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We present an approximate posterior inference methodology for a Bayesian
hierarchical mixed-effect Poisson regression model. The model serves us to
address the multiple testing problem in the presence of many group or clus-
ter effects. This is carried out through a specialized Bayesian false discovery
rate procedure. The likelihood is simplified by an approximation based on
Laplace’s approximation for integrals and a trace approximation for the de-
terminants. The posterior marginals are estimated using this approximated
likelihood. In particular, we obtain credible regions for the parameters, as
well as probability estimates for the difference between risks (Poisson inten-
sities) associated with different groups or clusters, or different levels of the
fixed effects. The methodology is illustrated through an application to a
vaccine trial.

keywords: Laplace’s approximation, multiple comparison, pseudo-likelihood,
Bayesian false discovery rate, vaccine trial.

1. Introduction

Consider the following multiple testing problem involving a series of adverse effects
arising from a vaccine clinical trial. The data are taken from the work of Mehrotra and
Heyse (2004). These are the count results of a clinical trial involving a quadrivalent
vaccine against measles, mumps, rubella and varicella. The individuals participating
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in the trial were 296 infants 12 to 18 month-old in good health. They were randomly
assigned to the treatment (quadrivalent vaccine) or control. Infants in the control group
were administered at day zero a vaccine for measles, mumps and rubella. Later on at day
42, they were given a varicella vaccine. Infants in the treatment group were administered
the quadrivalent vaccine at day 0. One of the goals of the study is to evaluate the local
and systematic reactions that infants face to the varicella component of the vaccine.
Therefore, a comparison of secondary or adverse effects between the control group at
days 42-84 and the treatment group at days 0-42 is of interest. Forty different adverse
effects divided among eight human body systems are considered. These are displayed
in Table 4. The allocation of the adverse effects into the eight body system groups
was done from a purely biological point of view. The data was reproduced by Berry
and Berry (2004) who also analyzed the data in the context of multiple comparisons.
Individual Fisher exact tests comparing treatment and control groups for each adverse
effect show that there are statistically significant differences at a level α = 0.05 between
the severity of four of the forty adverse effects. These are 3-Diarrhea, 8-Irritability,
10-Rash and 10-Rash-measles-rubella-like (the number refers to the body system group).
However, false discovery rate adjustments (Benjamini and Hochberg, 1995; Mehrotra
and Heyse, 2004) only points out to 3-Diarrhea and 8-Irritability as being more severe
for the treatment group. Berry and Berry (2004) also arrive to the same conclusion using
a Bayesian hierarchical model for the log-odds and the difference between the control
and treatment log-odds. In the present work we analyze these data by performing a
Bayesian false discovery rate procedure (Whittemore, 2007) with a hierarchical multi-
level mixed-effect Poisson regression model. Intuitively, adverse effects within any body
system group may be correlated. One way to account for this is to consider that the
Body systems contribute to random effects in the counts. This is our assumption. Also,
similar adverse effects may be presented within different body systems (see Table 4).
Therefore, the information gathered from all body system groups about the same adverse
effect should be incorporated in all groups concerned. This is achieved by considering
a hierarchical model where at a second level of the model, information is shared among
the groups.

The model introduced in the present work is an extension of the hierarchical Poisson
regression model considered by Christiansen and Morris (1997). In the last decades,
Poisson models have been extensively used to model regression involving count data.
Due to the complexity of Poisson regression, the methods used to fit the data to the
models are almost as important as the models themselves. For example, Holford (1980)
fits log-linear models for the analysis of proportions and hazard rates using the propor-
tional fitting (IPF) algorithm. Frome (1983) fits Poisson regression models that entail
log-linear, quasi-linear and non-linear models using iterative re-weighted least-squares
(IRLS). Usually, though, count data show overdispersion. More realistic models have
been conceived to deal with this extra-Poisson variation. For example, by embedding
Poisson regression into a Bayesian framework, Albert (1992) is able to analyze sports
data using a Bayesian hierarchical Gamma-Poisson mixture model. The estimation is
achieved through Markov chain Monte Carlo (MCMC) techniques. There are also models
that incorporate random effects. Vonesh (1990) shows a mixed-effects Poisson regres-
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sion model to study the risk factors associated with peritonitis, a bacterial infection of
the peritoneum membrane. The model considers fixed effects corresponding to the col-
lected information from the patients, and random effects due to the patients themselves.
Tempelman and Gianola (1996) develop models for applications to animal reproduction
that take into account the overdispersion not accounted for by the mixed-effect models.
This is modeled by fitting a Gamma distribution to the Poisson parameters, yielding in a
Negative Binomial model for the counts. The Maximum A Posteriori (MAP) estimate of
the parameters is estimated via the Newton-Raphson algorithm. Christiansen and Mor-
ris (1997) present a Bayesian hierarchical fixed-effect Gamma-Poisson regression model
that leads to a Negative Binomial model for count data. They show the superiority of
their approach with respect to other methods such as the generalized linear model in
the presence of overdispersion. They also show how to obtain estimates of the parame-
ters posteriors without having to resort to MCMC computations. Basically, they used
a first-order (i.e., asymptotic normality) approximation of the posteriors. We pursue
further their ideas to extend their model to a Bayesian multi-level mixed-effect hierar-
chical Poisson regression model. However, in contrast to their work, we estimate the
parameter posteriors using higher-order approximations (i.e., beyond asymptotic nor-
mality which is appropriate only when the data size is very large) that are derived from
Laplace’s approximation (Tierney and Kadane, 1986; Davison, 1986) and a matrix trace
approximation to determinants. Furthermore, we are able to simplify some calculations
using the orthogonality between some of the model parameters. Recently, Guihenneuc-
Jouyaux and Rousseau (2007) introduced a somewhat hybrid approach that exploits
similar ideas to improve the performance of an MCMC sampling. Even though their
approach could be combined with our approximate posterior density estimates for our
model, we prefer to pursue here a complete analytic approach, that is, without the need
to resort to MCMC sampling. A simulation study presented in Section 4 corroborates
the validity of our approach.

The paper is organized as follows. Section 2 introduces the hierarchical mixed effect
Poisson model. The approximate posterior is deduced in Section 3. This section also
described the approximate posterior inference. In particular, Section 3.1 shows an ap-
proximation of the marginal posterior of the main parameters in the presence of nuisance
parameters. The results of a simulation study conceived to compare the performance
of the procedure introduced in this work with that of an MCMC sampler are presented
in Section 4. The posterior density associated with the difference between two Poisson
intensities is presented in Section 5. This result is key for carrying over multiple testing
based on a version of the Bayesian false discovery rate suggested by Whittemore (2007).
Section 6 shows the application of our methodology to a few data sets, including the
vaccine trial describe above. There are three appendices: the first one shows the cal-
culation leading to the approximate likelihood. The second one, describes in detail the
computations for the special case of orthogonal parameters. The third one displays the
first, second and third derivatives of the approximate likelihood. These are used to build
our approximation to the marginal posterior densities.
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2. The model

Our model is an extension of the hierarchical Poisson regression model considered by
Christiansen and Morris (1997) to a multi-level mixed-effect Poisson regression model.
Our approximate posterior inference for this latter model is inspired by the work of
Christiansen and Morris (1997) on what they named the Poisson Regression Interactive
Multilevel Modeling (PRIMM). In our framework, the population of counts is stratified
in p strata or groups. Let D = {Zij} (i = 1, . . . , nj , and j = 1, . . . , p) be a sample from
this population. We assume that the distribution of Zij is Poisson with intensity λij .
That is, Zij |λij ∼ Pois(eijλij), where the {eij} are known expositions. We will denote
the observed counts and rates by zij and yij = zij/eij , respectively. We also assume
that the intensity λij follows a Gamma distribution with shape and rate parameters ξj ,
and ξj/µij . The logarithm of its mean is linearly linked to an r-dimensional vector of
fixed-effects covariates Xij = (1, xij,1, . . . , xij,r−1)′ and a q-dimensional vector of group
(or “random”) effects covariates Wij = (1, wij,1, . . . , wij,q−1)′ through the parameters
β = (β0, . . . , βr−1) ∈ Rr and bj = (bj0, bj1, . . . , bj,q−1)′ ∈ Rq, j = 1, . . . , p, respectively.
That is,

E(λij) = µij = exp{X ′ijβ +W ′ijbj}.

Note that since Var(λij) = µ2
ij/ξj , the parameters ξj control the variance of the Poisson

intensities. Therefore we will refer to them as the precision parameters. From now on
we will denote the set of log-transformed precision parameters as ~τ = (τ1, . . . , τp), where
τj = log(ξj). We will also refer to the vector ~τ as the vector of precision parameters. The
set of group effects will be denoted by b ∈Mq×p (here Mq×p denotes the set of matrices
of q rows and p columns). We will denote by Xj and Wj the nj × r and nj × q matrices
of covariables associated with the j-th group, j = 1, . . . , p.

Let Bij = ξj/(ξj + eijµij). It is straightforward to verify that the distribution of
Zij |(β, ~τ , b) is the Polya distribution Polya(ξj , Bij), i.e.

p(zij |(β, ~τ , b)) = p(zij |ξj , µij) =
Γ(zij + ξj)

zij !Γ(ξj)
B
ξj
ij (1−Bij)zij .

Hence, the ξj ’s account for possible overdispersion of the Poisson counts Zij , for example,
if burst of events are likely to occur. The overdispersion is more severe for small values
of ξj , and is nonexistent for large values of ξj .

Since the counts are supposed to be independent, the likelihood of the model is

L(β, ~τ , b|D) =

p∏
j=1

nj∏
i=1

Γ(zij + ξj)

zij !Γ(ξj)
B
ξj
ij (1−Bij)zij .

Let us define for each j ∈ {1, 2, . . . , p}, Mj = max{zij : i = 1, . . . , nj}, Nsj = cardinality({i :
zij ≥ s}), for s = 1, . . . ,Mj , and z̄j =

∑nj
i=1 zij/nj . In what follows, zj will denote the

nj-dimensional vector (z1j , z2j , . . . , znj ,j). All vectors are assumed to be represented as
column matrices. A direct generalization of the formula derived in Lemma 1 in (Chris-
tiansen and Morris, 1997) yields the following expression for the log-likelihood `(β, ~τ , b)
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of our model

`(β, ~τ , b) =

p∑
j=1

{Mj∑
s=1

Nsj log(eτj + s− 1)− nj z̄jτj + z′jXjβ + z′jWjbj

−
nj∑
i=1

(eτj + zij) log(1 + eijµije
−τj )

}
. (1)

The hierarchical model.
As it is usually done with random-effects, we impose a common prior for all the group
effects bj ’s. This is a q-dimensional zero-mean Normal distribution with variance-
covariance matrix Ψ, j = 1, . . . , p. Ψ itself is assumed to follow (a priori) an Inverse-
Wishart distribution with m0 degrees of freedom and scale matrix σ2

0Λ0, for a scalar σ2
0.

