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1 Introduction

Many bivariate distributions for continuous random variables are introduced in the
literature to be used in data analysis, especially in applications of survival data in
the presence of censored data and covariates (see, for example, Block and Basu, 1974;
Marshall and Olkin, 1967a,b; Downton, 1970; Freund, 1961; Sarkar, 1987; Arnold and
Strauss, 1988; Gumbel, 1960; Hanagal, 2006; Hanagal and Ahmadi, 2008; Hawkes, 1972;
Hougaard, 1986). Alternatively, it can be observed in the literature that it is not very
common the use of bivariate distributions for survival data assuming discrete data. Some
discrete bivariate distributions have been introduced in the literature as the bivariate
geometric distribution of Basu and Dhar (1995) or the bivariate geometric distribution
of Arnold (1975), but these discrete distributions are still not very popular in the anal-
ysis of bivariate lifetime data, especially in the presence of censored data and covariates
(see also, Arnold and Strauss, 1988; Davarzani et al., 2015; Basu and Dhar, 1995; Dhar,
2003; Dhar and Balaji, 2006; Krishna and Pundir, 2009; Muraleedharan Nair and Un-
nikrishnan Nair, 1988; Sun and Basu, 1995).

It is important to observe that many data sets assumed as continuous data are in fact,
discrete data. For example, in analysis of bivariate survival data such as reinfection in
the kidneys of the same patient, times of loss of vision in eyes, among others there are
bivariate responses measured in days, weeks or months which characterize discrete data.
In engineering applications it is common data related to the number of cycles to failures,
again characterizing discrete data.

In this paper it is explored a very promising bivariate distribution for discrete data:
the geometric Basu-Dhar distribution denoted as BD distribution (Basu and Dhar, 1995;
Dhar, 1998; Dhar, 2003). Assuming complete data, censored data and presence of covari-
ates some computational aspects are presented for the attainment of classical inferences
based on maximum likelihood estimation method and Bayesian inferences using MCMC
(Markov Chain Monte Carlo) simulation methods.

The use of Bayesian methods is very popular for bivariate continuous or discrete
random variables in presence of censored data and covariates (see for example, Achcar
and Leandro (1998); dos Santos and Achcar (2011)) given the difficulties in the use of
standard asymptotically maximum likelihood estimates (see for example, Lawless (1982);
Klein and Moeschberger (2005)) especially using MCMC (Markov Chain Monte Carlo)
methods (see for example, Chib and Greenberg, 1995; Gelfand and Smith, 1990).

An important goal of this paper is the discussion of useful computational issues re-
lated to the use of the bivariate Basu-Dhar geometric distribution in applications with
complete and censored datasets and the introduction of computer codes using free R
software (R Core Team, 2016) for programs to obtain the classical and Bayesian infer-
ences of interest. Some applications with real data and simulated data are introduced
showing some aspects of accuracy and computational costs considering different sample
sizes to illustrate the proposed methodology.



110 de Oliveira, Achcar

2 The Basu-Dhar Bivariate Geometric Distribution

An useful bivariate geometric distribution introduced by Basu and Dhar (1995) could
be a good alternative in applications with lifetime bivariate data in presence of cen-
sored data and covariates. Inferences for this distribution under a Bayesian approach
is introduced by Achcar et al. (2016a). The joint survival function for the Basu-Dhar
distribution is given by,

P(X1>21,X0 > 22) = nglpgzpﬁax(mlﬂfz) )

where z1,29 € N*, 0 < p; < 1,0 < pa < 1and 0 < pjg < 1. It is seen that the
survival function satisfies the loss of memory property without any additional parameter
restrictions, i.e.,

P(X1>x1+t,Xe > a0+t | X1 > 21, X2 > 22) = (p1p2p12)’ (2)

The bivariate probability mass function can easily be obtained from the joint survival
function. In fact, from (1), we have that the bivariate probability mass function of the
Basu-Dhar bivariate geometric distribution, for two discrete random variables X; and
Xy, is given by,

P(Xl =x1, X9 :.xg) = P(Xl >x1— 1, X0 >$2—1) —P(Xl > x1, X9 >1’2—1)
P(X1 >z —1,X9 > x9) + P(X1 > 21, X9 > x9) (3)

From (3) the bivariate probability mass function (pmf) for the Basu-Dhar distribution
is given by,

P (pap12)® L qi (1 — papr2) it X1 <Xo
P(Xy = x1, X2 = x2) = { (p1pap12)™ (1 — p1p12 — pap1z2 + pipepr2) if X1 =X
P (pip12)™ Lga(1 — pip12) if X1 > Xo

(4)
where X1, Xo e N*, 0 <p1 < 1,0<p2<1,0<pia<1,g1=1—p; and ¢o =1 — po.
For convenience, we denote the Basu-Dhar distribution for a bivariate vector of discrete
random variables (X7, X2) as BD distribution.

Remark: An interpretation of the BD distribution could be given in terms of a system of
two components where the failure of the system is given when the component 1 fails, the
component 2 fails and both components fail simultaneously. Assuming that the probability
of failure of the component 1 is equal to 1 — p1, observe that event X1 > x1 occurs if
and only if there were no faults until X1 = x1 (a binomial distribution b(x1,1—p;1), that
is, P(X1 > x1) = p{*). In the same way, P(X2 > z2) = p5* and P(max(X;, X2) >

max(x1,22)) = plf;ax(xl’mﬂ. Thus the probability of the system is working is given by,

P(X1>21,X0 > 22) = pflpéngamm) 5)
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3 Some Mathematical Properties for the BD Distribution

In this section we derive some mathematical properties of the BD distribution. The
derived properties include the marginal probability distributions, conditional distribu-
tion (Section 3.1), distribution of min(Xy, X2) (Section 3.2), conditional distributions
(Section 3.3), moment properties (Section 3.4) and covariance and correlation (Section
3.5).

3.1 Marginal Probability Distributions for X; and X,

Let (X7, X2) be a bivariate discrete random vector with a BD distribution. Clearly, the
marginal distributions of X7 and X, are geometric distributions with the corresponding
parameters pipi2 and popi2. In fact, from Equation (4), we have, for Xi, that the
marginal survival function can be expressed by:

P(Xl >.T1)=P(X1 >x1,X2 >0) :p”flp:fé, gl e N* (6)

from that, the marginal distribution of X is given by:

P(Xlz.Tl) = P(X1>J/‘1—1)—P(X1>331)
= (p1p12)™ (1 — p1p12) (7)
b1ip12
where E(X7) = ——— and Var(Xj) = ——————. In the same way for the random
(X1) (1-pip12) (%) (1-p1p12)? Y

variable X5, the marginal survival function can be expressed by:
P(XQ > 1‘2) = P(Xl > O,XQ > 1‘2) =p§2p%, To € N* (8)
that is,the marginal distribution of X35 is given by:

P(Xy=13) = P(Xo>x9—1)— P(X2 > x9)

= (p2p12)™ (1 — pap12) 9)
Pp2p12
where E(X3) = ——— and Var(X;) = —————. Thus, we conclude that the
(X2) (1-p2p12) (X2) (1-pap12)?

marginal distributions for X; and X5 of BD are respectively geometric distributions,
that is, X1 ~ Geo(pip12) and Xo ~ Geo(papi2).
The probability generating function of X; and Xs are given, respectively, by:

(1 = pip12)ta
Gt]) = ——F7——— 10
(t1) 1 — p1p12ty (10)
and,
1-— t
G(ts) = (A = pop12)ta (11)

1 — popiato
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3.2 Probability Distribution for min(X;, X3)

Let us assume the transformation of the random variables X; and X5 given by W =
min(X1, X3). In the same way as it was considered for the marginal distributions,
it is easy to see that the distribution of min(X, X2) is a geometric distribution with
corresponding parameter pipop1a. In fact, the cumulative distribution function of W is
given by:

P(W <w)=1-P(W >w) =1-p{p§pls™ ") =1 - (mpapr2)”  (12)

That is, P(W > w) = (pip2pi2)” that implies W ~ Geo(pipapi2) with E(W) =

b1p2p12
— — and Var(W) = ———~ |
(I-p1p2pi2) (W) (1-pipapi2)?

