063 0.010 0.082 0.204 0.191

0.01 0.093 0.012 0.111 0.233 1.096

50 0.05 0.068 0.010 0.084 0.207 0.289

0.10 0.057 0.009 0.073 0.193 0.166
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Hn, Jn, TVn and χ2
n, respectively. The critical values of these goodness of fit tests are

obtained using Monte Carlo simulation with 100,000 repetitions and the results are
reported in Table 1.

We note that as the significance level values increase the critical values are decreased.
We now compare the power of different goodness of fit tests based on phi-divergence

with some standard goodness of fit tests in the literature for logistic distribution. Let
X(1), X(2), · · · , X(n) be an ordered simple random sample of size n = 10, 20, 50 from
population of interest, let F0 be CDF of logistic distribution, µ̂ and σ̂ be MLE of the
parameters µ and σ, respectively. The competing goodness of fit test statistics are as
follows:

1. The Kolmogorov-Smirnov (Kolmogorov, 1933) test statistic:

KS = Max

{
Max
1≤i≤n

[
i

n
− F0

(
X(i); µ̂, σ̂

)]
, Max
1≤i≤n

[
F0

(
X(i); µ̂, σ̂

)
− i− 1

n

]}
.

2. The Anderson-Darling (Anderson and Darling, 1954) test statistic:

A2 = − 2

n

n∑
i=1

{(
i− 1

2

)
log
[
F0

(
X(i); µ̂, σ̂

)]
+

(
n− i+

1

2

)
log
[
1− F0

(
X(i); µ̂, σ̂

)]}
−n.

3. The Cramer-von Mises (Von Misese, 1932) test statistic:

W 2 =

n∑
i=1

[
F0

(
X(i), µ̂, σ̂

)
− 2i− 1

2n

]
+

1

12n
.

In order to compare the power of different goodness of fit tests, we have generated
100,000 simple random samples from the following alternative distributions. We then
estimate the power of each test by dividing the numbers of test statistic values are
greater than its critical value at significance level α = 0.05. The alternative distributions
considered in this study are as follows.

• Standard normal distribution, denoted by N(0, 1).

• Student’s T distribution with 10 degrees of freedom, denoted by T (10).

• Student’s T distribution with 3 degrees of freedom, denoted by T (3).

• Standard Cauchy distribution denoted by C(0, 1).

• Standard Laplace distribution, denoted by L(0, 1).

• Skew normal distribution with shape parameter 0.5, denoted by SN(0.5).

• Skew normal distribution with shape parameter 2, denoted by SN(2).

• Skew normal distribution with shape parameter 3, denoted by SN(3)
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• Standard exponential distribution, denoted by Exp(1).

• Lognormal distribution with log mean zero and log standard deviation 0.5, denoted
by LN(0.5).

• Lognormal distribution with log mean zero and log standard deviation 1, denoted
by LN(1).

• Weibull distribution with shape parameter 0.5 and scale parameter 1, denoted by
W (0.5).

• Weibull distribution with shape parameter 2 and scale parameter 1, denoted by
W (2).

• Standard uniform distribution, denoted by U(0, 1).

• Beta distribution with parameters 2 and 2, denoted by B(2, 2).

• Beta distribution with parameters 0.5 and 0.5, denoted by B(0.5, 0.5).

• Beta distribution with parameters 2 and 1, denoted by B(2, 1).

• Beta distribution with parameters 0.5 and 1, denoted by B(0.5, 1).

The bolded fonts in the Tables 2-4 are the largest power values based on each distri-
bution. However, the largest values are for the test based on total variation distance for
n = 20, 50, while for n = 10, the maximum values are for Anderson-Darling test.

4 A real data example

In this section, a real data set is considered to explain the suggested tests. The following
data set was firstly considered by Bain and Englehardt (1973) which consists of 33
differences in flood levels between two stations on a river. The data are as follows:

1.96, 1.97, 3.60, 3.80, 4.79, 5.66, 5.76, 5.78, 6.27, 6.30,6.76, 7.65,

7.84, 7.99, 8.51, 9.18, 10.13, 10.24, 10.25, 10.43, 11.45, 11.48, 11.75,

11.81, 12.34, 12.78, 13.06, 13.29, 13.98, 14.18, 14.40, 16.22, 17.06.

We now perform the introduced goodness-of-fit tests for logistic distribution for the
above data set. For this purpose, the ML estimates of location and scale parameters of
logistic distribution are obtained as µ̂ = 9.404 and σ̂ = 2.361. Thus, the values of the
considered test statistics (the critical values at significance level α = 0.05) are given by

KS = 0.097(0.131), A2 = 0.326(0.654),W 2 = 0.053(0.097), TV = 0.209(0.230),

KL = 0.038(0.079), H = 0.007(0.011), J = 0.060(0.101), χ2 = 0.065(0.184).