That is, bj ∼ Normalq(0,Ψ), and Ψ ∼ Inverse-Wishart(m0, σ
2
0Λ0). We also assume an

improper uniform prior for the fixed effects β, and the following priors for the precision
parameters:

τj = log(ξj) ∼ Normal(τ, σ2
τ ),

σ2
τ ∼ Inverse-Chi-squared(ν0, s

2
0), and

τ ∼ Normal(τ0, v
2
0).

In what follows η will stand for the set of hyper-parameters (τ, σ2
τ ,Ψ). It is common to

set Λ0 = Iq, the identity matrix of dimension q× q. In what follows we will suppose that
σ2

0 is rather large. Besides providing a flatter prior on the variance of the group effects,
this choice will allow us to simplify the computations when deriving an approximation
to the posterior distribution of the parameters.

3. The posterior of (β, ~τ)

In principle we would like to make inference only on the set of parameters (β, ~τ). That
is, (b, η) may be seen as nuisance parameters. Therefore we are particularly interested
in estimating

π(β, ~τ |D) =

∫
L(β, ~τ , b|D)π(η)π(b|η)π(β, ~τ |η) dη db∫

L(β, ~τ , b|D)π(η)π(b|η)π(β, ~τ |η) dη db dβ d~τ .
(2)

There are several alternatives to estimate this posterior. The main problem is to in-
tegrate out the group effects b. There are techniques based on Gaussian quadrature
(Pinheiro and Bates, 1995), Bayesian quadrature, and quasi-Monte-Carlo (Morokoff and
Caflisch, 1995). We are going to approximate this posterior using Laplace’s approxima-
tion to the integral. Already Tierney and Kadane (1986) suggested a similar technique
to approximate the means and variances of posterior densities, showing that the error
in the approximation of the integrals is O(n−2), where n is the total number of observa-
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tions. Joe (2008) also shows the adequacy and accuracy of Laplace’s approximation for
Poisson count response mixed models. There are several works that try to exploit these
results even within the frequentist approach (Wolfinger, 1993; Breslow and Lin, 1995;
Vonesh, 1996; Raudenbush et al., 2000) and extend them to facilitate their computation
(Nott et al., 2009) or to use them in combination with important sampling or Gibbs
sampling techniques (Kuk, 1999; Skaug and Fournier, 2006). Our approach is in two
stages. As in the work of Sutradhar and Zhende (1998), we first approximate the full
likelihood (or full log-posterior) by a function that is simpler to work with than the full
likelihood. We refer to the resulting approximation as the q-likelihood. This is obtained
by using Laplace’s approximation and an approximation of the determinant involving
the group effects. Then, we obtain a series of approximations to the parameter posteri-
ors using the q-likelihood. One of the main drawbacks cited in the literature for using
higher order approximations to draw inference, such as Laplace’s approximation, is the
difficulty in finding the second and third order derivatives of the log-likelihood. Here,
we have done the work for our hierarchical mixed effect Poisson regression model using
the q-likelihood. The derivatives are shown in Appendix C.

Let L(β, ~τ , b|D) denote the integrand in the numerator of (2). This is the likelihood
of (β, ~τ , b). Our approximation is obtained as follows. Let us denote by a =

∑p
j=1 τj/p,

and by A = p−1(ν0s
2
0 +

∑p
j=1(τj − a)2). A first approximation to L(β, ~τ , b|D), derived

from a Laplace’s approximation of the integral with respect to η of the integrand in (2)
is

L(β, ~τ , b|D) exp

{
−(a− τ0)2

2v2
0

− ν0 + p− 1

2
log(A)− m0 + p

2
log(|σ2

0Λ0 + bb′|)
}
. (3)

The derivation is postponed to Appendix A. The following matrix determinant approx-
imation is very useful in the derivation of a final approximation to L(β, ~τ , b|D) and to
the posteriors. Let C be a k × k real symmetric matrix, and ε be a small real number.
Then

|Ik + εC| = 1 + ε trace(C) +O(ε2). (4)

This approximation is easily derived from Jacobi’s formula for the derivative of a matrix.
Using this expression we obtain, for large σ2

0

log |σ2
0Λ0 + bb′| = q log σ2

0 + log |Λ0|+ log |Iq + σ−2
0 Λ−1

0 bb′|
≈ q log σ2

0 + log |Λ0|+ log(1 + σ−2
0 trace(Λ−1

0 bb′)),

where the symbol ≈ stands for approximately equals to. Consequently, from now on we
will work with the pseudo-likelihood given by the q-likelihood

q(β, ~τ , b|D)
.
= exp

{
`(β, ~τ , b|D)− 1

2v2
0

(a− τ0)2 − 1

2
(ν0 + p− 1) log(A)

− 1

2
(m0 + p)

(
q log σ2

0 + log |Λ0|+ log(1 + σ−2
0

p∑
j=1

b′jΛ
−1
0 bj)

)}
, (5)
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where `(β, ~τ , b|D) denotes the log-likelihood logL(β, ~τ , b|D). Let jq(β, ~τ , b) be the ob-
served Fisher information associated with (β, ~τ , b) derived from the q-likelihood q(β, ~τ , b|{zij}).
That is,

jq(β, ~τ , b) = − ∂2 log(q)

∂(β, ~τ , b)2
(β, ~τ , b).

Also, we will use the notation jq,b for the submatrix of jq associated with the second
derivatives of b. Similarly, we will denote by jq,β,b and jq,~τ ,b the submatrices of jq
associated with the second derivatives of the vectors (β, b) and (~τ , b), respectively.

Denote by β̂, ~̂τ and b̂ the maximizers of q(β, ~τ , b). We will refer to these variables
as the q-likelihood maximizers (note that they could also be referred to as the q-MAP
estimates). Let bβ,~τ be the maximizer of q(β, ~τ , b) for fixed (β, ~τ). Then

π(β, ~τ |D) ≈ pL(β, ~τ |D)
.
= c(2π)−(p+r)/2

(
|jq(β̂, ~̂τ, b̂)|
|jq,b(β, ~τ , bβ,~τ )|

)1/2
q(β, ~τ , bβ,~τ )

q(β̂, ~̂τ, b̂)
, (6)

where the symbol
.
= stands for equality by definition, and where c is the normalizing

constant so that the integral with respect to (β, ~τ) of the right-hand-side is one. In
what follows, we are not going to write these normalizing constants explicitly, because
the Laplace density approximation does not include them. Here, we have added it for
technical reasons, to stress that the approximation does not necessarily integrates to one.
Let (β~τ , b~τ ) be the maximizer of q(β, ~τ , b) for fixed ~τ , and let (~τβ, bβ) be the maximizer
of q(β, ~τ , b) for fixed β. The marginal posteriors are approximately given by

π(~τ |D) ≈ pL(~τ |D)
.
= (2π)−p/2

(
|jq(β̂, ~̂τ, b̂)|

|jq,β,b(β~τ , ~τ , b~τ )|

)1/2
q(β~τ , ~τ , b~τ )

q(β̂, ~̂τ, b̂)
, (7)

π(β|D) ≈ pL(β|D)
.
= (2π)−r/2

(
|jq(β̂, ~̂τ, b̂)|

|jq,~τ ,b(β, ~τβ, bβ)|

)1/2
q(β, ~τβ, bβ)

q(β̂, ~̂τ, b̂)
. (8)

These well-known approximations are derived directly from the application of Laplace’s
approximation to the integrals of q(β, ~τ , b) with respect to the group effects b, the pre-
cision parameters ~τ and the fixed effects β, as well as the set of parameters to (β, ~τ , b).
Usually, they are written in terms of the profile likelihood (Tierney and Kadane, 1986;
Davison, 1986) (Brazzale et al., 2007, p. 162). Higher-order approximations, such as
the p∗-density approximation of Barndorff-Nielsen and Cox, may be derived from these
approximations for the scalar β case (Severini, 2000; Barndorff-Nielsen and Cox, 1994).
But the expression and computations involved are complex. We will derive simpler
approximations to these quantities in order to facilitate their computation.
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3.1. An approximation of the marginal posterior in the presence of
nuisance parameters

In order to find approximations for the marginal posteriors of β and ~τ , we are going
to derive a couple of general approximations to the densities when the parameters, say
(ψ, θ), can be decomposed in a parameter of interest ψ ∈ Rd, and a nuisance parameter
θ. For example, in our case, if ψ = β is the parameter of interest, then θ = (~τ , b)
corresponds to the nuisance parameter. When ψ = ~τ is of interest, θ = (β, b) is the
nuisance parameter. As before, Laplace’s approximation of the marginal posterior of ψ
is given by

π(ψ|D) ≈ pL(ψ|D)
.
= (2π)−d/2

(
|j(ψ̂, θ̂)|
|jθ(ψ, θψ)|

)1/2

exp{`q(ψ, θψ)− `q(ψ̂, θ̂)}, (9)

where `q(ψ, θ) and j(ψ, θ) denote the log-likelihood and minus the Hessian of the log-q-
likelihood evaluated at (ψ, θ), respectively; jθ(ψ, θ) is the portion of j(ψ, θ) corresponding
to the second derivatives with respect to θ; and (ψ̂, θ̂) is the maximum q-likelihood
estimator. From now on, to ease the notation, a hat ˆ over a quantity will indicate
that quantity evaluated at the maximum q-likelihood estimate; for example, ̂ = j(ψ̂, θ̂).

3.2. An approximation for moderate deviation range values.

Next, we will simplify a bit further the density by deriving an Edgeworth-like type of
expansion for the posterior from (9). That is, we will write the density as a deviation
from the Normal density. This approximation will be valid for the moderate deviation
range of values of ψ, that is, for values of ψ near ψ̂, (ψ = ψ̂ + O(n−1/2)). In this latter
case, by smoothness (i.e., differentiability of the derivatives), the matrices jθ(ψ, θψ) and
̂θ are close to each other. That is, their Frobenious norm εθ = ||jθ(ψ, θψ)− ̂θ|| is small.
Therefore, using (4) again, we have

|jθ(ψ, θψ)| = |̂θ| ×
∣∣∣∣I + εθ ̂

−1
θ (jθ(ψ, θψ)− ̂θ)/εθ

∣∣∣∣
≈ |̂θ| × (1 + trace{̂−1

θ (jθ(ψ, θψ)− ̂θ)}).

Since this trace’s approximation is of order O
(
||ψ−ψ̂||22

)
, and Laplace’s approximation is

of orderO(n−1), the approximations obtained in this section are of orderO

(
max

{
n−1, ||ψ−

ψ̂||22
})

, where n is the total number of observations. Therefore, for values of ψ in the

moderate deviation range, the approximations are still of order O(n−1).