The probability generating function for W is given by

(1 — pipapi2)t
G(t) = ——M—=2, 13
®) 1 — p1papiot (13)

3.3 Conditional Distributions

From BD distribution pmf and marginal distributions, the conditional distribution of
X given X, presented by Li and Dhar (2013), is given by:

p§2*1q2 if a9 <x
P52 (1 — pip12 — papi2 + P1p2p12) PR
P(XQ = I9 ’ X; = xl) = 1 — pipio 2= (14)
ro—1 xo—x1 1—
Do p121 . ;ﬁ;u P2p12) i 2y >
and the conditional distribution of X; given X3 is given by:
p”i“_lql if a9 <m
P N1 — pipi2 — papiz + pipapia) g —
P(Xl =7 ’ Xy = xg) = 1 — papio 2=N (15)
r1—1 x1—x9 1—
P1 p121 - ;ZZ](?H P1p12) i x>

3.4 Moment Properties

Let (X1, X5) be a bivariate discrete random vector with a BD(p1, p2, p12) distribution.
Following Li and Dhar (2013), the probability generating function of (X, X2) for the
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bivariate Basu-Dhar geometric distribution can be expressed as:

tit t 1— + 1—
Gty,t2) = 1%2 2¢1p2p12(1 — papi2) n 192p1p12(1 — p1p12)
1 —titay 1 — tapapra 1— tipipo

+ (1 —pipi2 —pap12 +7) |- (16)

where 0 < p1,p2,p12 < 1, [t1] < 1/p1, [ta| < 1/p2, |tita] < 1/pipapi2 and v = pipapio.
The same probability generating function also could be obtained from a generalization
of the geometric distribution proposed by Hawkes (1972).

Using the relationship presented in Kocherlakota and Kocherlakota (1992), between
the probability generating function and the moment generating function, M (t1,t2) =
G(e'1, e'?), the corresponding moment generating function is:

t1 ,t2 to t1
ete e2q1papi12(1 — papio e'tgop1p12(1l — pip12
M (t1,t2) [ ( ) + ( )

1 —etretey 1 —ePpopio 1—ehpipra

+ (1 —pip12 — p2p12 +9) |- (17)

In the same way, using the relationship presented in Kocherlakota and Kocherlakota
(1992), N(t1,t2) = G(t1 + 1,t2 + 1), the corresponding factorial moment generating
function of (X1, Xs) is defined by:

(t1+ (2 +1)

(t2 + 1)qipapi2(1 — pap12) n (t1 + 1)gapipi2(1 — pip12)
1—(t1+1)(ta+ 1)y

Nt b)) =
( 1 2) 1 —p2p12(t2 + 1) 1- plpl?(tl + 1)

+ (1 —pip12 —p2pi2+7) |- (18)

3.5 Covariance and Correlation

Let (X1, X2) be a bivariate discrete random vector with a BD(p1, p2, p12) distribution.
Following Li and Dhar (2013) and from Equation (18), the product moment of X; and
X5 is derived as follows:

1 — p1paply
(1 = pip12)(1 — pap12)(1 — pipapi2)

E[X1 X = (19)

From (19), the covariance and correlation coefficient for the BD(py, p2, p12) distribution

are respectively given by,

p1p2pi2(1 — pi2)
(1 — pip12)(1 — pap12)(1 — pipapi2)

COV[Xl,XQ] = (20)
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and,
(1 — pra)(p1p2)'/?
1 — p1pap12

p[X1, Xo] = (21)

4 Estimation

4.1 Method of Moments

The method of moments could be used (see Dhar, 1998) to estimate the parameters
of the BD(p1, p2, p12) distribution. In this subsection, it is presented this estimation
method. In order to apply method of moments, recall the population moments presented
in Sections 3.1 and 3.2 and replace the population moments by their sample equivalents
as follows:

1 — 1 5
B(X1) = oo = X E(X) = s = X (22)
and,
EW)= — - (23)

(1-p1pap12)

where W = min(X1, X3) and X; = ZXl /n, Xo = ZXgl/n W= Zmln X1, X9i)/n

denote the sample moments. These equatlons are solved to yield the estimates for pq,
p2 and p1o obtained by the method of moments:

X2(1-W)
W(l-X,)

Xi(W —1)
W(X1-1)

P2 = (24)

p1 =
and,

WX —1)(X— 1)

TGSt 25
b S 1)XXs (25)

=

4.2 Method of Maximum Likelihood

In this section, it is introduced the maximum likelihood estimation (MLE) method in
two situations: the situation assuming censored data and the situation with complete
data. In both cases, the maximum likelihood estimator do not have a closed form and it
is needed the use of numerical methods like Newton-Rapshon, Nelder-Mead and others
to get the MLE for each parameter.

4.2.1 Complete Data

Let (X1, X21), (X12, X22), ..., (X1pn, Xon) be a random sample of size n from a BD
distribution and define two indicator variables given by vy; = 1 if X1; < Xo; else O;
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vy; = 1 if Xq; > Xo; else 0 for 4+ = 1,2,...,n two indicator variables. Then, we have
three possible situations considering these indicator variables:

(vi,v25) = (1,0) if  Xy5 < Xy
(vis,v2:) = (0,1) if X3 > Xy
(vis,v2:) = (0,0) if Xy = Xy (26)

Thus, from Equations (4) and (26), the likelihood function for the parameters pi,ps e
P12 is given by,

L(p1,p2,p12) = va“ (1=v20) (x z,$2z)f2(1_v1i)(1_vgi)(w1u332¢)f§)2i(1_v“)($1i,372i) (27)

where
filzi, xe) = p7 N p2p12)™ g1 (1 — papi2)
fo(w1i,22) = (papap12)™ (1 — p1ip12 — papia + pipapi2)
fs(@i,x0:) = P52 H(pip12)™ g2 (1 — pipia) (28)
n n n
Defining ny = Zvli,ng = ngi,ng, = Z(l —v1;)(1 — v2),n = n1 + na + n3 and
; ; i=1

n
Z'UUU% = 0, the likelihood function (28) can be rewritten as follows:
i=1

L(p1,p2,p12) = p T (pep12) 2T (1 — pap12)™ (prpapiz) BT
X pat " (pip12) P2 gh (1 — pipi2)™
X (1 —pipi2 — pap12 + p1p2p12)
= pT1+T3+T5 in2+T3+T6 in2+T3+T5 nq?ln nz(l _ p2p12)n1(1 _ p1p12)n2
x (1 —pip12 — pap12 + p1p2p12)™ (29)
n n n
where T1 = Zvli(l — ’UQZ‘)IU,TQ = Zvli(l — Uzi)in,Tg = T4 = Z(l — Uli)(l —
i=1 i=1 i=1
v2;)x14, 15 = szz —wv14)xe; and T = ngz —vy1;)x2;. From (29), the log-likelihood

=1
function for the parameters pi, p2 and pi12 is given by:

(T + T3 + T5 — n)log(p1) + (T2 + T3 + Ts — n) log(p2)

(Th + T + Ts — n)log(p12) + n1 log(qr) + n2log(gz) +
n1log(1 — pap12) + nalog(l — pip12)

nglog(l — pip12 — p2pi2 + p1p2pi2) (30)

U(p1, p2,p12)

+ o+ o+
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The maximum likelihood estimators (MLEs) for py,ps and pi2 are solutions of the

