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In finance, volatility is fundamentally important because it is associated
with the risk. A growing body of literature shows that risks associated with
volatility are priced in stock, option, bond, and foreign exchange markets.
Therefore, accurate estimation of the volatility is critical in financial markets.
The generalized autoregressive conditional heteroskedasticity (GARCH) has
been one of the most popular volatility models and the model parameters
are usually estimated from the conditional maximum likelihood estimation
(MLE) method. In this paper, we attempt to improve the MLE-based
GARCH forecast using the support vector machine (SVM). We also compare
the SVM-based volatility model with the two popular asymmetric volatility
models: exponential GARCH (E-GARCH) and Glosten-Jagannathan-Runkle
GARCH (GJR-GARCH). We carry out the analysis through simulations and
real datasets. The results show that the SVM-based volatility models provide
better predictive potential than the existing parametric volatility models.

Keywords: Volatility; support vector machine; financial time series; GARCH;
E-GARCH; GJR-GARCH; foreign exchange rates.

1 Introduction

Volatility modeling has been a very active and extensive research area in empirical finance
and time series economics for both academics and practitioners. Pioneer works include
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the autoregressive conditional heteroskedasticity (ARCH) of Engle (1982) and the gener-
alized autoregressive conditional heteroskedasticity (GARCH) of Bollerslev (1986). The
parameters are usually estimated from (conditional) maximum likelihood (ML) proce-
dures that are optimal if the data come from a Gaussian distribution. The popularity of
ARCH and GARCH processes comes from the fact that they have a simple model specifi-
cation and good interpretability. They have been frequently used in the parametrization
of conditional heteroskedasticity in the literature, especially, the standard GARCH(1,1)
model, which is specified as

σ2t = ω + αy2t−1 + βσ2t−1, (1)

where ω, α, and β are positive values. Gokcan (2000) showed that GARCH(1,1) model
outperformed exponential GARCH model when applied to the monthly stock market
returns of seven emerging countries. Hansen and Lunde (2005) compared GARCH(1,1)
with 330 ARCH-type models and found no evidence that it is outperformed by more
sophisticated models. Furthermore, GARCH(1,1) has been used as a benchmark model
for more complicated model specifications.

Despite the popularity and wide applicability, the GARCH model suffers from several
weaknesses and drawbacks. Nelson (1991) criticized the GARCH model in three aspects:
(1) parameters are restricted to be positive at every time point; (2) it fails to accom-
modate the asymmetry effect (or leverage effect); and (3) measuring the persistence of
the shocks on volatility is difficult. Nelson (1991) proposed the exponential GARCH
(E-GARCH), which accommodates the drawbacks of a standard GARCH model. The
first-order E-GARCH, or E-GARCH(1,1), process specifies the model as

logσ2t = ω + g(εt−1) + βlog
(
σ2t−1

)
, (2)

where g(εt−1) = αεt−1 + γ(|εt−1| − E|εt−1|). For standard normal random variable εt,
E(|εt|) =

√
2/π and

E(|εt|) =
2
√
v − 2Γ[(v + 1)/2]

(v − 1)Γ(v/2)
√
π

for t-distribution random variable with v degrees of freedom. Unlike the GARCH model,
the E-GARCH model relaxes the positivity restriction by using the logged conditional
variance and responds asymmetrically to positive and negative shocks. However, E-
GARCH(1,1) with normal errors does not adequately characterize the process with high
kurtosis and slowly decaying autocorrelations. One can find more details from Malmsten
and Terasvirta (2004).

Another popular volatility model that asymmetrically treats both positive and nega-
tive shocks on the volatility is the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH)
model of Glosten, Jagannathan, and Runkle (1993). GJR-GARCH(1,1) model is defined
as

σ2t = ω + αy2t−1 + γIt−1y
2
t−1 + βσ2t−1, (3)

where It is an indicator function taking the values of 1 for yt ≤ 0 and 0 otherwise and
ω, α, γ, and β are positive values. This model is often called the threshold GARCH (T-
GARCH) model in the literature. The main feature of this model is that a negative shock
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has a larger impact than a positive shock and hence, it captures the leverage effect. Like
the GARCH model, the GJR-GARCH model captures the volatility clustering. Also,
it can be shown that the unconditional distribution presents excess kurtosis even under
the Gaussian distribution.