We observe that none of the values of the above test statistics are larger than their
corresponding critical values, and therefore the assumption that data follow logistic
distribution is not rejected at the significance level 0.05.
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Table 2: Estimated powers for different tests of size 0.05 when n = 10

Dist. KS AD CM KLn Hn Jn TVn χ2
n

N (0,1) 0.049 0.039 0.047 0.042 0.022 0.022 0.052 0.022

T (10) 0.050 0.047 0.048 0.047 0.042 0.042 0.050 0.042

T (3) 0.084 0.113 0.090 0.118 0.148 0.149 0.085 0.147

C (0,1) 0.447 0.524 0.483 0.474 0.534 0.533 0.388 0.523

L(0,1) 0.073 0.093 0.077 0.087 0.112 0.112 0.066 0.109

SN (0.5) 0.048 0.037 0.045 0.039 0.021 0.021 0.051 0.021

SN (2) 0.053 0.050 0.053 0.050 0.033 0.033 0.051 0.033

SN (3) 0.063 0.066 0.066 0.068 0.045 0.045 0.051 0.046

Exp(1) 0.232 0.339 0.281 0.304 0.219 0.219 0.079 0.220

LN (0.5) 0.112 0.166 0.134 0.168 0.143 0.143 0.067 0.144

LN (1) 0.374 0.508 0.430 0.468 0.377 0.378 0.139 0.378

W (0.5) 0.780 0.852 0.808 0.751 0.597 0.598 0.239 0.594

W (2) 0.063 0.062 0.065 0.068 0.036 0.036 0.061 0.037

U (0,1) 0.099 0.094 0.117 0.119 0.007 0.007 0.103 0.006

B(2,2) 0.063 0.048 0.064 0.059 0.006 0.006 0.072 0.006

B(0.5,0.5) 0.241 0.297 0.317 0.322 0.017 0.016 0.168 0.012

B(2,1) 0.102 0.116 0.123 0.120 0.030 0.030 0.081 0.029

B(0.5,1) 0.247 0.312 0.311 0.279 0.060 0.058 0.107 0.053
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Table 3: Estimated powers for different tests of size 0.05 when n = 20

Dist. KS AD CM KLn Hn Jn TVn χ2
n

N (0,1) 0.052 0.042 0.051 0.039 0.013 0.011 0.086 0.008

T (10) 0.052 0.046 0.049 0.047 0.040 0.040 0.059 0.040

T (3) 0.108 0.158 0.123 0.194 0.236 0.241 0.035 0.243

C (0,1) 0.711 0.785 0.757 0.770 0.799 0.801 0.346 0.789

L(0,1) 0.100 0.124 0.112 0.116 0.149 0.150 0.019 0.146

SN (0.5) 0.053 0.043 0.052 0.040 0.014 0.012 0.090 0.010

SN (2) 0.064 0.067 0.067 0.062 0.036 0.033 0.092 0.027

SN (3) 0.083 0.110 0.100 0.105 0.064 0.059 0.112 0.044

Exp(1) 0.507 0.698 0.561 0.663 0.529 0.501 0.215 0.361

LN (0.5) 0.182 0.337 0.239 0.353 0.303 0.293 0.121 0.237

LN (1) 0.712 0.855 0.754 0.841 0.763 0.745 0.174 0.635

W (0.5) 0.992 0.996 0.988 0.989 0.954 0.946 0.240 0.861

W (2) 0.081 0.103 0.095 0.103 0.050 0.044 0.149 0.031

U (0,1) 0.181 0.242 0.245 0.309 0.045 0.019 0.591 0.000

B(2,2) 0.089 0.083 0.099 0.105 0.010 0.005 0.267 0.000

B(0.5,0.5) 0.488 0.699 0.648 0.742 0.321 0.187 0.921 0.001

B(2,1) 0.183 0.284 0.253 0.277 0.089 0.061 0.409 0.012

B(0.5,1) 0.516 0.686 0.623 0.646 0.313 0.233 0.724 0.029
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Table 4: Estimated powers for different tests of size 0.05 when n = 50

Dist. KS AD CM KLn Hn Jn TVn χ2
n

N (0,1) 0.064 0.058 0.069 0.044 0.035 0.020 0.159 0.002

T (10) 0.052 0.048 0.051 0.047 0.044 0.040 0.073 0.038

T (3) 0.171 0.259 0.210 0.352 0.366 0.392 0.019 0.404

C (0,1) 0.966 0.983 0.980 0.982 0.981 0.982 0.465 0.976

L(0,1) 0.175 0.215 0.215 0.188 0.188 0.200 0.006 0.196

SN (0.5) 0.066 0.060 0.070 0.045 0.035 0.020 0.160 0.002

SN (2) 0.091 0.135 0.115 0.105 0.097 0.069 0.197 0.016

SN (3) 0.146 0.282 0.210 0.233 0.222 0.168 0.302 0.034

Exp(1) 0.973 0.994 0.954 0.994 0.992 0.985 0.784 0.629

LN (0.5) 0.432 0.768 0.564 0.790 0.784 0.734 0.439 0.405

LN (1) 0.994 0.999 0.993 0.999 0.999 0.999 0.494 0.923

W (0.5) 1.000 1.000 1.000 1.000 1.000 1.000 0.421 0.997

W (2) 0.148 0.291 0.216 0.272 0.247 0.177 0.431 0.021

U (0,1) 0.459 0.748 0.650 0.854 0.873 0.799 0.979 0.000

B(2,2) 0.187 0.262 0.253 0.325 0.321 0.223 0.697 0.000

B(0.5,0.5) 0.925 0.997 0.987 0.999 1.000 0.999 1.000 0.000

B(2,1) 0.499 0.785 0.653 0.794 0.781 0.681 0.931 0.003

B(0.5,1) 0.967 0.996 0.979 0.997 0.997 0.992 1.000 0.030
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5 Concluding remarks

In this paper, we proposed general goodness of fit tests using Phi-divergence for the
logistic distribution. The critical and power values of the proposed tests are obtained
for different sample sizes using Monte Carlo simulation. Our simulation results showed
the preference of the proposed procedures in practice.
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