0 or ol

equations — =0, — = 0 e —— = 0. From the log-likelihood (Equation 30), the first
p1 Ip2 Op12

derivatives of ¢(p1, p2, p12) with respect to p1,p2 and pio are given respectively, by,

ot Ti+T3+Ts—n  nm  nopip n3(pi2 — p2p12)
op1 P1 1—=p1 1—=pipi2 1 —pipi2 — papi2 + p1p2pi2
ot To+T3+Te—n  mng  mpia n3(p12 — pap12)
Op2 P2 1—=p2 1—popi2 1—pipi2 — papi2 + p1p2pi2

o  Tr+T3+Ts—n  mpr  nmopr n3(p1+p2—pipi2)
Op12 P12 1—pop12o  1—pip12 11— pipi2 — p2pi2 + pipapi2

(31)

Defining a =T+ 15+ T15,b =T + 15+ Tg,c = T + T3 + T3, then the MLEs, denoted
by p1,p2 and pia, are the solutions of the following system of equations:

a—n  m ngpa n3(pi2 — papi2) _o
pi 1-p1 l-pipz 1 - pipia — P2piz + pipepie

b—n  ny  mpn n3(P12 — P2pi2) _0
P2 1-=p2 1—pprz 11— pipi2 — papia + Pipapia

c—n_ mps na2p1 n3(p1 + p2 — pip12) —0

p2 1—paprz 1—piprz 1= piprz — papia + Pipapi
(32)

It is important to point out that the MLEs of pi,p2 and p12 have no closed form.
However, using (32), we can estimate pj,ps and pi2 using standard numeric optimiza-
tion algorithms such the Newton-Raphson or the Nelder-Mead methods. Under standard
asymptotic maximum likelihood theory, the observed information Fisher’s matrix is ob-
tained from the second derivatives of the log-likelihood function with respect to p1, po
and pi2 locally at the obtained MLE’s, that is, the Fisher’s observed information matrix,

o4
Iy = < > Jk, 7 =1,2,12, is given by,

Ppip;
- 924 B o2/ B 0%
02p? Ppipa O?pip12
92/ H%¢ 0%l
I mrsy = | - 2F s __Yr 33
0(]01,172,]912) 82p2p1 ang 32]921712 ( )
924 o%¢ 0%

S Ppiapr Pppe 9%

P1,P2,p12
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where,
0%( __a-n_m napis n3p12g2(p2p12 — P12)
0?p1p1 p? i (1 —pip2)? (1—7)2
% P nspu | MsP12g2 (p1p12 — p12)
0?p1p2 Ppopr 1 - (1—7)2
o _ O me mepipz | msp | nspige(pipiz — py—po)
0%p1p12 0%piap1 1—pipiz (1—pip12)? 1—7 (1—7)2
% b-mn my  niph n3p12q1 (P1p12 — P12)
9%papa P34 (1—pop12)? (1—7)2
9% _ 9% M mpp | ma napi2q1(p1p12 — p1 — P2)
0%papi2 0%p1apo 1—popi2 (1 —pop12)? 1—7 (1—7)2
%t _e—n_ mpy _ mpi | na(pat pe — pipe)(Pipz — py— p2)
0?prapi2 ply (1 —pop12)? (1 —pipi2)? (1—7)?

and q1 =1 —p1,q2 =1 —p2,7 = p1p12 + p2p12 — P1p2p12-
Hypotheses tests and confidence intervals for p;, po and p12 can be obtained by using
the asymptotically normality of the MLEs p1, p» and p13, i. e.,

(P1, P2, p12) ~ N((p1, 52, p12), Iy ')
where [ is the Fisher’s observed information matrix described previously.

Remark: Another way to write the likelihood function for pi, ps and p1s is given directly
by the pmf based on survival function expressed in Equation (3), that is,

-1 -1 -1 -1
P(Xy=a1,Xa = @) =pi' py" P15 —PU'DY° P13 DU PR T PP P (34)

where z1 = max(z; — 1,29 — 1), 20 = max(xj,x2 — 1),23 = max(z; — 1,22) e z4 =
max(x1,x2). Thus, the likelihood function is rewritten as follows:

_ r1i—1, x2;—1 214 T1i,T2,—1, 29 T1i—1, w2;, 23 T1i, T2, Z4i
L(p1,p2, p12) = H [pl Y PT P — PP P12 —Pr Py P TP PRPIY
i=1

(35)
4.2.2 Censored Data

Often in applications with lifetimes it is common the presence of censored data, that
could be right, left or interval censoring. In this study, we assume the presence of right
censoring data. Let (Xi1, Xo1), (X2, X22),...,(X1pn, X2,) be a random sample of size
n from a BD(p1,pe, p12) distribution. In presence of right random data,we define the
following indicator variables:
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(36)

61;=1 if X3; < Cy; and 0, for the other part.
2; =1 if Xo; < Cy and 0, for the other part.

where ¢ = 1,2, ...,n; (Cy;, Cy;) are the right censoring times. In this case, we have four
possible situations:

1. Both, X1; and Xo;, are complete observations (d1; = 1,d9; = 1),
2. Xy; are complete and Xy; are censored (d1; = 1,d9; = 0),
3. Xy; are censored and Xo; are complete (d1; = 0,09, = 1),
4. Both, X;; and Xy;, are censored observations (d1; = 0, d; = 0).

In all cases, the observed data is given by the expressions t; = min(Xy;,Cy;),i =
1,2,...,n and to; = min(Xg;, C2),t = 1,2,...,n. Then, the contributions for the likeli-
hood function on the ith-observation are given by:

1. X1; and Xo; are complete observations: [P(X1; = @14, Xo; = 294)]%1%2 |

2. Xy, is a complete observation and Xo; censored observation: [P(X1; = 14, Xo; >
1015 (1—82;)
622)] ! P

3. Xj; is a censored observation and Xo; is a complete observation: [P(X1; > ¢4, Xo; =
1.21.)](1*511)521' ,

4. X1; and Xo; are censored observations: [P(X1; > c14, Xo; > CQi)](l_dli)(l_ggi).

Thus, the likelihood function is is given by,

n
L(p1,p2,p12) = H[P(Xu = 214, Xoj = 29;)]7%% [P(X1; = w14, Xog > ¢97)]01107%20)
=1
X [P(X1i > cri, Xog = 97)] 02 [P(X0; > e14, Xog > 09)] 170 07020)
(37)

Remarks: For 61; = d9; = 1, the first term of likelihood function is:
P(Ty; = ty, Toi = toi) = pi 05" 'piy — p1"py” 013 — P Py by + L pE TS (38)
for the case of 61; = 1,d9; = 0, the second term of likelihood function is given by:

P(Ty; = tyi, Toi > tog) = pi* " ppis — pippis; (39)
for the case of 61, = 0,d9; = 1, the third term of likelihood function is given by:

P(T1; > ts, To; = to;) = pi”ptzﬂ_lpgi - P?ip?ip?éi; (40)
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and for the case of §1; = §o; = 0, the last term of likelihood function is given by:
P(Ty; > ti, Toi > ta;) = piliphpiy, (41)

where Z1; — max(Tli — 1,T2i — 1), Z9; = maX(TM,TQi — 1),23,‘ = max(Tli — 1,Tgi) and
Z1 = maX(Tu, TZi)-

Finally, the log-likelihood of bivariate Basu-Dhar geometric distribution considering
right censoring data is expressed as follows

n
Upr,pa,pi2) = Y Sudaloglpy ™ p ~ piy — pitpR T iy — pit TR piy + Pl pis ]

i;l

+ D 0u(1 — b2) log[p 'R pis — pitppiy]
i7—11

+ ) (1= 0u)(1 — 62) log[p{t piipis]
izl

+ Y Goi(1 = 61:) log[pitpF ' piy — pip pis] (42)
=1

where z1; = max(T1;—1, Ty —1), z9; = max(Ty;, To;—1), z3; = max(T1;—1,Ty;) and z1; =
max (T, Ta;). Defining a = p’i”_lp;?i_l,b = ptl”pgw_l,c = ptl”_lpg” and d = pﬁ”p?i,
them, from the log-likelihood (Equation 42), the first derivatives in censored case for

p1, p2 and pig are, respectively, given by:

o i 51:0 [(tu — Dapy 'piy —atupiy  (tii — Depy 'piy — ctipiy ]
opr o T Laply —bpis —epiy +dpiy apiy — bpiy — epiy +dpiy
n n —1,,23i 244
(1 —=613)(1 — b24)t14 (t1i — 1)ep™ piy — ctiipis
+ + 57 605(1 — 6) _ _
2 D
n Py 2
ati;p7s — ctiiplsy
+ d2i(1 — 014) [ : :
; ' YLty —dpiy
o i 511601 I:(t% — Vap, 'piy — ataiply  (tai — 1)bp; 'pi3 — btaiply ]
Opy =T Laply —bpis —epiy +dpiy apiy — bpiy — epiy +dpiy

n n . .