The aim of this paper is to examine the predictability of volatility using support vector
machine (SVM) and compare its performance with aforementioned parametric volatil-
ity models: GARCH(1,1), E-GARCH(1,1), and GJR-GARCH(1,1). A few attempts
have been made to estimate the volatility using support vector machine, which showed
evidence of improved performances. Perez-Cruz et al. (2003) used the support vec-
tor machine to estimate the GARCH parameters and compared with that of maximum
likelihood estimates. Chen et al. (2010) proposed SVM-based GARCH model and
compared with simple moving average, standard GARCH, nonlinear EGARCH and tra-
ditional ANN-GARCH models. Ou and Wang (2010) compared the least square support
vector machine with the classical GARCH(1,1), E-GARCH(1,1), and GJR-GARCH(1,1)
models to forecast the financial volatilities using three major ASEAN stock markets.

The remainder of this paper is organized as follows. Section 2 gives a description of the
support vector machine in a regression setting. In Section 3, we conduct the simulation
study and report its result and section 4 considers the six major foreign exchange rates
as real-data examples. Section 5 concludes.

2 Theory of SVM for Regression

In a support vector machine (SVM), we first consider a training dataset (xt, yt), where
xt ∈ Rp, yt ∈ R1, and t = 1, ..., n. In a context of time series analysis, xt is the set
of lagged values of yt. That is, xt = (yt−1, yt−2, ..., yt−p). We assume that the data are
generated from a function

yt = f(xt) + et, (4)

in which f can be approximated by

f(xt) = w′φ(xt) + b, (5)

where φ(·) is a nonlinear transformation to a higher dimension space. That is, xt ∈ Rp 7→
φ(xt) ∈ Rq for p ≤ q. Proposed by Vapnik (1995), we consider a linear ε-insensitive loss
function defined by

Lε =

{
|y − f(xt)| − ε, |y − f(xt)| ≥ ε
0, otherwise.

This loss function does not penalize errors below ε. It indicates that the training data
within the ε-tube have no loss and do not provide any information for decision. Hence,
the function f(xt) is constructed only through those data points located on or outside
the ε-tube. The computation of SVM is greatly simplified because of this property of
sparseness, which results from the ε-insensitive loss function.
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The non-negative slack variables, ξt and ξ∗t are introduced to describe the ε-insensitive
loss and the constrained optimization problem is as follows

min
w,b,ξi,ξ∗i

[
1

2
‖w‖2 + C

n∑
t=1

(ξt + ξ∗t )

]
subject to

yt −w′φ(xt)− b ≤ ε+ ξt (6)

w′φ(xt) + b− yt ≤ ε+ ξ∗t (7)

ξt, ξ
∗
t ≥ 0. (8)

The slack variables, ξt and ξ∗t , deal with the samples with prediction error greater than ε
and C is the penalty parameter. This problem can be solved by introducing constraints
(6)-(8) using the Lagrange multipliers that leads to the minimization of

LP =
1

2
‖w‖2 + C

n∑
t=1

(ξt + ξ∗t )

−
n∑
t=1

αt(ε+ ξt − yt + w′φ(xt) + b)−
n∑
t=1

µtξt

−
n∑
t=1

α∗t (ε+ ξ∗t + yt −w′φ(xt)− b)−
n∑
t=1

µ∗t ξ
∗
t

with respect to w, b, ξt, and ξ∗t and maximization with respect to the Lagrange multi-
pliers, αt, α

∗
t , µt, and µ∗t . By computing Karush-Kunh-Tucker (KKT) (Fletcher (1987))

conditions, we have

∂Lp
∂w

= w−
n∑
t=1

(αt − α∗t )φ(xt) = 0,

∂Lp
∂b

=

n∑
t=1

(αt − α∗t ) = 0,

∂Lp
∂ξt

= C − αt − µt = 0,

∂Lp
∂ξ∗t

= C − α∗t − µ∗t = 0,

αt[ε+ ξt − yt + w′φ(xt) + b] = 0,

α∗t [ε+ ξ∗t −w′φ(xt)− b+ yt] = 0,

µtξt = 0, and µ∗t ξ
∗
t = 0,

where αt, α
∗
t , µt, µ

∗
t ≥ 0. These conditions lead to the maximization of

L = ε

n∑
t=1

(αt + α∗t )−
n∑
s=1

n∑
t=1

(αs − α∗s)(αt − α∗t )φ′(xs)φ(xt). (9)
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with subject to 0 ≤ αt, α∗t ≤ C. Quadratic programming schemes (Schölkopf and Smola
(2001)) can be used to solve this problem and, in solving (9), we need to know the
reproducing kernel in Hilbert Space (RKHS) κ(xs,xt) = φ′(xs)φ(xt). Some widely
used kernels are