Recall the determinant identity |̂| = |̂θ| × |̂ψ − ̂ψ×θ ̂−1
θ ̂θ×ψ|, where ̂ψ×θ denotes

the entries of ̂ corresponding to the cross-derivatives between ψ and θ, and the matrix
̂θ×ψ = ̂′ψ×θ. Let D̂ψ,θ

.
= ̂−1

ψ ̂ψ×θ ̂
−1
θ ̂θ×ψ. Note that ̂p,ψ

.
= ̂ψ(I − D̂ψ,θ) corresponds

to the profile q-likelihood Hessian for ψ with θ as nuisance parameter. These latter
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observations yield a second approximation to π(ψ|D) given by

pL.2(ψ|D)
.
=(
1 + trace

{
̂−1
θ (jθ(ψ, θψ)− ̂θ)

})− 1
2

(2π)−
d
2 |̂p,ψ|

1
2 exp{`q(ψ, θψ)− ˆ̀

q}, (10)

Note that the approximation pL.2(ψ|D) also has the form of the p∗-density approximation
of Barndorff-Nielsen and Cox (Severini, 2000; Barndorff-Nielsen and Cox, 1994). Next,
we use a Taylor series expansion to approximate both the numerator and denominator
of pL.2(ψ|D). The series is expanded at ψ = ψ̂. Let Tθ = trace{̂−1

θ (jθ(ψ, θψ) − ̂θ)}.
Since T̂θ = 0, we have Tθ(ψ, θψ) ≈ ˆ̇T ′θ(ψ − ψ̂), where Ṫθ = d Tθ

dψ . The exact form of the
derivatives of T(~τ,b) and T(β,b) for our model are easily derived from Proposition 1 of the
Appendix. A simpler, though still reasonable, approximation is obtained by writing the
log-likelihood as

`q(ψ, θψ)− ˆ̀
q ≈ −

1

2
(ψ − ψ̂)′ ̂p,ψ (ψ − ψ̂).

Using the fact that (1+x)−1/2 ≈ 1−x/2 for small |x|, one obtains the following expansion
approximation to the density

pL.3(ψ|D)
.
=
(
1− 1

2
ˆ̇T ′θ(ψ − ψ̂)

) |̂p,ψ| 12
(2π)

d
2

exp

{
−1

2
(ψ − ψ̂)′ ̂p,ψ (ψ − ψ̂)

}
. (11)

Equation (11) can also be used to find the component-wise marginal densities. Let
ı̂p,ψ = (̂p,ψ)−1, and ı̂p,ψ;k, ı̂p,ψ;kk, be the k-th column and the (k, k)-th element of ı̂p,ψ,
respectively. Using the formulas of the marginal and conditional normal distribution, it
is straightforward to verify that

pL.3(ψk|D) =

(
1− 1

2
ˆ̇T ′θ
ı̂p,ψ;k

ı̂p,ψ;kk
(ψk − ψ̂k)

)
1√
ı̂p,ψ;kk

φ

(
ψk − ψ̂k√
ı̂p,ψ;kk

)
, (12)

where φ denotes the density of the standard Normal distribution.

3.2.1. Approximate credible regions

In order to obtain credible regions and/or intervals for the parameters, one needs to
evaluate the tail probabilities of the posterior. Let B ⊂ Rd be a d-dimensional ball
centered at the origin (i.e., 0 ∈ Rd). Using the approximation pL.3(ψ|D) given by



Electronic Journal of Applied Statistical Analysis 631

equation (11) for sets in the moderate deviation range ψ̂ + B, one obtains

Prob(ψ ∈ ψ̂ + B) ≈

Φd(̂
1/2
p,ψ B)− 1

2
ˆ̇T ′θ

∫
ψ̂+B

|̂p,ψ|1/2

(2π)d/2
(ψ − ψ̂) exp{−1

2
(ψ − ψ̂)′ ̂p,ψ (ψ − ψ̂)} dψ

= Φd(̂
1/2
p,ψ B) +

1

2
ˆ̇T ′θ ̂
−1/2
p,ψ

∫
̂
1/2
p,ψB

[
d

du

1

(2π)d/2
e−u

′u/2

]
du, (13)

where Φd denotes the multivariate standard Normal distribution function in Rd. For
d = 1, the above formula for ψ1, ψ2 ≥ 0 reduces to

Prob(ψ̂ + ψ1 ≤ ψ ≤ ψ̂ + ψ2) ≈

Φ1(̂
1/2
p,ψψ2)− Φ1(̂

1/2
p,ψψ1) +

1

2
ˆ̇Tθ ̂
−1/2
p,ψ

[
φ(̂

1/2
p,ψψ2)− φ(̂

1/2
p,ψψ1)

]
.

For d ∈ {2, 3}, one can use the divergence theorem to evaluate the above probability in
(13).

3.3. The case of orthogonal parameters

Note that in our case, the parameter ~τ is orthogonal to (β, b). This is easily seen from
Proposition 1 of the Appendix. Therefore, the formulas may be simplified by assuming
that ∂2`q/(∂β∂~τ) ≈ 0 and ∂2`q/(∂b∂~τ) ≈ 0. The explicit simplifications are shown
in this section and in Section B of the Appendix. Consider again Tθ = Tθ(ψ, θψ) =∑

u j
−u
θ jθ,u(ψ, θψ), where j−uθ and jθ,u denote the u-row of j−1

θ and the u-column of jθ,
respectively. We have

Ṫθ = −
∑
u

∑
v

j−uvθ

d

dψ

{
∂2`q
∂θu∂θv

(ψ, θψ)

}
(ψ, θψ),

where (θu, θv) denotes a pair of components of θ. Now let us write θ = (ζ, ξ) and suppose
that ξ ∈ Rd2 is orthogonal to both ζ ∈ Rd1 and ψ. In this latter case, the matrix ∂2`q/∂θ

2

may be approximated by the block diagonal matrix diag(∂2`q/∂ζ
2, ∂2`q/∂ξ

2), and

∂2`q
∂θ∂ψ

≈ (
∂2`q
∂ζ∂ψ

, 0)′,
∂ζψ
∂ψ
≈ −[

∂2`q
∂ζ2

(ψ, θψ)]−1 ∂
2`q

∂ζ∂ψ
(ψ, θψ),

∂ξψ
∂ψ
≈ 0. (14)

These approximations yield

Tθ(ψ, θψ) ≈ trace

{
[
∂2`q
∂ζ2

(ψ̂, θ̂)]−1

(
∂2`q
∂ζ2

(ψ, θψ)− ∂2`q
∂ζ2

(ψ̂, θ̂)

)
+ [

∂2`q
∂ξ2

(ψ̂, θ̂)]−1

(
∂2`q
∂ξ2

(ψ, θψ)− ∂2`q
∂ξ2

(ψ̂, θ̂)

)}
, (15)
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d

dψ

∂2`q
∂θu∂θv

(ψ̂, θ̂)

≈ ∂3`q
∂θu∂θv∂ψ

(ψ̂, θ̂)− ∂3`q
∂θu∂θv∂ζ

(ψ̂, θ̂)[
∂2`q
∂ζ2

(ψ̂, θ̂)]−1 ∂
2`q

∂ζ∂ψ
(ψ̂, θ̂). (16)

Further computations detailed in Section B of the Appendix allows to simplify these
expressions even further. For example, for the most interesting case ψ = β, ζ = b, ξ = ~τ ,
we have,

ˆ̇Tb,~τ (β̂, b̂, ~̂τ) ≈

−
p∑
j=1

q∑
u=1

q∑
v=1

̂
−(j,u)(j,v)
b

d

dβ

∂2`q
∂bju∂bjv

(β̂, b̂, ~̂τ)−
p∑
j=1

̂−jj~τ

d

dβ

∂2`q
∂τ2

j

(β̂, b̂, ~̂τ)

= −
p∑
j=1

q∑
u=1

q∑
v=1

̂
−(j,u)(j,v)
b

(
∂3`q

∂bju∂bjv∂β
(β̂, b̂, ~̂τ)− ∂3`q

∂bju∂bjv∂b
(β̂, b̂, ~̂τ) [̂b]

−1̂b×β

)

−
p∑
j=1

̂−jj~τ

(
∂3`q
∂τ2

j ∂β
(β̂, b̂, ~̂τ)− ∂3`q

∂τ2
j ∂b

(β̂, b̂, ~̂τ) [̂b]
−1̂b×β

)
.

4. Simulation study

We show in this section the results of a comparison study between the approximate pos-
terior inference developed in the previous sections and the posterior inference derived
from Markov chain Monte-Carlo (MCMC) samples. The MCMC samples were obtained
using the package JAGS (Plummer, 2013; Lunn et al., 2009). Both methods are imple-
mented in the R statistical software package. The method introduced in this paper is
available from the author’s web-site. JAGS is available as the rjags package from the
usual R repository cran.r-project.org.

For the generation of the data sets, we mimicked the characteristics of the vaccine trial
data. All data sets consisted of ten groups with a random number of levels (categories)
in each group. The number of levels was generated uniformly with values between two
and ten. The number of groups was kept fixed to ten so as to ease the coding of the
associated JAGS file. JAGS does not allow a variable number of levels (columns) in two-
dimensional arrays. The fixed effects Xij = (1, Xt) consisted of two-dimensional arrays
equal to (1, 0) or (1, 1) depending on the value of the “treatment” variable Xt. The first
1 in Xij is associated with the constant β0 of the model. The parameters β = (β0, β1)
were generated as independent Normal deviates with means µ and variances equal to
one. The means µ were generated from a Normal distribution with mean (−3, 3) and
variance-covariance matrix equals to the identity matrix. The group effects bj ∈ R were
generated from a Normal distribution with zero-mean and variance equals to σ2

b = 0.25.
The log-precision parameters τj were also generated from a Normal distribution with
mean τ = 2 and variance σ2

τ . This latter was generated form an inverse-chi-squared
distribution with five degrees of freedom and scale parameter equals to one. Finally,
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Figure 1: Boxplots of the absolute difference between the approximate posterior infer-
ence procedure and the MCMC sampler estimates of the parameters β0, β1,
the vector parameter β = (β0, β1) and the intensities λij .

the counts zij and intensitiy parameters λij were generated as in the original model
described in Section 2.

The results of our simulation are based on a hundred data sets generated as explained
above. The hyper-parameters were set as follows: m0 = 2, Λ0 = 1, σ2

0 = s2
0 = v2

0 =
10, ν0 = 3, and τ0 = 1. We initialized the parameters with easy to obtain sensible
estimates. For example, the parameters β were initialized using the coefficients of the
robust regression of log(observed intensity) as function of the treatment variable, given
by Huber’s M-estimation as implemented in the method rlm() from the package MASS
of R (Venables and Ripley, 1994, p. 216).