(1 —614) (1 — 624)t2; atoply — btapiy
+ + 014(1 — 94 - -
; P2 z; W00 |y iy

224 244

. (t2 — Dbpy 'pi3 — btzz‘piéi]
+ 09;(1 — dy; [
; 2i( 1) bp15 — dpys
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ol = zraply " — zobp T — zsiep{S T 4 zagdpis T
— Z 01302

Op12 — apyy — bpis — epiy + dpiy

+ i (1 — 511)(1 — 52i)24i + i 511(1 - 62@)

z3i—1 z.
z3icpyy  — zaidpiy ]

P P12 P cply — dpiy
29ibp?2 Tt — 24 dpz‘“
I

4.3 A Bayesian approach and the presence of Covariates

For a Bayesian analysis, we assume uniform prior distribution U(0, 1) for the three
parameters (p1, p2, and p12) not considering the presence of covariates. It is also assumed
mean square error with Euclidean norm as the risk function. Notice that, it is not possible
to get closed forms for the Bayes estimators of p1,p2 and pio due to the complex form
of the joint posterior distribution even using those selected priors. In this case, in terms
of computational aspects, the joint posterior distribution is similar to the likelihood
function in the MLEs computation.

In presence of a vector of k covariates, denoted by S; = (S14, S2i, - - -, Ski), We assume
logistic regression models for the parameters p; and ps, that is,

logit(p1i) = B1o + B1151i + - - + BirSki (44)
logit(p2i) = Bao + B2151i + - .. + BarSki

where logit(p) = log <1p> For a Bayesian analysis of this regression model it is as-
P

sumed normal prior distributions for the regression parameters with mean equals to zero
and large variance (non-informative priors) and an uniform prior distribution, U(0, 1),
for the parameter pqo.

5 Simulation Study

In this section, using Monte Carlo simulations, we present some simulation results
for the Basu-Dhar bivariate geometric distribution to evaluate the performance of the
moments estimators (MOM), the maximum likelihood estimators (MLEs) and the Bayes
estimators. For the maximum likelihood estimation for the parameters of the model, we
considered the two forms of log-likelihood: the first one, named MLE I, is obtained from
Equation (35), and the second, named MLE II, is obtained from Equation (30). For the
Bayesian estimation approach, we considered uniform U (0, 1) independent priors for the
parameters p1, p2 and pio for both forms of log-likelihood function.

To simulate observations from this model, the marginal distribution of X and the
conditional distribution of Y given X are used. It is important to point out that an
observation from the marginal distribution of the random variable X is generated using
the inverse-transformation method. Using this realization of x, a value of Y is generated
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using the inverse-transformation method again based on the conditional distribution of
Y given X = z as given by (Li and Dhar, 2013):

Py g if @0 <y
P32 11 — pip12 — papra + P1p2p12)
1 —pip12

ro—1 xo—x71

by P12 q1 (1 - p2p12)
1 —pip12

P(Xy =15 | X1 =11) = i wp =1 (y5)

if X9 > X1

The simulation was performed using the R software version 3.3.0 (R Core Team, 2016).
For this study, we have taken sample sizes n = 40,60, 120, 160, 200, 250, 300 and fixed
parameter values (p1,p2, p12) = (0.90,0.95,0.97). For each combination (n,p1, p2,p12),
we generated 500 simulations from Basu-Dhar bivariate geometric distribution using the
following algorithm (Li and Dhar, 2013):

1. Generate X; ~ Geo(1 — p1p12);
2. Generate U ~ U(0,1);

1—pm

3. Setw=—_PL .
1 —pip12

4. If x; = 1 and u; < 1 — poprow, then set y; = 1; else

5. If 2 = 1, u; > 1 — w(papr2)® ! and u; < 1 — w(pap12)®, then set y; = s, for
s =2,...500; else

6. Ifui21—p% andui<1—p§+1,thensetyi:j+1, for j=1,...2; — 2; else

7. Ifu;, >1— p”;"_l and u; <1 —pgiplgw, then set y; = x;; else

8 Ifu; >1—pyiprow and uy < 1 — p§i+1p%2w, then set y; = x; + 1; else
9. Ifu; >1 —pi;xi (pap12)*w and u; < 1 —pi;xi (pap12)* 1w, then set y; = k + 1, for
k=1+u,....500.

The estimates for the parameters pi,p2 and pio were obtained using the method
of moments (MOM) using the equations (24), the MLE estimates were obtained by
the Nelder-Mead method using maxLik function and optim.method = “NM?” from
mazxLik package (Henningsen and Toomet, 2011). The Bayes estimates were obtained
by MCMCmetroplR function from MCMCpack package (Martin et al., 2011) with
arguments burn = 1000, mcmc = 10000, thin = 1, optim.method = “Nelder-
Mead”. To assess the performance of the methods, we calculated the bias and the MSE
(mean-squared-error) for the simulated estimates of p1,ps and pi2. Also, we calculated
the execution time of simulation for each method. The results are presented in Tables 1
and 2 and the R codes used for simulation study are given in Appendix II at the end of
this manuscript.
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From these simulated observations, the mean of the 500 estimated vectors of the
parameter p = (p1,p2,pi2), the biases and the MSE based on these 500 vectors are
computed. The performances of the five estimation methods are assessed based on
the estimated expected value of the estimator vector and their estimated biases and
estimated MSE for different sample sizes. The biases and MSE were calculated as:

B B
1 . 1 N
BIAS(p) = B z:(pZ —pi) and MSE(p) = B Z(pz — pi)?
i=1 i=1

where B is the number of simulations and p = (p1, p2, p12).

Table 1 shows, respectively, the mean of the estimates (for MOM, MLE I, MLE II,
Bayes I and Bayes II), the biases and the MSE of the obtained estimates for p1, ps and
p12 for each simulated sample. The results are also illustrated in the Figures 1 and 2.
From the results of Table 1, it is observed that:

1. When n is small, the biases and MSEs for MOM, MLE I, MLE I and Bayes 1
estimates are greater when compared to the case when n — oo. In addition, the
Bayes I estimates have negative biases for all sample sizes. Except for two cases,
the same happens to MLE I;

2. The Bayes II and MLE II have the same problems to estimate the parameter pis
in the simulation study which leads to poor estimates for biases and MSEs. This
fact may be related to the MCMC iterations or the correlation structure between
X1 and Xg.
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Figure 1: Biases for the BD model parameters considering all estimation methods (MOM
— Bayes II) in the simulation study under a Bayesian approach.
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Figure 2: MSEs for the BD model parameters considering all estimation methods (MOM
— Bayes II) in the simulation study under a Bayesian approach.
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Table 1: Simulation results.