(Linear) κ(xs,xt) = x′sxt, (10)

(Polynomial) κ(xs,xt) = (x′sxt + 1)d, (11)

(Radial basis function) κ(xs,xt) = exp(−‖xs − xt‖2/(2σ2)), (12)

where d = 1, 2, 3, ..., and σ > 0. Note that the parameter ε in (9) can be useful if we can
specify the accuracy of the approximation beforehand. However, since ε heavily depends
on data, it is very hard to choose a priori a good value, which may make the SVM
regression difficult. In our analysis, we used ν-SVM regression, called ν−SVR, to avoid
this difficulty, which basically replaces ε with ν ∈ (0, 1). ν represents an approximate
proportion of the support vectors and hence, it gives the complexity of the machine.
One can refer to Schölkopf and Smola (2001) for more details.

We fix the value of C to be 1 for all simulations and real datasets since the solution
is not sensitive to this parameter. The value of ν was determined by the fivefold cross
validation. We divided the dataset into five disjoint sets and used four of them to train
several machines with different values for ν. The fifth set was to used to compute the
validation error of each machine for each specific value of ν. The values that we chose
were ν = {0.1, 0.2, ..., 0.9}. This process was repeated four times. We used the value of
ν that gave us the minimum error.

3 Simulation Studies

The aim of this section is to investigate the proposed method through simulations. We
assume that the return series yt come from a data generating process (DGP)

yt = σtεt, (13)

for t = 1, ..., n. The innovation series εt are identical and independent random variables
with mean 0 and variance τ2. The mean function can be included and estimated but
we do not consider this in our current work. We chose the distributions of εt to be the
standard normal and t-distribution with 3 degrees of freedom in our simulations.

The latent variable σt in (13) is called the volatility in finance and it cannot be
measured in practice. Following Perez-Cruz et al. (2003), we measure σ2t as a moving
average of the four-lagged squared return series. That is,

σ̂2t =
1

5

4∑
k=0

y2t−k.

Hence, we can estimate the volatility under the GARCH(1,1)-framework given by

σ̂2t = ω + αy2t−1 + βσ̂2t−1. (14)
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Table 1: Average values of MADE from 50 independent simulations from each model.
The standard deviations are in the parentheses.

In-sample MADE Out-of-sample MADE

Model ω α1 α2 β1 β2 Method n=500 n=1000 n=500 n=1000

N(0,1) 0.1 0.1 0.05 0.01 0.01 GARCH 0.028(0.009) 0.029(0.008) 0.043(0.009) 0.039(0.004)

E-GARCH 0.059(0.074 ) 0.031(0.015) 0.051(0.060) 0.031(0.010)

GJR-GARCH 0.039(0.015) 0.030(0.013) 0.039(0.015) 0.033(0.011)

GARCH-SVM(linear) 0.026(0.006) 0.027(0.005) 0.024(0.009) 0.027(0.001)

GARCH-SVM(poly.) 0.027(0.004) 0.028(0.003) 0.025(0.010) 0.025(0.009)

GARCH-SVM(radial) 0.028(0.006) 0.029(0.004) 0.026(0.009) 0.031(0.008)

N(0,1) 0.1 0.1 0.08 0.1 0 GARCH 0.041(0.008) 0.039(0.007) 0.049(0.011) 0.042(0.010)

E-GARCH 0.038(0.010) 0.038(0.008) 0.040(0.013) 0.039(0.009)

GJR-GARCH 0.043(0.021) 0.040(0.013) 0.040(0.019) 0.041(0.018)

GARCH-SVM(linear) 0.032(0.006) 0.032(0.005) 0.038(0.009) 0.038(0.008)

GARCH-SVM(poly.) 0.033(0.008) 0.030(0.003) 0.039(0.013) 0.039(0.013)

GARCH-SVM(radial) 0.036(0.007) 0.032(0.004) 0.041(0.008) 0.039(0.005)

N(0,1) 0.1 0.1 0 0.2 0.05 GARCH 0.051(0.021) 0.058(0.018) 0.048(0.020) 0.049(0.018)

E-GARCH 0.058(0.018) 0.057(0.028) 0.064(0.039) 0.061(0.029)

GJR-GARCH 0.061(0.020) 0.048(0.011) 0.051(0.033) 0.050(0.031)

GARCH-SVM(linear) 0.033(0.009) 0.032(0.004) 0.034(0.008) 0.033(0.005)