For each data set, we computed the difference between the MAP estimates obtained
from the approximate posterior inference (MAP-API) and the posterior mean estimates
obtained from the MCMC samples (JAGS). Boxplots of the absolute differences asso-
ciated with the parameters β0, and β1, the vector parameter β = (β0, β1), and the
intensities λij are displayed in Figure 1. Observe that despite some difference in the β
estimates, the intensity parameters estimates are very close between the two methods.
This is particularly important, since the multiple testing procedure proposed in the next
section is based on the intensities λij . We have also computed the differences between
the MAP-API estimates and the true means µ for the parameters β0 and β1. Boxplots of
these quantities are displayed in Figure 2. The corresponding differences associated with
the JAGS estimates are also displayed in the figure. We can see that the difference to
the true mean statistics are similar for both methods; however, the MAP-API estimates
appear less biased (centered at the true values) than the JAGS estimates.

We also compared the similarity between the 95% credible intervals (CI) for β0 and β1

obtained from each one of the two methods. The upper right plot of Figure 3 displays
density estimates of the length of the intervals for the API CI estimates and the JAGS
CI estimates. The upper left plot of the figure displays a density estimate of the ratio
between the length of the API CI and the corresponding JAGS CI. We note the similarity
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Figure 2: Boxplots of (a) the differences between the approximate posterior inference
procedure estimates of the parameters β0 and β1 and the true mean of these
parameters µ; and (b) the difference between the MCMC sampler estimates of
the parameters β0 and β1 and the true mean of these parameters µ. Here API
stands for the estimates obtained with the approximate posterior inference
procedure, and JAGS, for the estimates obtained with the MCMC sampler.

in the distributions of the interval lengths. However, the left plot also appears to indicate
that the API CI estimates have a slight tendency to be larger than those obtained with
JAGS.

In order to further compare the CI estimates, we computed the F1-measure of agree-
ment (Allan et al., 1998) between the intervals. Let I1, I2 be two CI, and let |I1|, |I2| be
their lengths. Also, let |I1∩ I2| be the length of the intersection between the credible re-
gions. The F1-measure of agreement between these two CI is given by F1 = (1

2{
1
R+ 1

P })
−1

where R = |I1∩I2|/|I1| and P = |I1∩I2|/|I2|, are the so-called, recall and precision mea-
sures. The F1 measure has been extensively used in the text mining literature and more
recently in the clustering and biclustering literature (Santamaria et al., 2007; Turner
et al., 2005) Note that 0 ≤ F1 ≤ 1, and F1 = 1 when there is a perfect match. In
general, the larger the F1-measure, the better the agreement between the credible in-
tervals. The bottom plot of Figure 3 displays a density estimate of the F1-measure of
agreement between the CI estimates. In general, we see a good agreement between the
credible regions. We would like to note that the simulation data are not very large. The
median size (and average size) of the data in the simulations was n = 60. Therefore,
the approximate posterior inference procedure did a remarkable job even though these
datasets were of moderate size.

5. Multiple testing

In several studies it is necessary to test whether two intensities are the same or not.
For example, in a clinical study, one may want to compare the intensities associated
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Figure 3: The upper left plot displays the distribution of the credible interval lengths
generated by the approximate posterior inference (API) procedure and the
MCMC sampler. Here JAGS stands for the lengths associated with the MCMC
sampler, while LAPLACE stands for the lengths associated with the API pro-
cedure. The upper right plot displays an estimate of the density of the ratio
between the lengths of the credible regions obtained with the API procedure
and the MCMC sampler. The lower row displays estimates of the distribution
of the F1-measure of agreement between the API and MCMC sampler esti-
mates of the credible intervals of the parameters β0 and β1, and the vector
parameter β = (β0, β1).
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with the treatment λ1 and the control λ2 groups. In this case, one needs to estimate
pδ

.
= P (λ1 − λ2 < 0|D). In the case of multiple testing, the difference λ1 − λ2 may be

used as a quantity whose extremely small values favor the hypothesis of a true (positive)
treatment effect. Therefore, following the ideas of Whittemore (2007), we use pδ as the
base of a Bayes false discovery rate (Bayes FDR) procedure for Poisson regression. In
the next three sections we proceed to find an estimate of pδ, and then show how to use
these probabilities in a multiple testing setup.

5.1. The marginal posterior of the intensities λ

Let g(λ|α, γ) denote the gamma distribution with shape and rate parameters α and γ,
respectively, i.e. g(λ|α, γ) ∝ λα−1 exp{−γλ}. the posterior of λij is given by

π(λij |D) =

∫
g(λij |zij + eτj , eij + eτj/µij)π(β, ~τ , b|D)dβ d~τ db.

A quick estimate, obtained through Laplace’s approximation, yields

π(λij |D) ≈ g(λij |zij + eτ̂j , eij + eτ̂j/µ̂ij).

That is, the posterior is close to a Gamma distribution. Christiansen and Morris
(1997) supposed that the posterior of the intensities in their model may be approxi-
mated by a Gamma distribution but gave no formal argument to support this assump-
tion. However, their estimates of α and γ do not coincide with those derived from
Laplace’s approximation. They used instead the so-called adjusted density method
(ADM) (Morris, 1983) to estimate them. These estimates were derived from a Beta
distribution approximation to the variables Bij . Here, we will still use Laplace’s ap-
proximation derived in Section 3.1. For j ∈ {1, . . . , p}, let ~τ−j = {τk : k 6= j} and

b−j = {bk : k 6= j}. Similarly, ~̂τ−j = {τ̂k : k 6= j} and b̂−j = {b̂k : k 6= j} will
denote the maximum q-likelihood estimators. From now on, for any quantity Q, the
expression Q̂−j will denote the quantity Q evaluated at (τj , ~̂τ−j) and (bj , b̂−j). Let

`j
.
=
∑Mj

s=1Njs log(eτj+s−1)−nj z̄·jτj+z′jWjbj+
∑p

k=1{z
′
kXkβ+

∑nk
i=1(eτk+zik) log(Bik)},

where z̄·j is the mean of the counts over the j-th group. Consider

log qj = log qj(β, τj , bj)
.
= `j(β, τj , bj , ~̂τ−j , b̂−j)−

1

2v2
0

(â−j − τ0)2

− 1

2
(ν0 + p− 1) log(Â−j)−

1

2
(m0 + p) log(1 + σ−2

0 (b′jΛ
−1
0 bj +

p∑
k 6=j

b̂′kΛ
−1
0 b̂k)).

This latter quantity contains all the dependency in the q-likelihood q(β, ~τ , b) that depends
only on (β, τj , bj). Let h = log g(λij |zij + eτj , eij + eτj/µij) + log q(β, ~τ , b), and jh denote
minus the Hessian of h. Applying the approximation (10) to h instead of `q, with
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ψ = λ
.
= λij and θ = (β, ~τ , b) yields

pL.2(λ|D) = (̂h,p,λ/(2π))1/2(1 + Tθ(λ, βλ, ~τλ, bλ))−1/2h(λ, βλ, ~τλ, bλ)/h(λ̂, θλ̂),

where θ̂λ̂ = (βλ̂, τλ̂, bλ̂) is not necessarily θ̂ = (β̂, ~̂τ, b̂), since the former value satisfies

(∂ log qj/∂β)(θ̂λ̂) = −(∂ log g/∂β)(λ̂, θ̂λ̂), (∂ log qj/∂τj)(θ̂λ̂) = −(∂ log g/∂τj)(λ̂, θ̂λ̂), and

(∂ log qj/∂bj)(θ̂λ̂) = −(∂ log g/∂bj)(λ̂, θ̂λ̂). However, the maximizer λ̂ = µ̂ij,λ̂(zij +eτ̂j,λ̂−
1)/(eijµ̂ij,λ̂ + eτ̂j,λ̂) ≈ λ̄

.
= µ̂ij,λ̂(zij + eτ̂j,λ̂)/(eijµ̂ij,λ̂ + eτ̂j,λ̂) for large zij . It is easy to

verify that (∂ log g/∂β)(λ̄, θλ̄) = 0, (∂ log g/∂bj)(λ̄, θλ̄) = 0, and

∂ log g

∂τj
(θλ̄) = eτj,λ̄ [log(zij + eτj,λ̄)−Ψ(zij + eτj,λ̄)] ≈ eτj,λ̄

2(zij + eτj,λ̄)
,

where we have used the approximation for the digamma function Ψ(x) ≈ log(x)−1/(2x).
Note that the last derivative with respect to τj is small for large zij . Therefore, we will

suppose that pL.2(λ|D) is computed using the expected value λ̄ instead of the mode λ̂.
In this latter case, θλ̄ ≈ θ̂, and ĥ = h(λ̄, β̂, ~̂τ, b̂). This simplifies the calculation that
follows as well as the computations in practice, since there will be no need to evaluate
θ̂λ̂ for each individual λij .

Also note that since for all k 6= j, ∂2h/∂λ∂τk = ∂2h/∂λ∂bk = 0, we have (d/dλ)τk,λ ≈
0 and (d/dλ)bk,λ ≈ 0. Therefore, ~τλ ≈ (τj,λ, ~̂τ−j) and bλ ≈ (bj,λ, b̂−j). This implies that
we may consider the approximation to the posterior of λ:

pL.2(λ|D) = (̂h,p,λ/(2π))1/2
(
1 + Tθ(λ, βλ, τj,λ, bj,λ, ~̂τ−j , b̂−j)

)−1/2

×
(
qj(βλ, τj,λ, bj,λ)/q̂j

)(
g(λ|zij + eτj,λ , eij + eτj,λ/µij,λ)/ĝ

)
, (17)

where µij,λ denotes µij evaluated at (βλ, τj,λ, bj,λ), and q̂j , and ĝ denote qj , and g eval-

uated at (λ̄, θ̂).