True MOM BIAS MSE MLE I BIAS MSE MLE II BIAS MSE
Par. (Mean) (MOM) (MOM) | (Mean) (MLEI) (MLETI) | (Mean) (MLE II) (MLE II)

p1 =0.90 | 0.89734 -0.00266 0.00069 | 0.89734 -0.00266  0.00040 | 0.90976  0.00976  0.00040
40 py = 0.95 | 0.94928 -0.00072 0.00038 | 0.94928 -0.00072  0.00016 | 0.96745  0.01745  0.00044
p12 = 0.97| 0.96975 -0.00025 0.00036 | 0.96939 -0.00061  0.00013 | 0.90087 -0.06913  0.00529

© p1=0.90 | 0.89942 -0.00058 0.00038 | 0.89903 -0.00097  0.00022 | 0.91117  0.01117  0.00030
60 ps = 0.95 | 0.95007 0.00007 0.00025 | 0.94967 -0.00033  0.00010 | 0.96766  0.01766  0.00040
p12 = 0.97| 0.96939 -0.00061 0.00020 | 0.96960 -0.00040  0.00008 | 0.90272  -0.06728  0.00488

© p1=0.90 | 0.90017 0.00017 0.00022 | 0.89938 -0.00062  0.00013 | 0.91165  0.01165  0.00024
120 po = 0.95 | 0.95041 0.00041 0.00013 | 0.94962 -0.00038  0.00006 | 0.96763  0.01763  0.00037
p12 = 0.97| 0.96919 -0.00081 0.00011 | 0.96984 -0.00016  0.00004 | 0.90365 -0.06635  0.00458

© p1=0.90 | 0.89970 -0.00030 0.00016 | 0.89929 -0.00071  0.00009 | 0.91155  0.01155  0.00020
160 po = 0.95 | 0.94971 -0.00029 0.00010 | 0.94942 -0.00058  0.00004 | 0.96760  0.01760  0.00035
p12 = 0.97| 0.96943 -0.00057 0.00008 | 0.96965 -0.00035  0.00003 | 0.90354 -0.06646  0.00455

© p1=0.90 | 0.90006 0.00006 0.00011 | 0.89951 -0.00049  0.00007 | 0.91162  0.01162  0.00019
200 ps = 0.95 | 0.95046 0.00046 0.00007 | 0.95006 0.00006  0.00003 | 0.96822  0.01822  0.00036
P12 = 0.97| 0.96916 -0.00084 0.00006 | 0.96952 -0.00048  0.00003 | 0.90324 -0.06676  0.00456

© p1=0.90 | 0.90040 0.00040 0.00008 | 0.90036 0.00036  0.00005 | 0.91254  0.01254  0.00020
250 po = 0.95 | 0.94976 -0.00024 0.00006 | 0.94977 -0.00023  0.00003 | 0.96775  0.01775  0.00034
pr2 = 0.97] 0.96991 -0.00009 0.00005 | 0.96985 -0.00015  0.00002 | 0.90455 -0.06545  0.00436

© p1=0.90 | 0.89954 -0.00046 0.00008 | 0.89919 -0.00081  0.00005 | 0.91145  0.01145  0.00017
300 po = 0.95 | 0.95022 0.00022 0.00005 | 0.94994 -0.00006  0.00002 | 0.96827  0.01827  0.00035

p12 = 0.97| 0.96969 -0.00031 0.00004 | 0.96992 -0.00008  0.00002 | 0.90337 -0.06663 0.00451

True MOM BIAS MSE Bayes I BIAS MSE Bayes 11 BIAS MSE
Par. (Mean) (MOM) (MOM) | (Mean) (BayesI) (BayesI) | (Mean) (BayesII) (Bayes II)

p1 =0.90 | 0.89734 -0.00266 0.00069 | 0.89450 -0.00550  0.00043 | 0.90670  0.00670  0.00036
40 ps = 0.95 | 0.94928 -0.00072 0.00038 | 0.94749 -0.00251  0.00016 | 0.96485  0.01485  0.00036
pr2 = 0.97| 0.96975 -0.00025 0.00036 | 0.96778 -0.00222  0.00012 | 0.89971  -0.07029  0.00546

© p1=0.90 | 0.89942 -0.00058 0.00038 | 0.89709 -0.00291  0.00023 | 0.90914  0.00914  0.00027
60 ps = 0.95 | 0.95007 0.00007 0.00025 | 0.94842 -0.00158  0.00010 | 0.96593  0.01593  0.00035
pr2 = 0.97| 0.96939 -0.00061 0.00020 | 0.96861 -0.00139  0.00008 | 0.90194  -0.06806  0.00498

© p1=0.90 | 0.90017 0.00017 0.00022 | 0.89843 -0.00157  0.00013 | 0.91066  0.01066  0.00021
120 pp =0.95 | 0.95041 0.00041 0.00013 | 0.94896 -0.00104  0.00006 | 0.96675  0.01675  0.00034
pr2 = 0.97| 0.96919 -0.00081 0.00011 | 0.96938 -0.00062  0.00004 | 0.90331  -0.06669  0.00463

© p1=0.90 | 0.89970 -0.00030 0.00016 | 0.89854 -0.00146  0.00009 | 0.91078  0.01078  0.00018
160 pp = 0.95 | 0.94971 -0.00029 0.00010 | 0.94892 -0.00108  0.00004 | 0.96692  0.01692  0.00032
pr2 = 0.97| 0.96943 -0.00057 0.00008 | 0.96931 -0.00069  0.00003 | 0.90331  -0.06669  0.00458

© p1=0.90 | 0.90006 0.00006 0.00011 | 0.89892 -0.00108  0.00007 | 0.91102  0.01102  0.00018
200 py = 0.95 | 0.95046 0.00046 0.00007 | 0.94966 -0.00034  0.00003 | 0.96767  0.01767  0.00034
pr2 = 0.97| 0.96916 -0.00084 0.00006 | 0.96965 -0.00074  0.00003 | 0.90306  -0.06694  0.00459

© p1=0.90 | 0.90040 0.00040 0.00008 | 0.89988 -0.00012  0.00005 | 0.91206  0.01206  0.00019
250 py = 0.95 | 0.94976 -0.00024 0.00006 | 0.94944 -0.00056  0.00003 | 0.96732  0.01732  0.00032
pr2 = 0.97] 0.96991 -0.00009 0.00005 | 0.96965 -0.00035  0.00002 | 0.90442  -0.06558  0.00438

© p1=0.90 | 0.89954 -0.00046 0.00008 | 0.89879 -0.00121  0.00005 | 0.91103  0.01103  0.00016
300 ps = 0.95 | 0.95022 0.00022 0.00005 | 0.94966 -0.00034  0.00002 | 0.96790  0.01790  0.00034

p12 = 0.97| 0.96969 -0.00031 0.00004 | 0.96977 -0.00023  0.00002 | 0.90326  -0.06674 0.00452
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From Figures 1 and 2, it is possible to conclude that the MLE II and Bayes II estima-
tors do not have nice properties showing inconsistency for the parameter p1s. This fact
could be justified by the existing correlation structure among the parameters and the
complexity of the log-likelihood function presented by equation (30) when compared to
the log-likelihood presented in equation (35). For the others estimators, MOM, MLE I
and Bayes I, the BD model parameters have good properties when n — co.

Table 2 shows, respectively, the CPU time for user and system in the simulation study.
It is important to point out that the simulation study was performed in a Core i3-3240
(3.40 Ghz) machine with 8 GB DDR3 RAM and Windows 10 Pro (version 1703) as

operating system.

Table 2: Execution time (in seconds) of simulation.

Method ‘ MOM MLEI MLEII Bayes I  Bayes II

User 6014.95 6142.58  6180.63  12905.80 7722.79
System 1.07 0.78 2.19 1.27 2.15
Total ‘ 6081.79  6180.60 6266.66  12939.05 7792.48

From the results of Table 2, it is possible to see that the smaller system time is obtained
for MLE I estimation method and higher in MLE II estimation method. Between the
two Bayes estimators, the Bayes I have almost the double of execution time than Bayes
II, but, by Table 1, Bayes I have better estimates, bias and MSE when compared to the
Bayes II estimation. For the two MLEs estimation methods, it is observed that both
have close execution times, but the MLE I has more consistent estimates when compared
to the MLE II estimates.