GARCH-SVM(poly.) 0.034(0.008) 0.030(0.006) 0.039(0.008) 0.039(0.007)

GARCH-SVM(radial) 0.040(0.010) 0.037(0.010) 0.041(0.011) 0.040(0.009)

N(0,1) 0.1 0.1 0 0.2 0 GARCH 0.034(0.009) 0.032(0.006) 0.041(0.012) 0.040(0.008)

E-GARCH 0.158(0.315) 0.049(0.012) 0.061(0.077) 0.058(0.038)

GJR-GARCH 0.061(0.041) 0.044(0.020) 0.058(0.031) 0.051(0.030)

GARCH-SVM(linear) 0.030(0.008) 0.030(0.005) 0.036(0.008) 0.035(0.004)

GARCH-SVM(poly.) 0.030(0.009) 0.031(0.006) 0.037(0.009) 0.037(0.007)

GARCH-SVM(radial) 0.033(0.007) 0.034(0.007) 0.039(0.011) 0.039(0.008)

t(3) 0.1 0.05 0.01 0.2 0.1 GARCH 0.365(0.145) 0.349(0.129) 0.364(0.137) 0.347(0.109)

E-GARCH 0.712(1.461) 2.716(11.768) 0.567(0.765) 1.224(3.630)

GJR-GARCH 0.384(0.156) 0.345(0.116) 0.476(0.227) 0.691(1.227)

GARCH-SVM(linear) 0.050(0.016) 0.054(0.019) 0.055(0.022) 0.057(0.021)

GARCH-SVM(poly.) 0.051(0.017) 0.055(0.023) 0.054(0.023) 0.060(0.031)

GARCH-SVM(radial) 0.053(0.016) 0.056(0.017) 0.055(0.019) 0.058(0.019)

t(3) 0.1 0.05 0.09 0.1 0 GARCH 0.308(0.197) 0.335(0.177) 0.304(0.144) 0.310(0.086)

E-GARCH 0.830(2.070) 1.334(4.832) 1.346(3.755) 24.480(120.145)

GJR-GARCH 0.297(0.147) 0.347(0.237) 0.399(0.531) 0.352(0.153)

GARCH-SVM(linear) 0.074(0.046) 0.077(0.035) 0.081(0.033) 0.080(0.024)

GARCH-SVM(poly.) 0.076(0.053) 0.081(0.036) 0.086(0.039) 0.084(0.032)

GARCH-SVM(radial) 0.074(0.039) 0.083(0.043) 0.080(0.031) 0.085(0.027)

t(3) 0.1 0.05 0 0.2 0.03 GARCH 0.331(0.259) 0.285(0.088) 0.300(0.161) 0.281(0.067)

E-GARCH 0.948(2.269) 0.476(0.569) 51.871(243.676) 93.017(424.247)

GJR-GARCH 0.348(0.271) 0.288(0.093) 0.302(0.129) 0.317(0.113)

GARCH-SVM(linear) 0.042(0.028) 0.038(0.013) 0.041(0.015) 0.038(0.011)

GARCH-SVM(poly.) 0.044(0.031) 0.038(0.012) 0.044(0.019) 0.038(0.012)

GARCH-SVM(radial) 0.047(0.030) 0.039(0.013) 0.045(0.017) 0.038(0.010)

t(3) 0.1 0.05 0 0.2 0 GARCH 0.257(0.105) 0.297(0.085) 0.264(0.092) 0.296(0.080)

E-GARCH 0.339(0.224) 0.246(0.059) 0.432(0.476) 0.269(0.082)

GJR-GARCH 0.264(0.109) 0.330(0.153) 0.284(0.119) 0.347(0.166)

GARCH-SVM(linear) 0.034(0.013) 0.038(0.015) 0.037(0.015) 0.037(0.013)

GARCH-SVM(poly.) 0.033(0.013) 0.036(0.013) 0.037(0.013) 0.037(0.017)

GARCH-SVM(radial) 0.037(0.012) 0.041(0.016) 0.039(0.012) 0.039(0.013)
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The parameters ω, α, and β are then estimated from the SVM regression. From this
point on, we denote this model as GARCH-SVM.

We generate random samples from GARCH(2,2) model that is defined by

σ2t = ω + α1y
2
t−1 + α2y

2
t−2 + β1σ

2
t−1 + β2σ

2
t−2.