5.2. Comparing two intensities

Suppose that λi follows a distribution gi(λ), i = 1, 2, and that these two variables
are independent. Let U1 = λ1 − λ2, and U2 = λ1. It is easily shown that p(u1) =∫
u2>max{u1,0} g1(u2)g2(u2 − u1) du2. We will approximate this integral using a hybrid

between a numerical integration and Laplace’s approximation. The resulting expression
may be integrated numerically to find pδ. We use the form of the approximation (17) for
gi(λ) = fi(λ)g(λ|αi, γi), i = 1, 2, where g(·|αi, γi) denotes a gamma density with shape
parameter αi, and rate γi. We have

p(u1, u2) ∝ f1(u2)f2(u2 − u1)× (u2 − u1)α2−1uα1−1
2 exp{−(γ1 + γ2)u2 + γ2u1},

u2 ≥ max{u1, 0}. Let I2(u2) =
∫∞
u2

γ
α2
2

Γ(α2)f2(v)vα2−1e−γ2v dv.And let v0 = arg maxv≥u2(f2(v)vα2−1e−γ2v).
Note that v0 may be zero if α2 < 1. Using Laplace’s approximation and the fact that,
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besides f2, the integrand is a gamma density, we have

I2(u2) ≈
{
f2(v0)(1−G(u2|α2, γ2)), if u2 < v0,

f2(u2)(1−G(u2|α2, γ2)), otherwise.

where G(|) denotes the gamma cdf. Therefore

pδ ∝ P−
.
= f2(v0)

∫ v0

0

γα1
1

Γ(α1)
f1(u2)uα1−1

2 e−γ1u2 (1−G(u2|α2, γ2)) du2

+

∫ ∞
v0

γα1
1

Γ(α1)
f1(u2)f2(u2)uα1−1

2 e−γ1u2 (1−G(u2|α2, γ2)) du2

= f2(v0)

∫ v0

0
f1(u2)g(u2|α1, γ1)(1−G(u2|α2, γ2)) du2

+

∫ ∞
v0

f1(u2)f2(u2)g(u2|α1, γ1)(1−G(u2|α2, γ2)) du2.

In practice, we calculate the maximum of g(u2|α1, γ1)(1 − G(u2|α2, γ2)), say u∗, and
divide the real line into a few bins with end-points u1 < u2 < . . . < um so that, if
Si =

∫ ui+1

ui
g(u2|α1, γ1)(1−G(u2|α2, γ2)) du2,, then∫ ui+1

ui

f1(u2)f2(u2)g(u2|α1, γ1)(1−G(u2|α2, γ2)) du2 ≈{
f1(u∗)f2(u∗)Si, if ui ≤ u∗ < ui+1,

f1(ui)f2(ui)Si, otherwise.

In order to get an estimate of pδ, we need to normalize the estimate of P− by (P−+P+),
where

P+ = f2(v0)

∫ v0

0
f1(u2)g(u2|α1, γ1)G(u2|α2, γ2) du2+∫ ∞

v0

f1(u2)f2(u2)g(u2|α1, γ1)G(u2|α2, γ2) du2,

is proportional to 1− pδ. We approximate P+ in a similar fashion as P−.

In many situations we would like to compare the intensities associated with different
values of the fixed effect variable X (for example, for control and treatment patients).
Let us denote these two values by x1 and x2. There are two different cases. The first one
is given by λij(x1)− λi′j(x2). The second one is given by λij(x1)− λlk(x2) with j 6= k.
Note that in the latter case, it may be interesting to test if these intensities are the same
for the same value of the fixed effects, i.e. we may consider here x1 = x2. However,
the most important scenario is to compare the same intensities associated with different
values of X. This corresponds to the first case with i′ = i. The conditional intensities
λij |β, τj , bj , x1,D and λlk|β, τk, bk, x2,D are independent if either, i 6= l, j 6= k, or x1 6=
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x2. Therefore, we can approximate π(λij(x1) − λlk(x2) < 0|β, τj , τk, bj , bk, x1, x2,D) as
above. The resulting expression, say, p̂L(λij(x1)− λlk(x2) < 0|β, τj , τk, bj , bk, x1, x2,D),
need to be integrated with respect to the measure π(β, τj , τk, bj , bk|D). Consequently, a
simple approximation to π(λij(x1) − λlk(x2) < 0|D) is given by p̂L(λij(x1) − λlk(x2) <

0 | β̂, τ̂j , τ̂k, b̂j , b̂k, x1, x2,D).

5.3. A Bayes false discovery rate

Since we are considering multiple tests simultaneously, we need to apply a multiple
comparison procedure to evaluate if these effects are likely to be real effects. We follow
the Bayesian FDR suggested by Whittemore (2007). In this framework, we compare the
results yielded by the full model with those yielded by the model that supposes that
the null hypothesis of no treatment effect is true, that is, the model that imposes the
constraint β = 0. Since this latter model, which we are going to call, the null-hypothesis
model, is a special case of the full model, we can easily obtain the results under the
null-hypothesis by fixing β to zero in the above equations. Whittemore (2007) considers
comparing the probabilities of having an extreme value of an associated test statistics
under both the null and the alternative (full model) hypothesis. This idea is easily
generalized to our case, by considering the difference λ1 − λ2 as our “test statistics”.
This entails computing the probability pδ under both hypothesis. Let πi be the (prior)
probability that the i-th null-hypothesis is false. Let pi,δ be the associated pδ for the
i-hypothesis, and let pi,δ,o be the corresponding probability computed from the null-
hypothesis model, i = 1, . . . , N , where N is the number of tests. Consider the posterior
odds against the null-hypothesis

oi =
πi

1− πi
pi,δ
pi,δ,o

.

The Bayes FDR is based on the so-called b-values: bi = 1/(1+oi). For a level 0 < α < 1,
Whittemore (2007) shows that the Bayes FDR is controlled at a level α if all hypothesis
satisfying bi ≤ α are rejected.

6. Applications

We start by applying our methodology to two problems that do not involve random
effects. These are the pump and heart data sets already studied by Christiansen and
Morris (1997). The goal here is not to do a deep analysis of these data, but to com-
pare our results with those already published. In so doing, we aim at showing that
our methodology works well in these simple cases. We note that the results of Chris-
tiansen and Morris (1997) have been calibrated by extensive simulations. They have
also been compared to full Markov chain Monte Carlo techniques via WinBugs (The
BUGS Project, 2012). The next section shows a more complex application involving
group effects, namely the quadrivalent vaccine trial described in the Introduction.
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6.1. The pump and heart rate data sets

The pump data (Gaver and O’Muircheartaigh, 1987) refers to pump failure rates at
pressurized water in nuclear reactor power plants. These data have been analyzed using
several different models (Carlin and Gelfand, 1991; Johnson, 1992; Christiansen and
Morris, 1997). Each observation zi (i = 1, . . . , 10) represents the number of failures
in the i-th pump. There is only one covariable that takes the values xi1 = 1 for four
pumps that operates continually, and xi1 = 0 for the other six pumps that operate
intermittently. The exposure ei of the i-th pump represents the number of pump hours
of operation. Thus, yi = zi/ei is the observed failure rate associated with the i-th pump.

The heart transplant data (Christiansen and Morris, 1996) are mortality rates from
patients that had undergone a heart transplant. The data was gathered from fifteen
heart transplant centers in the USA between October-1987 and December-1989. For
each center i (i = 1, . . . , 15), zi represents the number of deaths during the first month
after the transplant. The exposure ei is the number of heart transplants performed in
the corresponding center. As in the analysis of Christiansen and Morris (1997), we use
the variable X =severity as a covariable. This refers to the expected number of deaths
in each center. The severity index is based on several demographic and health variables
considered as risk factors for the patients treated in the different centers. For these two
data sets there is only one strata, hence p = 1.

As in the simulation study of Section 4, for all the applications of this section, we
set the hyper-parameters values to s2

0 = v2
0 = 10, ν0 = 3, and τ0 = 1. We initialized

the parameters with sensible estimates. For example, the parameters β were initialized
using an appropriate robust regression.

The fixed effects MAP estimates together with 95% credible regions are shown in
Table 1. These credible regions were obtained by integration of the approximate density
given by expression (12), as in Section 3.2.1. The posterior standard deviations were also
estimated from the corresponding approximate marginal posterior. The MAP intensity
estimates are shown in Table 2. Our results are very similar to those obtained by
Christiansen and Morris (1997). Note that at first sight the pump data estimates of
β, are quite different. This is simply due to the different coding of the type of pump
variable (we use a 0/1 coding, whilst Christiansen and Morris (1996) use a −1.0/1.5
coding). We also note that there seems to be a typo in their reported fixed effects
estimates for the heart transplant data: the coefficient associated with the intercept is
reported as −0.295. We believe that the right figure is −2.95, otherwise, their estimates
of the shrinkage weights Bi and the intensities λi would be far off those reported in
their paper. We would like to stress, that our method yields credible intervals that are
not necessarily symmetric about the estimated value of the parameters. For the heart
transplant data, the center severity does not seem to explain all the variability observed
in the death rates after the heart transplants. Note that Center 1 presents the highest
observed death rate among the fifteen centers. A one-to-one comparison between the
center intensities λ1 − λj yield significant death rate differences between the first center
and the all the other centers (pδ < 0.15), except center 3 (pδ = 0.23). On the opposite
death count (zero), center 10 seems to be the most different center with 1 − pδ < 0.04
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for center 1, 3, and 9, and 1 − pδ < 0.15 for centers 5,7, and 8. We also note that
despite the fact that the observed death rate in center 5 is larger than that in center
7, P (λ5 − λ7 < 0| data ) = 0.32 is not small. This is explained by the smaller severity
for patients in center 5 than for patients in center 7. This fact was already noted by
Christiansen and Morris (1997) from the fact that the MAP estimate of λ5 (0.044) is
smaller than that of λ7 (0.046). However, they could not produce a posterior probability
statement like we do with our methodology.

Data β 95% credible region Standard

Lower Upper Deviation

Pump Intercept 0.16 -0.42 0.72 0.31

Failure Treatment -1.78 -2.77 -0.79 0.54

Heart Intercept -2.96 -3.39 -2.53 0.24

Transplant Treatment 1.40 -1.64 4.39 1.66

Table 1: The MAP regression parameter estimates for the Pump failure and Heart
transplant data sets. The posterior standard deviations are estimated from the
approximate marginal posterior of the parameters.

Intensities λi

Pump 1 2 3 4 5

Failure 1.08 1.08 1.76 0.68 2.12

Data 6 7 8 9 10

0.12 0.57 0.09 0.02 0.12

1 2 3 4 5

Heart 0.144 0.046 0.091 0.038 0.044

Transplant 6 7 8 9 10

Data 0.035 0.046 0.055 0.084 0.015

11 12 13 14 15

0.092 0.043 0.039 0.084 0.068

Table 2: The MAP intensity parameter estimates for the Pump failure and Heart trans-
plant data sets.
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6.2. A quadrivalent vaccine trial

We applied our model to the human body system data introduced earlier in the paper.
The covariable used was x = 1 for the treatment group, and x = 0 for the control
group. The q-likelihood maximizers were estimated with a greedy gradient ascent al-
gorithm. We initialized the parameters with easy to obtain sensible estimates. For
example, the parameters β were initialized using the coefficients of the robust regression
of log(observed intensity) as function of Treatment/Control. The hyper-parameters were
set as follows: m0 = 2, Λ0 = 1, σ2

0 = s2
0 = v2

0 = 10, ν0 = 3, and τ0 = 1.