6 Applications

6.1 An example with no censored observations

Let us assume a real data set from Dhar (2003). This data set consists of scores given
by seven sport judges in an international diver competition from seven different countries
in the form of a video recording. The score given by each judge is a discrete random
variable taking positive integer values and also the midpoints of consecutive integers
between zero and ten (dataset in the Appendix I at the end of the manuscript).

For the analysis, we assumed a BD with pmf given by Equation (4). For the moments
estimation method, it is calculated from the sample the sample means X = 13.947,
Y = 14.368 and W = 13.789, from which it is obtained the estimates, p1 = 0.9968,
P2 = 0.9991 and p1o = 0.9312. It is important to point out that the estimates based
on the moments method were used as initial values for MLEs and Bayes estimates
computation.
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The model, using all methods, was estimated using the R software. The MLE estimates
and confidence intervals for pi,ps and pis are presented in Table 3. For a Bayesian
analysis, we considered uniform U (0, 1) priors for p1, ps and p12, and it was used MCMC
(Markov Chain Monte Carlo) simulation methods to get the Bayesian estimates.

Table 3: MLE and Bayes posterior summaries for the application 1.

Par. MLE I S.E. 95% Conf. Int. ‘ MLE II S.E. 95% Conf. Int.

P1 0.9616  0.0124  (0.9373, 0.9858) 0.9618 0.0123  (0.9376, 0.9859)
D2 0.9854  0.0098  (0.9663, 0.9999) 0.9859 0.0095  (0.9673, 0.9999)
D12 0.9401 0.0158  (0.9093, 0.9711) 0.9371 0.0164  (0.9051, 0.9692)

Par. | BayesI S.D. 95% Cred. Int. ‘ Bayes 11 S.D. 95% Cred. Int.

p1 0.9575 0.0129  (0.9290, 0.9791) 0.9577 0.0132  (0.9286, 0.9798)
D2 0.9796 0.0108  (0.9529, 0.9957) 0.9799 0.0109  (0.9542, 0.9959)
P12 0.9391 0.0157  (0.9048, 0.9670) 0.9358 0.0168  (0.9013, 0.9652)

From the results of Table 3, it is concluded that the four used methods are quite
similar to estimate the model parameters and do not change considerably moving from
one method to another. Similar results also are obtained for the Bayesian credibility
intervals and confidence intervals. Also it is observed that for all methods, the standard
errors for the estimates are very low that implies in good length of confidence and
credibility intervals, an indication that BD has a good performance for this dataset.

6.2 An example with censored observations and covariates

As another application of the proposed methodology, let us now to consider a survival
dataset related to kidney infection (McGilchrist and Aisbett, 1991) where the recurrence
of infection of 38 kidney patients, using portable dialysis machines, are recorded. Infec-
tions may occur at the location of insertion of the catheter. The time recorded, called
infection time, is either the survival times (in complete weeks) of the patient until an
infection occurred and the catheter had to be removed, or the censored time, where the
catheter was removed for others reasons. The catheter is reinserted after some time and
the second infection time is again observed or censored (dataset in the Appendix I at
the end of the manuscript).

For the analysis not considering the presence of covariates, we assumed a BD with pmf
given by Equation (4). It is important to say that the MLE estimates and confidence
intervals for p1, po and p12 were obtained by log-likelihood with censoring and estimated
on R software (R Core Team, 2016) and the results are presented in Table 4. For a
Bayesian analysis, we considered as prior an uniform prior distribution, U(0,1), for
p1, p2 and p12, using the MCMC (Markov Chain Monte Carlo) simulation method to get
the Bayes estimates.
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Table 4: MLE and Bayes posterior summaries for the model not considering the covariate
gender for the application 2.

Par. | MLE ~ SE.  95% Conf. Int. | Bayes S.D.  95% Cred. Int.

p1 | 09512 0.0122 (0.9273, 0.9751) | 0.9495 0.0095 (0.9290, 0.9660)
p2 | 0.9485 0.0110 (0.9269, 0.9700) | 0.9487 0.0105 (0.9278, 0.9682)
piz | 0.9950 0.0041 (0.9870, 1.0000) | 0.9947 0.0042 (0.9844, 0.9998)

From the results of Table 4, it is concluded that the MLE and Bayesian estimates
are quite similar and do not change considerably moving from one method to another.
Similar results also are observed for the confidence and credibility intervals. Also, it is
observed that the standard errors of the estimates are very low in both methods. That
implies in good length of confidence and credibility intervals which suggests the good
performance of the BD distribution for the dataset in presence of censored data.

In the analysis in presence of the covariate gender, we assumed logit regression models
for the parameters p; and py given by Equation (44). Only the Bayesian estimates are
considered in this case. For the Bayesian analysis, we assumed normal priors for the
regression parameters (810, 520, B11, S21 ~ N(0,100)) and an uniform prior distribution,
U(0,1), for the parameter pjs. Posterior summaries for the model were obtained using
the OpenBugs software (Spiegelhalter et al., 2007) (see Table 5).

Table 5: Posterior summaries in presence of the gender covariate for application 2.

Par. ‘ Mean S.D. 95% Conf. Int.
B1o -0.4816 0.6892 (-1.9504, 0.7237)
B11 1.8721 0.3945 (1.2143, 2.6514)
B20 2.8243 0.8804 (1.2073, 4.3396)
Ba1 0.1189 0.4903 (-0.8292, 1.0592)
P12 0.9944 0.0042 (0.9855, 0.9998)

From the results of Table 5, it is concluded that similar to the other examples, the
BD distribution is a good alternative for the data analysis in presence of censored data
and covariates.

7 Concluding remarks

In this paper, we presented some computational aspects of bivariate Basu-Dhar distri-
bution introduced by Basu and Dhar (1995). The results obtained in a simulation study
leads to the conclusion that BD have good computational aspects in terms of system
time. Also, the biases and the MSEs are lower among all estimation methods considered
in the simulation study.
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Another point to interest, in mathematical terms, the log-likelihood (with censored
data and complete data) are quite simple and do not have terms depending on ex-
ponential function as it is common with other discrete distributions leading to good
computational aspects avoiding instability in parameter estimation. It is not illustrated
here, but the convergence of all Markov chains were observed from trace plots of the
simulated Gibbs samples.

Finally, as observed in the applications with real datasets, the BD distribution could
be a good alternative to analyze lifetime data assuming discrete rather than continuous
data with small computational costs to get the inferences of interest as compared to
many existing bivariate parametric lifetime distributions or bivariate models derived
from copula functions for continuous bivariate lifetime data (see for example, Achcar
et al., 2016b).
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Appendix I - Datasets

Table 6: Sports data: scores given by different judges.

Item Diver X:max score, Asian judge Y:max score, West judge
1 Sun Shuwei, China 19 19
2 David Pichler, USA 15 15
3 Jan Hempel, Germany 13 14
4 Roman Volodkuv, Ukraine 11 12
5 Sergei Kudrevich, Belarus 14 14
6 Patrick Jeffrey, USA 15 14
7  Valdimir Timoshinin, Russia 13 16
8 Dimitry Sautin, Russia 7 5
9 Xiao Hailiang, China 13 13
10 Sun Shuwei, China 15 16
11 David Pichler, USA 15 15
12 Jan Hempel, Germany 17 18
13 Roman Volodkuv, Ukraine 16 16
14 Sergei Kudrevich, Belarus 12 13
15 Patrick Jeffrey, USA 14 14
16 Valdimir Timoshinin, Russia 12 13
17 Dimitry Sautin, Russia 17 18
18 Xiao Hailiang, China 9 10

19 Sun Shuwei, China 18 18
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Table 7: Recurrence times of infections for 38 kidney patients.