When α2 = β2 = 0, the model reduces to GARCH(1,1) model. The parameters from this
model are usually estimated from the conditional Gaussian likelihood function. When
underlying distribution is not Gaussian, the estimators are called the quasi-maximum
likelihood estimator (QMLE). Bollerslev and Wooldridge (1992) examined the properties
of QMLE for conditional means and conditional covariances. Under the GARCH models,
they showed that the estimates are consistent and the bias is relatively small.

We compared the GARCH-SVM with the existing parametric volatility models by
using both in-sample and out-of-sample performance measures. We used the standard
normal distribution and t-distribution with 3 degrees of freedom. Rydberg (2000) noted
that fat tails exists in many financial data. The t-distribution will take this into account
to reflect this stylized fact.

As an accuracy measure, we used the mean absolute deviance error (MADE) defined
by

MADE =
1

n

n∑
t=1

|σ̂2t − σ2t |.

Table 1 gives the results from simulations. A bold print indicates the best model in each
case. It is clear that GARCH-SVM outperforms the other existing volatility models. It
it also notable that E-GARCH performs poorly in a few cases under t-distribution and
this may be due to the fact that the underlying volatility is GARCH(2,2).

4 Real Data Examples

In this section, we examine the predictive potential for GARCH-SVM using six daily
exchange rates. We consider the daily exchange rates of six major currencies against
US dollars. These currencies are Euro (EUR), Japanese yen (JPY), Pound sterling
(GBP), Australian dollar (AUD), Swiss franc (CHF), and Canadian dollar (CAD). We
analyze the most traded pairs of currencies, which are called the Majors. The Majors
are EUR/USD, GBP/USD, USD/JPY, AUD/USD, USD/CAD, and USD/CHF. Except
for the EUR/USD pair, the exchange rates start from January 4, 1971 and ends at June
14, 2013. Since the Euro was introduced on January 1, 1999 in the financial market, the
EUR/USD data set starts from January 4, 1999. All the data sets can be obtained from
the website

http://research.stlouisfed.org/fred2/categories/158.

Several numerical summaries for the exchange rate return series are given in Table 2. It
is noticeable that the skewness and kurtosis are very high in AUD/USD. This indicates
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Table 2: Numerical summary for the return series.

Exchange Rate n Min Median Mean Max Std Skewness Kurtosis

EUR/USD 3635 -0.046 0.000 0.000 0.030 0.006 -0.115 2.058

GBP/USD 10656 -0.046 0.000 0.000 0.0497 0.006 0.199 4.736

USD/JPY 10650 -0.063 0.000 0.000 0.095 0.007 0.695 9.793

AUD/USD 10649 -0.011 0.000 0.000 19.25 0.007 3.002 86.112

USD/CAD 10662 -0.038 0.000 0.000 0.051 0.004 0.090 12.449

USD/CHF 10656 -0.089 0.000 0.000 0.050 0.007 -0.129 5.425

Figure 1: Time series plots for raw exchange rate data

Figure 2: Time series plots for return series
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Figure 3: ACF for squared return series

that the return series are right-skewed and the distribution of the series may have fat
tails. The time series plots of raw and return series datasets are also shown in Figures 1
and 2, respectively. Figure 3 shows the autocorrelation function (ACF) for the squared
return series in each dataset. Except for AUD/USD, it is clear that the the squared
series seem to be serially correlated.

Recall that yt = σtεt and εt has mean 0 and variance 1. Therefore,

E(y2t ) = E[E(y2t |Ft−1)] = E[E(σ2t ε
2
t |Ft−1)] = σ2t ,

where Ft denotes the past financial information up to time t. Using this fact and since
the true squared volatility σ2t is unknown when we deal with the actual datasets, we use
the squared series y2t as a proxy for the squared volatility. Hence, we measure MADE
by

MADE =
1

n

n∑
t=1

|σ̂2t − y2t | =
1

n

n∑
t=1

at

where at = |σ̂2t − y2t |. As another measure of accuracy, we use the directional accuracy
(DA) defined by

DA =
1

n

n∑
t=1

dt, (15)

where

dt =

{
1, if (y2t − y2t−1)(σ̂2t − σ̂2t−1) > 0,

0, otherwise.

The DA gives the average direction of the forecast volatility by measuring the correctness
of the turning point forecasts.

We report the results in Table 3. It is clear that GARCH-SVM outperforms the
existing GARCH models. To test for forecasting accuracy, we carried out the one-
sided Diebold and Mariano (DM) test proposed by Diebold and Mariano (1995). The
underlying hypotheses associated with this test are
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Table 3: In-sample and out-of-sample measures are shown.