The MAP estimates of the fixed effects (β0, β1) and their 95% credible regions, com-
puted by integration of the approximating density given by the expression (12) as in
Section 3.2.1, together with their posterior standard deviations (estimated from the ob-
served Fisher information matrix) are displayed in Table 3. Note that the model says
that in general there is a slight treatment effect. The MAP intensity estimates are shown
in the Table 4. The probabilities π(λij(x = 1)− λik(x = 0) < 0|D) were estimated with
the procedure described in Section 5.2. One can observe from Table 4 that three ad-
verse effect, 3-Diarrhea, 8-Irritability and to a minor degree 10-Rash, are likely to be
more exacerbated in the treatment group (the one receiving the quadrivalent vaccine)
than in the control group. Also, due to the large differences between Irritability and the
other two adverse effects, the body system group 8 presents the largest overdispersion
(ξ8 = 0.43, against a median of 0.82) among the eight body systems.

We applied the Bayes FDR procedure of Section 5.3 to the vaccine data. The last
five columns of Table 4 shows the corresponding b-values for different values of the prior
probabilities πi against the null hypothesis of no treatment effect. Only 8-Irritability
present evidence against the null hypothesis of no treatment effect. These findings
corroborate the findings of Mehrotra and Heyse (2004) and Berry and Berry (2004).
It also shows that our method is a reliable method to handle multiple comparisons.
In conclusion, this study did offer enough evidence to conclude that the quadrivalent
vaccine do exacerbate some adverse effect in the treatment group. The study strongly
indicates that the mood of the patients might be altered more often with the quadrivalent
vaccine. Although, it was suspected that the digestive system and the skin may suffer
some complications, the study failed to offer credible evidence that these and other areas
of the body are affected by the quadrivalent vaccine.

β 95% credible region Standard

Lower Upper Deviation

Intercept -4.10 -4.30 -3.92 0.10

Treatment 0.57 0.24 0.90 0.18

Table 3: The vaccine data: The MAP regression parameter estimates. The posterior
standard deviations are estimated from the approximate marginal posterior of
the parameters.
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7. Conclusions

We have presented both a Bayesian hierarchical mixed-effect Poisson regression model
and a Bayes FDR methodology in order to address the problem of multiple testing. In
this framework, the problem consists of comparing the risks or intensities associated
with the different groups of interest under both the null (reduced model) hypothesis of
no treatment effect, and the alternative (full model) one.

We note that in addition to the different treatment groups considered in a given study,
every level L of a given discrete variable X give rise to a level-dependent subgroup formed
by those individuals for which the corresponding value of X is L. We derived an approxi-
mation to the posterior density of the difference in risk between two treatment groups or
two level-dependent subgroups. This density is then integrated numerically in order to
obtain estimates of the probability that one of the groups or level-dependent subgroups
shows a higher risk. Simplifications to the estimation of the joint or marginal posterior
were achieved by using among other techniques, Laplace’s approximation, and a trace
approximation to the determinant involving the group-effect parameters. Orthogonality
between the regression coefficients and the precision parameters allowed us to simplify
even further the approximations. We note that Laplace’s approximation has been widely
used to approximate mixed-effect generalized linear models and has been proven to work
both accurately and efficiently (as opposed to quadrature or Monte Carlo integration).
We showed that our methodology generalizes the PRIMM methodology introduced by
Christiansen and Morris (1997). In a sense, our method is more general, since the formu-
las derived in the present work are very general and may be applied to other hierarchical
models as well. The application of our methodology to the quadrivalent vaccine trial
(Mehrotra and Heyse, 2004; Berry and Berry, 2004) shows that there are significant dif-
ferences between the standard two-stage vaccine and the quadrivalent one. In general,
patients given the quadrivalent vaccine show a higher risk of suffering an adverse or
secondary effect: irritability presented the most pronounced difference.
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A. Derivation of the q-likelihood q(β, ~τ , b|D)

Integrating π(β, ~τ , b, η|D) with respect to Ψ one obtains

π1(β, ~τ , b, (τ, σ2
τ )|D) = C1

∫
Ψ

p∏
j=1

π(bj |η)π(Ψ)dΨ,
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Body Adverse Counts λ

System Effect T C T C Diff

1 Fatigue 57 40 0.377 0.288 0.089

1 Fever 34 26 0.228 0.190 0.038

1 Fungal infection 2 0 0.021 0.008 0.012

1 Viral infection 3 1 0.027 0.015 0.012

1 Malaise 27 20 0.183 0.148 0.035

3 Anorexia 7 2 0.049 0.018 0.030

3 Oral candidiasis 2 0 0.017 0.005 0.012

3 Constipation 2 0 0.017 0.005 0.012

3 Diarrhea 24 10 0.154 0.070 0.084

3 Gastroenteritis 3 1 0.024 0.012 0.012

3 Nausea 2 7 0.017 0.051 -0.033

3 Vomiting 19 19 0.123 0.128 -0.005

5 Lymphadenopathy 3 2 0.043 0.028 0.015

6 Dehydration 0 2 0.003 0.014 -0.011

8 Crying 2 0 0.016 0.003 0.013

8 Insomnia 2 2 0.016 0.018 -0.002

8 Irritability 75 43 0.499 0.316 0.183

9 Bronchitis 4 1 0.031 0.012 0.018

9 Nasal congestion 4 2 0.031 0.019 0.012

9 Respiratory congestion 1 2 0.012 0.019 -0.007

9 Cough 13 8 0.087 0.059 0.029

9 Respiratory infection 28 20 0.182 0.139 0.044

9 Laryngotracheobronchitis 2 1 0.018 0.012 0.006

9 Pharyngitis 13 8 0.087 0.059 0.029

9 Rhinorrhea 15 14 0.100 0.099 0.001

9 Sinusitis 3 1 0.024 0.012 0.012

9 Tonsillitis 2 1 0.018 0.012 0.006

9 Wheezing 3 1 0.024 0.012 0.012

10 Bite/sting 4 0 0.027 0.005 0.022

10 Eczema 2 0 0.016 0.005 0.011

10 Pruritus 2 1 0.016 0.010 0.006

10 Rash 13 3 0.076 0.020 0.056

10 Diaper rash 6 2 0.038 0.015 0.023

10 Measles/rubella-like rash 8 1 0.048 0.010 0.039

10 Varicella-like rush 4 2 0.027 0.015 0.012

10 Urticaria 0 2 0.005 0.015 -0.010

10 Viral exanthema 1 2 0.010 0.015 -0.005

11 Conjunctivitis 0 2 0.004 0.017 -0.013

11 Otitis media 18 14 0.117 0.096 0.021

11 Otorrhea 2 1 0.017 0.011 0.006

Table 4: The adverse effects associated with eight body systems. The exposures for
the treatment and control groups are 148 and 132, respectively. The symbols
“T” and “C” stand for the treatment and control groups, respectively. The
columns under λ are the MAP estimates of the corresponding group intensi-
ties. The column “Diff” shows the difference between the corresponding groups
intensities.
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where C1 is a function independent of Ψ. Recall that bj ∼ Nq(0,Ψ) and Ψ ∼W−1(m0,Λ0),
i.e., π(bj |η) = π(bj |Ψ) = (2π)−q/2|Ψ|−1/2 exp[−b′jΨ−1bj/2] and,

π(Ψ) = |σ2
0Λ0|m0/2|Ψ|−(m0+q+1)/2 exp[−trace(σ2

0Λ0Ψ−1)/2]/(2m0q/2Γq(m0/2)).

These yield

π1(β, ~τ , b, (τ, σ2
τ )|D) =

C1π
−pq/2(Γq((m0 + p)/2)/Γq(m0/2))× |σ2

0Λ0|m0 |σ2
0Λ0 + b′b|−(m0+p)/2.

The integral of π1 with respect to σ2
τ is

π2(β, ~τ , b, τ |D) = C2

∫
σ2
τ

p∏
j=1

π(τj |τ, σ2
τ )π(σ2

τ )dσ2
τ .

where C2 is a function independent of (σ2
τ ,Ψ). Recall again that τj ∼ Normal(τ, σ2

τ ) and
σ2
τ ∼Inverse-Chi-squared(ν0, s

2
0), i.e.,

π(τj |τ, σ2
τ ) = (2πσ2

τ )−1/2 exp[−(τj − τ)2/2σ2
τ ] and

π(σ2
τ ) = ((s2

0ν0/2)ν0/2/Γ(ν0/2))× (σ2
τ )−(ν0/2+1) exp(−ν0s

2
0/2σ

2
τ ).

Hence,

π2(β, ~τ , b, τ |D) = C2
(s2

0ν0/2)ν0/2Γ((ν0 + p)/2)2(ν0+p)/2

(2π)p/2Γ(ν0/2)
[pA(1 +

(τ − a)2

A
)]−(ν0+p)/2,

where A =
ν0s20
p + 1

p

∑p
j=1(τj − a)2 and a = 1

p

∑p
j=1 τj . Finally, the integral of π2 with

respect to τ is

π3(β, ~τ , b|D) = C3

∫
τ
(1 +

(τ − a)2

A
)−(ν0+p)/2 1√

2π v0

exp{−(τ − τ0)2

2v2
0

} dτ,

where C3 is a function independent of (τ, σ2
τ ,Ψ). We are going to estimate this integral

using Laplace’s approximation. Let g(τ) = −((ν0 + p)/2) log(1 + (τ−a)2

A ). Its first and
second derivatives are g′(τ) = −(ν0 +p)(τ−a)/(A+(τ−a)2) and g′′(τ) = −(ν0 +p)[(A−
(τ − a)2)/(A + (τ − a)2)2]. Observe that τ = a is the global maximum of g(τ). Hence,
Laplace’s approximation yields∫

τ
exp{g(τ)}π(τ)dτ ≈ exp{g(a)}

√
2π |g′′(a)|−1/2 π(a) =

1

v0
√
ν0 + p

A1/2 exp{−(a− τ0)2

2v2
0

}.
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So finally, π3(β, ~τ , b|D) ≈

c0L(β, ~τ , b|D)|σ2
0Λ0 + b′b|−(m0+p)/2(pA)−(ν0+p−1)/2 exp{−(a− τ0)2

2v2
0

},

where c0 is a constant independent of the parameters of the model. The right-hand-side
of the above expression is, up to a constant, exactly q(β, ~τ , b|D).