Patient First Time Second Time  Status: First Time Status: Second Time  Sex
1 1 1 1 1
2 3 1 0 2
3 3 1 1 1
4 64 45 1 1 2
5 4 2 1 1 1
6 3 35 1 1 2
7 1 1 1 1 1
8 73 4 1 1 2
9 28 1 1 2
10 22 1 1 1
11 48 1 1 2
12 20 1 1 0 2
13 14 5 1 1 2
14 21 10 0 0 2
15 7 4 1 0 2
16 2 1 0 1
17 26 17 1 1 2
18 42 16 1 1 2
19 23 0 0 2
20 2 15 1 0 2
21 22 80 1 1 1
22 57 3 1 0 2
23 2 9 1 1 2
24 6 7 1 0 2
25 2 6 1 1 1
26 16 29 0 1 2
27 19 22 1 1 2
28 5 4 1 1 2
29 4 1 1 1
30 19 4 1 1 2
31 4 8 1 1 2
32 1 6 0 1 2
33 22 4 1 1 2
34 27 1 1 0 2
35 17 1 1 1 2
36 8 2 0 0 2
37 1 11 0 1 2
38 9 1 1 0 1

Status: Censoring(0), infection(1);Sex: male(1), female(2)
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Appendix IT - R/OpenBugs Codes

1. Simulation

# Seed
set.seed (1212)

# True Parameters

pl <— 0.90

p2 <~ 0.95

p12 <— 0.97

# Simulation Structure

B <— 500 # Number of Simulations
n <— c(40, 60, 120, 160, 200, 250, 300) # Samples
a <-1

out <— array (0, dim = c(B, 3))

means <— array (0, dim = c(length(n), 3))

bias <— array (0, dim = c(length(n), 3))

mse <— array (0, dim = c(length(n), 3))

for (m in n)

{

for (1 in 1:B)
{

# Generating Xi
x

x

# Generating Yi
u

y

for (i in 1:m)

{
if(x[i]
else
if(x[i]
else
else
if(uli]
else
if(uli]
else
if(uli]

}

<— rgeom(m, 1 — pl % p3) + 1
<— array(x, dim = c(m, 1))
<— runif (m)

<— array(u, dim = c(m, 1))
<— array(c(0), dim = c(m, 1))

= 1 && u[i] <1 — p2 * p3 * (1 — pl)/(1 — pl x p3)) {y[i] = 1}

= 1)

{for(s in 2:1000) if(u[i] > 1 — (1 — pl) = (p2 * p3)°(s — 1)/(1 — pl % p3) &&
ul[i] <1 = (1 = pl) % (p2 * p3)"s/(1 — pl = p3)) {y[i] = s}}

for (j in 1:x[i] — 2) if(ul[i] > 1 — p27j & u[i] < 1 — p2°(j + 1)) {y[i] =j + 1}
>= 1 — p2°(x[i] — 1) && ul[i] < 1 — (p2°x[i]) *= p3 * (1 — pl)/(1 — pl =% p3))

{yli] = x[i]}

>= 1 — (p2°x[i]) = p3 = (1 — pl)/(1 — pl * p3) &&

uli] <1 — (1 = pl) = (p27°(x[i] + 1)) = p3°2/(1 — pl = p3)) {y[i] = x[i] + 1}

>=1— (1 — pl) * (p2°(x[i] + 1)) = p3°2/(1 — pl = p3))
{for(k in 1 + x[i]:1000) if(u[i] > 1 — (1 — pl) * p3°(—x[i] +
(P2 * p3)°k/(1 — pl % p3) && ul[i] < 1 — (1 — pl) * p37°(—x[i] +
(p2 * p3)°(k+1)/(1 — pl = p3)) {y[i] = k + 1}}

# Generating min(Xi, Yi)

min_xy
for (i in 1:m)

min_xy [i]

}

<— array(c(0), dim = c(m, 1))

<— min(x[i],y[i])

# Moments estimator

xbar

ybar

zbar
estimative_pl
estimative_p2
estimative_pl2

## Out

out 1, 1]
out [1, 2]
out [1, 3]

<— mean(x)
<— mean(y)
<— mean(min_xy)

<— (ybar — ybar x zbar)/(zbar — ybar * zbar)
<— (xbar — xbar = zbar)/(zbar — xbar * zbar)

<— (zbar — xbar * zbar — ybar * zbar 4+ xbar % ybar % zbar)/(xbar % ybar % zbar — xbar x ybar)

<— estimative_pl
<— estimative_p2
<= estimative_pl2

<— mean(out[,1])
<— mean(out[,2])
<— mean(out[,3])
<— mean(out[,1] — pl, na.rm = TRUE)
<— mean(out[,2] — p2, na.rm = TRUE)
<— mean(out[,3] — pl2, na.rm = TRUE)
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mse[a, 1] <— mean((out[,1] — pl)~2,
mse[a, 2] <— mean((out[,2] — p2)°2,
mse[a, 3] <— mean((out[,3] — pl2)°2,
a<— a+1

}

## For MLE I — Change moments estimator fo

logvero <— function (param)
pl <— param[1]
p2 <— param[2]
pl2 <— param [3]

if (param[1]<=0)return(—Inf)
if (param[2]<=0)return(—Inf)
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na.rm = TRUE)
na.rm = TRUE)
na.rm = TRUE)

r MLE I estimator:

if (param[3] <=0 && param [3] <=1l)return(—Inf)

z1 <— pmax(x — 1, y — 1)

z2 <— pmax(x, y — 1)

z3 <— pmax(x — 1, y)

z4 <— pmax(x, y)

L <— log(pl”(x — 1) % p2°(y — 1) = pl27°(zl) — pl~(x)
— pl7(x — 1) % p2°(y) = pl27°(z3) + pl°(x) * p2°(y) * pl2°(
logL <— sum(L)

return (logL)

}

## For MLE II — Change moments estimator

for MLE II

estimator:

logvero <— function (param)
{

pl <— param|[1]

p2 <— param[2]

pl2 <— param [3]

if (param[1]<=0)return(—1Inf)
if (param[2] <=0)return(—Inf)

if (param[3] <=0 && param[3] <=1)return(—Inf)
vl <— ifelse(x <y, 1, 0)
v2 <— ifelse(x >y, 1, 0)
nl <— sum(vl)
n2 <— sum(v2)
n3 <— sum((1 — v1) %= (1 — v2))
n <— nl 4+ n2 + n3
T1 <— sum(vl * (1 — v2) % x)
T2 <— sum(vl *x (1 — v2) % y)
T3 <— sum((1 — vl1) * (1 — v2) * x)
T4 <— sum((1 — vl) * (1 — v2) * y)
T5 <— sum(v2 *x (1 — vl) % x)
T6 <— sum(v2 *x (1 — vl1) % y)
L1 <— (T1 + T3 + T5 — n) * log(pl)
L2 <— (T2 4+ T3 + T6 — n) = log(p2)
L3 <— (T1 4+ T3 + T5 — n) = log(pl2)
L4 <— nl % log(l — pl) + n2 % log(l — p2) + n3 =*
+ pl % p2 % pl2)
L5 <— nl % log(l — p2 % pl2) 4+ n2 x log(l — pl = pl2)
L <— L1 + L2 + L3 + L4 + L5
logL <— sum(L)
return (logL)
}
## For Bayes I — Change moments estimator for Bayes I estimator:
log . post <— function(tl, t2, theta)
pl <— theta[1]
p2 <— theta[2]
pl2 <— theta [3]
if (theta[l]<=0)return (Inf)
if (theta[2]<=0)return (Inf)
if (theta[3]<=0)return (Inf)
z1 <— pmax(tl — 1, t2 — 1)
72 <— pmax(tl, t2 — 1)
z3 <— pmax(tl — 1, t2)
z4 <— pmax(tl, t2)
11 <— pl7(tl — 1) % p2°(t2 — 1) * pl27(zl)
12 < pl (t1) % p2°(t2 — 1) % pl2-(z2)
13 < plo(t1 — 1) % p2°(t2) % pl2°(z3)
14 <— plo(t1) % p2°(t2) = pl2°(z4)
15 <— 11 — 12 — 13 + 14
log.like<— log(15)
priori <— dunif(pl, 0, 1) * dunif(p2, 0, 1) * dunif(pl2,
log .p <— log(priori)
<— sum(log.like+log.p)

if (is.na(L)==TRUE){return(—Inf)}else{return (L)}

* p2°(y —
z4))