B. The case of orthogonal parameters

Consider Tθ = Tθ(ψ, θψ) =
∑

u j
−u
θ jθ,u(ψ, θψ), where j−uθ and jθ,u denote the u-row of

j−1
θ and the u-column of jθ, respectively. We have

Ṫθ = −
∑
u

∑
v

j−uvθ

d

dψ

{
∂2`q
∂θu∂θv

(ψ, θψ)

}
(ψ, θψ),

where (θu, θv) denotes a pair of components of θ. In addition,

− d

dψ
(jθ(ψ, θψ))uv =

d

dψ

∂2`q(ψ, θψ)

∂θu∂θv
=
∂3`q(ψ, θψ)

∂θu∂θv∂ψ
+
∂3`q(ψ, θψ)

∂θu∂θv∂θ

∂θψ
∂ψ

.

The last partial derivative may be obtained from the fact that by definition (∂`q/∂θ)(ψ, θψ) =
0 for all ψ. This implies that

∂θψ
∂ψ

= −[
∂2`q
∂θ2

(ψ, θψ)]−1 ∂
2`q

∂θ∂ψ
(ψ, θψ).

Now let us write θ = (ζ, ξ) and suppose that ξ ∈ Rd2 is orthogonal to both ζ ∈ Rd1 and
ψ. As mentioned in Section 3.3, the matrix ∂2`q/∂θ

2 may be approximated by the block
diagonal matrix, diag(∂2`q/∂ζ

2, ∂2`q/∂ξ
2), with blocks given by equation (14). These

approximations yield equations (15) and (16) of Section 3.3, and formally,

ˆ̇Tθ(ψ̂, θ̂) ≈

′′trace′′
{

[
∂2`q
∂ζ2

(ψ̂, θ̂)]−1(
∂3`q
∂ζ2∂ψ

(ψ̂, θ̂)− ∂3`q
∂ζ3

(ψ̂, θ̂)[
∂2`q
∂ζ2

(ψ̂, θ̂)]−1 ∂
2`q

∂ζ∂ψ
(ψ̂, θ̂))

+ [
∂2`q
∂ξ2

(ψ̂, θ̂)]−1(
∂3`q
∂ξ2∂ψ

(ψ̂, θ̂)− ∂3`q
∂ξ2∂ζ

(ψ̂, θ̂)[
∂2`q
∂ζ2

(ψ̂, θ̂)]−1 ∂
2`q

∂ζ∂ψ
(ψ̂, θ̂))

}
.

More explicitly, let jζ , jξ be the submatrices of jθ corresponding to the second derivatives
with respect to ζ and ξ, respectively. Consider the matrices of complete derivatives with
respect to ψ evaluated at (ψ̂, θ̂),

∇ψ ̂ζ,u = −
(
d

dψ

∂2`q
∂ζ1∂ζu

∣∣∣∣ ddψ ∂2`q
∂ζ2∂ζu

∣∣∣∣ · · · ∣∣∣∣ ddψ ∂2`q
∂ζd1∂ζu

)′
(ψ̂, θ̂), u = 1, . . . , d1,
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∇ψ ̂ξ,v = −
(
d

dψ

∂2`q
∂ξ1∂ξv

∣∣∣∣ ddψ ∂2`q
∂ξ2∂ξv

∣∣∣∣ · · · ∣∣∣∣ ddψ ∂2`q
∂ξd2∂ξv

)′
(ψ̂, θ̂), v = 1, . . . , d2.

Then

ˆ̇Tθ(ψ̂, θ̂) ≈
d1∑
u=1

̂−uζ ∇ψ ̂ζ,u +

d2∑
v=1

̂−vξ ∇ψ ̂ξ,v,

where ̂−uζ and ̂−vξ denotes the u-th and v-th rows of the inverses of ̂ζ and ̂ξ, respectively.
We can also find approximations for the determinants. We have jψ×θ ≈ (jψ×ζ | 0), and
therefore |̂| ≈ |̂ζ |×|̂ξ|×|̂ψ− ̂ψ×ζ ̂−1

ζ ̂ζ×ψ|. This yields ̂p,ψ ≈ ̂ψ×(I− ̂−1
ψ ̂ψ×ζ ̂

−1
ζ ̂ζ×ψ).

Note that if ζ is also orthogonal to ψ, then we simply have ̂p,ψ ≈ ̂ψ. This is the case of
the parameter ~τ which is also orthogonal to b.

C. Some useful derivatives

Proposition 1

∂ log q

∂β
=
∂`

∂β
=

p∑
j=1

nj∑
i=1

(zij − eijµij)BijXij

∂2 log q

∂β2
=
∂2`

∂β2
= −

p∑
j=1

X ′jDjXj ,

where Dj = diag(eijBijλ
∗
ij), with λ∗ij = (1−Bij)yij +Bijµij . In particular,

∂2 log q

∂βk∂β`
= −

p∑
j=1

nj∑
i=1

xij,kxij,`eijBijλ
∗
ij .

∂ log q

∂τj
=

∂`

∂τj
− a− τ0

pv2
0

− (ν0 + p− 1)(p− 1)(τj − a)

p2A
,

∂2 log q

∂τj∂τk
= δjk

∂2`

∂τj∂τk
− 1

(pv0)2
−

(ν0 + p− 1)(p− 1)

p4A2

(
(δjkp− 1)pA− 2(p− 1)(τj − a)(τk − a)

)
,
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where δjk denotes the Kronecker’s delta, that is, δjk = 1 if and only if j = k, and δjk = 0,
otherwise, and

∂`

∂τj
=

Mj∑
s=1

Njs
eτj

eτj + s− 1
+ eτj

nj∑
i=1

logBij −
nj∑
i=1

(zij − eijµij)Bij ,

∂2`

∂τ2
j

=

Mj∑
s=1

Njs
eτj (s− 1)

(eτj + s− 1)2
+

nj∑
i=1

{
eτj [log(Bij) + (1−Bij)]− (zij − eijµij)Bij(1−Bij)

}
.

∂ log q

∂bj
=

nj∑
i=1

(zij − eijµij)BijWij −
(m0 + p)σ−2

0

1 + σ−2
0

∑p
`=1 b

′
`Λ
−1
0 b`

Λ−1
0 bj ,

∂2 log q

∂bj∂bk
=

{ −W ′jDjWj − σ−2
0 (m0 + p)Λ−1

0

(
(1+σ−2

0

∑p
`=1 b

′
`Λ−1

0 b`)Iq−2σ−2
0 bjb

′
jΛ−1

0

(1+σ−2
0

∑p
`=1 b

′
`Λ−1

0 b`)2

)
, k = j

2σ−4
0 (m0 + p)

Λ−1
0 bjb

′
kΛ−1

0

(1+σ−2
0

∑p
`=1 b

′
`Λ−1

0 b`)2
, k 6= j

In particular,

∂2 log q

∂bju∂bjv
= −

nj∑
i=1

wij,uwij,veijBijλ
∗
ij

− σ−2
0 (m0 + p)

(
Λuv0 (1 + σ−2

0

∑p
`=1 b

′
`Λ
−1
0 b`)− 2σ−2

0 Λu0bj Λv0bj

(1 + σ−2
0

∑p
`=1 b

′
`Λ
−1
0 b`)2

)
,

∂2 log q

∂bju∂bkv
= 2σ−4

0 (m0 + p)
Λu0bjΛ

v
0bk

(1 + σ−2
0

∑p
`=1 b

′
`Λ
−1
0 b`)2

, j 6= k.

where Λu0 denotes the u-th row of Λ−1
0 , and Λuv0 , the v-th component of the u-th row of Λ−1

0

(recall that Λ−1
0 is symmetric). Also, for every j ∈ {1, . . . , p}

∂2 log q

∂β∂τj
=

nj∑
i=1

(zij − eijµij)XijBij(1−Bij)

∂2 log q

∂β∂bj
= −X ′jDjWj = (−

nj∑
i=1

λ∗ijeijBijxij,uwij,v)

∂2 log q

∂bj∂τk
=

( nj∑
i=1

(zij − eijµij)Bij(1−Bij)Wij

)
δkj .

Moreover,

∂3 log q

∂βu∂βv∂βt
=

p∑
j=1

nj∑
i=1

eijBij(1− 2Bij)λ
∗
ijxij,uxij,vxij,t.
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∂3 log q

∂bju∂bjv∂bjt
=

nj∑
i=1

eijBij(1− 2Bij)λ
∗
ijwij,uwij,vwij,t −

8σ−6(m0 + p)

(1 + σ−2
0

∑p
`=1 b

′
`Λ
−1
0 b`)2

×(
Λu0bjΛ

v
0bjΛ

t
0bj

1 + σ−2
0

∑p
`=1 b

′
`Λ
−1
0 b`

− 1

4σ−2
0

(Λuv0 Λt0bj + Λut0 Λv0bj + Λvt0 Λu0bj)

)
,

∂3 log q

∂bju∂bks∂bht
= −8σ−6(m0 + p)

Λu0bjΛ
v
0bkΛt0bh

(1 + σ−2
0

∑p
`=1 b

′
`Λ
−1
0 b`)3

, for δjkδjh = 0.

∂3 log q

∂τj∂τk∂τ`
=
∂3`

∂τ3
j

δjkδj` −
2(ν0 + p− 1)(p− 1)2

p6A3
×(

4(p−1)(τ`−a)(τk−a)(τj−a)−pA[(τ`−a)(δjkp−1)+(τk−a)(δj`p−1)+(τj−a)(δk`p−1)]

)
,

where

∂3`

∂τ3
j

=

Mj∑
s=1

Njs(s− 1)
(s− 1− eτj )eτj

(s− 1 + eτj )3
+

nj∑
i=1

{
eτj [Bij(1−Bij)− logBij ]− (zij − eijµij)Bij(1−Bij)(1− 2Bij)

}
.

∂3 log q

∂βu∂βv∂τj
= −

nj∑
i=1

Bij(1−Bij)(2λ∗ij − yij)eijxij,uxij,v,

∂3 log q

∂bju∂bkv∂τ`
= −

( nj∑
i=1

Bij(1−Bij)(2λ∗ij − yij)eijwij,uwij,v
)
δjkδj`,

∂3 log q

∂bju∂bkv∂βh
=

( nj∑
i=1

Bij(1− 2Bij)λ
∗
ijeijwij,uwij,vxij,h

)
δkj

∂3 log q

∂bju∂βv∂βt
=

nj∑
i

Bij(1− 2Bij)λ
∗
ijeijwij,uxij,vxij,t,

∂3 log q

∂bju∂βv∂τ`
= −

( nj∑
i=1

Bij(1−Bij)(2λ∗ij − yij)eijwij,uxij,v
)
δj`,

∂3 log q

∂τj∂τk∂βh
= −

( nj∑
i=1

(zij − eijµij)Bij(1−Bij)(1− 2Bij)xij,h

)
δkj ,

∂3 log q

∂τj∂τk∂b`,u
= −

( nj∑
i=1

(zij − eijµij)Bij(1−Bij)(1− 2Bij)wij,u

)
δjkδj`.

The proof of the proposition is straightforward. One only needs to verify that (∂Bij/∂βu) =
−Bij(1−Bij)xij,u, (∂Bij/∂τk) = Bij(1−Bij)δjk, (∂Bij/∂bku) = −Bij(1−Bij)wij,uδjk,
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(∂µij/∂βu) = µijxij,u, and (∂µij/∂bku) = µijwij,uδjk.

Proposition 2 Let αij = zij + eτj , and ηij = eij + eτj/µij.

∂ log g(λ|αij , ηij)
∂βu

= { λ
µij

eτj −Bij(zij + eτj )}Xij,u,

∂2 log g(λ|αij , ηij)
∂βu∂βv

= {− λ

µij
eτj +Bij(1−Bij)(zij + eτj )}Xij,uXij,v,

∂ log g(λ|αij , ηij)
∂bk,u

= { λ
µij

eτj −Bij(zij + eτj )}Wij,u δkj ,

∂2 log g(λ|αij , ηij)
∂bj,u∂bj,v

= {− λ

µij
eτj +Bij(1−Bij)(zij + eτj )}Wij,uWij,v,

∂2 log g(λ|αij , ηij)
∂βu∂bk,v

= {− λ

µij
eτj +Bij(1−Bij)(zij + eτj )}Xij,uWij,v δkj ,

∂ log g(λ|αij , ηij)
∂τk

=

(
−eτj{log(1−Bij)− log(eijλ)

+ Ψ(zij + eτj )}+Bij(zij + eτj )− λ

µij
eτj
)
δkj ,

∂2 log g(λ|αij , ηij)
∂τ2
j

=
∂ log g(λ|αij , ηij)

∂τj
+B2

ij(eijµij − zij)− eτjΨ′(zij + eτj ),

∂2 log g(λ|αij , ηij)
∂τj∂βu

= (1−Bij)Bij(eijµij − zij)Xij,u +
λ− µij
µij

eτjXij,u,

∂2 log g(λ|αij , ηij)
∂τj∂bk,u

=

(
(1−Bij)Bij(eijµij − zij)Wij,u +

λ− µij
µij

eτjWij,u

)
δkj .

∂3 log g(λ|αij , ηij)
∂βu∂βv∂βt

= { λ
µij

eτj −Bij(1−Bij)(1− 2Bij)(zij + eτj )}Xij,uXij,vXij,t,

∂3 log g(λ|αij , ηij)
∂bj,u∂bj,v∂bj,t

= { λ
µij

eτj −Bij(1−Bij)(1− 2Bij)(zij + eτj )}Wij,uWij,vWij,t,

∂3 log g(λ|αij , ηij)
∂βu∂βv∂bj,t

= { λ
µij

eτj −Bij(1−Bij)(1− 2Bij)(zij + eτj )}Xij,uXij,vWij,t,

∂3 log g(λ|αij , ηij)
∂bj,u∂bj,v∂βt

= { λ
µij

eτj −Bij(1−Bij)(1− 2Bij)(zij + eτj )}Wij,uWij,vXij,t,

∂3 log g(λ|αij , ηij)
∂βu∂βv∂τj

=

{− λ

µij
eτj +Bij(1−Bij)(1− 2Bij)(zij + eτj ) +Bij(1−Bij)eτj}Xij,uXij,v,
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∂3 log g(λ|αij , ηij)
∂βu∂bj,v∂τj

=

{− λ

µij
eτj +Bij(1−Bij)(1− 2Bij)(zij + eτj ) +Bij(1−Bij)eτj}Xij,uWij,v,

∂3 log g(λ|αij , ηij)
∂bj,u∂bj,v∂τj

=

{− λ

µij
eτj +Bij(1−Bij)(1− 2Bij)(zij + eτj ) +Bij(1−Bij)eτj}Wij,uWij,v,

∂3 log g(λ|αij , ηij)
∂βu∂τ2

j

=
∂2 log g(λ|αij , ηij)

∂βu∂τj
+B2

ij [eijµij − 2(1−Bij)(eijµij − zij)]Xij,u,

∂3 log g(λ|αij , ηij)
∂bj,u∂τ2

j

=
∂2 log g(λ|αij , ηij)

∂bj,u∂τj
+B2

ij [eijµij − 2(1−Bij)(eijµij − zij)]Wij,u,

∂3 log g(λ|αij , ηij)
∂τ3
j

=
∂2 log g(λ|αij , ηij)

∂τ2
j

+ 2B2
ij(1−Bij)(eijµij − zij)− eτjΨ′(zij + eτj )− e2τjΨ′′(zij + eτj ).

We also have

∂ log g(λ|αij , ηij)
∂λ

=
αij − 1

λ
− ηij ,

∂2 log g(λ|αij , ηij)
∂λ2

= −αij − 1

λ2
,

∂2 log g(λ|αij , ηij)
∂λ∂β

= −e
τij

µij
Xij ,

∂2 log g(λ|αij , ηij)
∂λ∂bk

= −e
τij

µij
Wij δkj ,

∂2 log g(λ|αij , ηij)
∂λ∂τk

=

(
eτij

λ
− eτij

µij

)
δkj .
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∂3 log g(λ|αij , ηij)
∂λ∂βu∂βv

= − e
τj

µij
Xij,uXij,v,

∂3 log g(λ|αij , ηij)
∂λ∂βu∂bk,v

= − e
τj

µij
Xij,uWij,vδkj ,

∂3 log g(λ|αij , ηij)
∂λ∂bk,u∂b`,v

= − e
τj

µij
Wij,uWij,vδkjδ`j ,

∂3 log g(λ|αij , ηij)
∂λ∂τk∂τ`

= eτj
(

1

λ
− 1

µij

)
δkjδ`j ,

∂3 log g(λ|αij , ηij)
∂λ∂τk∂βu

=
eτj

µij
Xij,uδkj ,

∂3 log g(λ|αij , ηij)
∂λ∂τk∂b`,u

=
eτj

µij
Wij,uδkjδ`j .

Also note that since ∂ log q/∂λ = 0, we have

d

d λ

∂2 log h

∂ζ1∂ζ2
=

d

d λ

∂2(log q + log g)

∂ζ1∂ζ2

= −
(

∂3 log q

∂ζ1∂ζ2∂ζ
+

∂3 log g

∂ζ1∂ζ2∂ζ

)(
∂2 log q

∂ζ2
+
∂2 log g

∂ζ2

)−1
∂2 log g

∂ζ∂λ
+

∂3 log g

∂λ∂ζ1∂ζ2

where ζ = (β, ~τ , b), and ζ1, ζ2 denote any pair of single components of ζ.
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Body Adverse b-values

System Effect pδ pδ,o 0.10 0.25 0.50 0.75 0.90

1 Fatigue 0.10 0.12 0.915 0.783 0.546 0.286 0.118

1 Fever 0.25 0.32 0.920 0.792 0.560 0.298 0.124

1 Fungal infection 0.36 0.36 0.901 0.751 0.502 0.251 0.101

1 Viral infection 0.41 0.41 0.901 0.751 0.502 0.251 0.101

1 Malaise 0.25 0.26 0.905 0.761 0.514 0.261 0.105

3 Anorexia 0.23 0.24 0.905 0.760 0.514 0.261 0.105

3 Oral candidiasis 0.26 0.27 0.902 0.754 0.506 0.254 0.102

3 Constipation 0.26 0.27 0.902 0.754 0.506 0.254 0.102

3 Diarrhea 0.001 0.01 0.984 0.955 0.876 0.701 0.439

3 Gastroenteritis 0.50 0.50 0.900 0.750 0.500 0.250 0.100

3 Nausea 0.79 0.80 0.901 0.753 0.503 0.253 0.101

3 Vomiting 0.65 0.71 0.908 0.766 0.522 0.267 0.108

5 Lymphadenopathy 0.11 0.33 0.965 0.902 0.754 0.505 0.254

6 Dehydration 0.53 0.54 0.901 0.751 0.502 0.251 0.101

8 Crying 0.46 0.45 0.900 0.750 0.500 0.250 0.100

8 Insomnia 0.50 0.51 0.900 0.750 0.500 0.250 0.100

8 Irritability 0.04 0.0002 0.039 0.013 0.004 0.001 0.0005

9 Bronchitis 0.35 0.35 0.900 0.750 0.501 0.250 0.100

9 Nasal congestion 0.40 0.40 0.900 0.751 0.501 0.251 0.100

9 Respiratory congestion 0.57 0.57 0.901 0.752 0.502 0.252 0.101

9 Cough 0.17 0.22 0.920 0.793 0.560 0.298 0.124

9 Respiratory infection 0.15 0.19 0.918 0.788 0.554 0.293 0.121

9 Laryngotracheobronchitis 0.44 0.44 0.900 0.750 0.500 0.250 0.100

9 Pharyngitis 0.17 0.22 0.920 0.793 0.560 0.298 0.124

9 Rhinorrhea 0.48 0.56 0.913 0.777 0.537 0.279 0.114

9 Sinusitis 0.37 0.37 0.900 0.751 0.501 0.251 0.100

9 Tonsillitis 0.44 0.44 0.900 0.750 0.500 0.250 0.100

9 Wheezing 0.37 0.37 0.900 0.751 0.501 0.251 0.100

10 Bite/sting 0.13 0.15 0.912 0.776 0.536 0.278 0.114

10 Eczema 0.49 0.49 0.900 0.750 0.500 0.250 0.100

10 Pruritus 0.42 0.43 0.903 0.755 0.507 0.255 0.103

10 Rash 0.07 0.10 0.930 0.816 0.597 0.331 0.141

10 Diaper rash 0.32 0.35 0.908 0.766 0.522 0.267 0.108

10 Measles/rubella-like rash 0.10 0.13 0.919 0.792 0.559 0.297 0.123

10 Varicella-like rush 0.41 0.43 0.903 0.757 0.510 0.257 0.104

10 Urticaria 0.51 0.51 0.900 0.750 0.500 0.250 0.100

10 Viral exanthema 0.58 0.58 0.901 0.752 0.503 0.252 0.101

11 Conjunctivitis 0.52 0.52 0.900 0.750 0.500 0.250 0.100

11 Otitis media 0.43 0.16 0.767 0.523 0.267 0.108 0.039

11 Otorrhea 0.42 0.42 0.901 0.752 0.502 0.252 0.101

Table 5: The adverse effects associated with eight body systems. The columns pδ and
pδ,0 respectively show the estimate of the probability that the difference between
the treatment and control intensities is negative under the model, and under the
null hypothesis of no treatment-effects. The last five columns show the Bayesian
false discovery rate b-values for different values of the prior probabilities πi
against the null hypothesis of no treatment effect.