0, 1)

1)

* pl27(z2)

log (1 — pl % pl2 — p2 % pl2
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## For Bayes II — Change moments estimator for Bayes Il estimator:
log . post <— function (tl, t2, theta)

pl <— theta[1]

p2 <— theta[2]

pl2 <— theta [3]

}

if (theta[l]<=0)return (Inf)
if (theta[2]<=0)return (Inf)
if (theta[3]<=0)return (Inf)

vl <— ifelse(x <y, 1, 0)

v2 <— ifelse(x >y, 1, 0)

nl <— sum(vl)

n2 <— sum(v2)

n3 <— sum((1 — vl) % (1 — v2))

n <— nl 4+ n2 + n3

T1 <— sum(vl * (1 — v2) % x)

T2 <— sum(vl % (1 — v2) = y)

T3 <— sum((1 — v1l) * (1 — v2) * x)

T4 <— sum((1 — v1) * (1 — v2) * y)

T5 <— sum(v2 * (1 — vl) * x)

T6 <— sum(v2 * (1 — vl) * y)

L1 <~ (T1 4+ T3 + T5 — n) * log(pl)

L2 <~ (T2 + T3 + T6 — n) * log(p2)

L3 <~ (T1 4+ T3 + T5 — n) * log(pl2)

L4 <— nl * log(l — pl) + n2 x log(l — p2) + n3 % log(l — pl * pl2 — p2 x pl2
+ pl * p2 x pl2)

L5 <— nl % log(l — p2 * pl2) 4+ n2 x log(l — pl x pl2)

log.like<— L1 4+ L2 + L3 + L4 4+ L5

priori <— dunif(pl, 0, 1) * dunif(p2, 0, 1) x dunif(pl2, 0, 1)
log .p <— log(priori)

L — sum(log.like+log.p)

if (is.na(L)==TRUE){return(—Inf)}else{return (L)}

2. Application 7.1 (No censored data)

135

Use the same codes provided by simulation codes for MLE I, MLE II, Bayes I, Bayes II.

3. Application 7.2 (Censored data)

## Maxim

logvero2

um Likelihood Estimators
<— function (param)

# Parameters

pl <— theta[1]
p2 <— theta [2]
p3 <— theta [3]

if (theta[l]<=0)return (Inf)
if (theta[2]<=0)return (Inf)
if (theta[3]<=0)return (Inf)

# Max’s

z1 <— pmax(tl — 1, t2 — 1)
z2 <— pmax(tl, t2 — 1)

z3 <— pmax(tl — 1, t2)

z4 <— pmax(tl, t2)

# Likelihood parts

L1 <— cl % ¢c2 x log(pl™(tl — 1) = p2°(t2 — 1) * p37°(zl)
— pl°(tl) = p2°(t2 — 1) * p3°(z2)
— pl°(tl — 1) = p2°(t2) * p3°(z3)
4+ pl°(tl) = p2°(t2) * p3°(z4))

L2 <— cl % (1 — c2) x log(pl ™ (tl — 1) *x p2°(t2) = p3°(z3)
+ pl7(t1) * p2°(t2) * p3°(z4))
L3 <— c2 % (1 — cl1) % log(pl™(tl) * p2°(t2 — 1) * p3~(z2)
— pl™(tl) %= p2°(t2) = p3~(z4))
L4 <— (1 — cl) * (1 — ¢c2) * log(pl ™ (tl) = p2°(t2) = p3°(z4))

# Final log—likelihood
logL <— sum(L1) + sum(L2) + sum(L3) + sum(L4)
return (logL)
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## Bayesian Estimators

log . post <— function (tl, t2, theta)
# Parameters
pl <— theta[1]
p2 <— theta[2]
p3 <— theta[3]

if (theta[l]<=0)return (Inf)
if (theta[2]<=0)return (Inf)
if (theta[3]<=0)return (Inf)

# Max’s

zl <— pmax(tl — 1, t2 — 1)
z2 <— pmax(tl, t2 — 1)

z3 <— pmax(tl — 1, t2)

z4 <— pmax(tl, t2)

# Log—likelihood parts

L1 <— cl % c2 x log(pl™(tl — 1) = p2°(t2 — 1) * p3~(zl)
— pl7(tl) = p2°(t2 — 1) * p3°(z2)
— pl°(tl — 1) = p2°(t2) * p37(z3)
4+ pl7(tl) * p2°(t2) * p37(z4))

L2 <— cl % (1 — ¢2) * log(pl™(tl — 1) = p2°(t2) * p37(z3)
4+ pl7(tl) % p2°(t2) * p37(z4))

L3 <— c2 *x (1 — cl) % log(pl™(tl) = p2°(t2 — 1) * p37(z2)
— pl°(tl) *= p2°(t2) * p37°(z4))

L4 <— (1 — cl) * (1 — ¢c2) * log(pl ™ (tl) = p2°(t2) = p3°(z4))

# Final log—likelihood
log.1l <— sum(L1l) + sum(L2) + sum(L3) 4 sum(L4)

# Priors

priori <— dunif(pl, 0, 1) * dunif(p2, 0, 1) x dunif(p3, 0, 1)
log.p <— log(priori)

L <— sum(log .1l + log.p)

if (is .na(L)==TRUE){return(—Inf)}else{return(L)}
}

4. Application 7.2 (Censored data and covariates)

model

for (i in 1:N)

zeros [i] <— 0
phi[i] <= —log(L[i])
zeros [i]  dpois(phi[i])

# Regression model
logit (pl[i]) <— betal0 + betall =* sex|[i]
logit (p2[i]) <— beta20 + beta2l * sex|[i]

# Max’s

z1[i] <— max(t1[i]—1,t2[i]—1)
z2[1i] <— max(tl[i],t2[i]—1)
z3[i] <— max(t1[i]—1,t2[i])
z4[i] <— max(t1[i],t2[i])

# Likelihood parts

Ali] <— pow(pl[i], t1[i] — 1) % pow(p2[i], t2[i] — 1) * pow(pl2, zl[i])
Bli] <— pow(pl[i], t1[i]) * pow(p2[i], t2[i] — 1) = pow(pl2, z2[i])
Cli] <— pow(pl[i], t1[i] — 1) % pow(p2[i], t2[i]) = pow(pl2, z3[i])
D[i] <— pow(pl[i], t1[i]) * pow(p2[i], t2[i]) =* pow(pl2, z4[i])

E[i] <— cl[i] % c2[i] = log(A[i] — B[i] — C[i] + D[i])

Fli] <— cl[i] % (1 — ¢c2[i]) * log(C[i] — D[i])

G[i] <— c2[i] * (1 — c1[i]) = log(B[i] — D[i])

H[i] <— (1 — c1[i]) = (1 — c2[i]) = log(D[i])

# Final likelihood

L(i] < exp(E[i] + F[i] + G[i] + H[i])

}
betal0 "dnorm (0,0.01)
betall "dnorm (0,0.01)
beta20 "dnorm (0,0.01)
beta21 "dnorm (0,0.01)
pl2 dunif(0,1)
}