In-sample Out-of-sample

Dataset Method MADE DA MADE DA

EUR/USD GARCH(1,1) 4.210e-05 0.272 4.751e-05 0.286

E-GARCH(1,1) 4.220e-05 0.246 4.723e-05 0.260

GJR-GARCH(1,1) 4.208e-05 0.272 4.748e-05 0.282

GARCH-SVM(linear) 3.861e-05 0.337 4.106e-05 0.323

GARCH-SVM(poly.) 3.856e-05 0.415 4.089e-05 0.432

GARCH-SVM(radial) 3.891e-05 0.375 4.139e-05 0.394

GBP/USD GARCH(1,1) 4.062e-05 0.310 4.021e-05 0.278

E-GARCH(1,1) 4.003e-05 0.278 4.054e-05 0.265

GJR-GARCH(1,1) 4.066e-05 0.310 4.027e-05 0.276

GARCH-SVM(linear) 3.459e-05 0.391 3.424e-05 0.390

GARCH-SVM(poly.) 3.493e-05 0.399 3.420e-05 0.414

GARCH-SVM(radial) 3.468e-05 0.392 3.447e-05 0.389

USD/JPY GARCH(1,1) 5.021e-05 0.312 4.718e-05 0.279

E-GARCH(1,1) 2.024e-01 0.289 4.999e-05 0.257

GJR-GARCH(1,1) 5.018e-05 0.317 4.686e-05 0.283

GARCH-SVM(linear) 4.196e-05 0.395 3.927e-05 0.398

GARCH-SVM(poly.) 4.084e-05 0.532 3.922e-05 0.558

GARCH-SVM(radial) 4.191e-05 0.392 3.944e-05 0.399

AUD/USD GARCH(1,1) 4.626e-05 0.301 7.609e-05 0.270

E-GARCH(1,1) 7.859e-04 0.299 7.384e-05 0.312

GJR-GARCH(1,1) 4.509e-05 0.300 7.603e-05 0.270

GARCH-SVM(linear) 3.746e-05 0.470 7.349e-05 0.518

GARCH-SVM(poly.) 3.700e-05 0.528 7.422e-05 0.525

GARCH-SVM(radial) 3.695e-05 0.377 7.196e-05 0.410

USD/CAD GARCH(1,1) 7.245e-06 0.302 3.969e-05 0.281

E-GARCH(1,1) 7.100e-06 0.280 3.622e-05 0.262

GJR-GARCH(1,1) 7.224e-06 0.308 3.931e-05 0.281

GARCH-SVM(linear) 6.171e-06 0.397 3.476e-05 0.384

GARCH-SVM(poly.) 6.229e-06 0.459 3.867e-05 0.398

GARCH-SVM(radial) 6.175e-06 0.390 3.498e-05 0.391

USD/CHF GARCH(1,1) 6.212e-05 0.297 5.745e-05 0.284

E-GARCH(1,1) 5.932e-05 0.276 5.573e-05 0.264

GJR-GARCH(1,1) 6.200e-05 0.301 5.718e-05 0.288

GARCH-SVM(linear) 5.237e-05 0.410 4.734e-05 0.403

GARCH-SVM(poly.) 5.284e-05 0.545 4.798e-05 0.534

GARCH-SVM(radial) 5.258e-05 0.380 4.741e-05 0.368
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Table 4: Diebold-Mariano (DM) test. The entries are the p-values from the test.

Dataset Method GARCH EGARCH GJR Linear Poly. Radial

EUR/USD GARCH 0.07163 0.1765 0.000 0.000 0.000

EGARCH 0.9284 0.9293 0.000 0.000 0.000

GJR 0.8235 0.07075 0.000 0.000 0.000

Linear 1 1 1 0.0109 0.9255

Poly. 1 1 1 0.9891 0.9768

Radial 1 1 1 0.0745 0.0232

GBP/USD GARCH 0.8823 0.9918 0.000 0.000 0.000

EGARCH 0.1177 0.1701 0.000 0.000 0.000

GJR 0.008224 0.8299 0.000 0.000 0.000

Linear 1 1 1 0.3466 0.9922

Poly. 1 1 1 0.6534 0.9510

Radial 1 1 1 0.0078 0.0490

USD/JPY GARCH 1 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000

GJR 1 1 0.000 0.000 0.000

Linear 1 1 1 0.3662 0.9809

Poly. 1 1 1 0.6338 0.888

Radial 1 1 1 0.01907 0.112

AUD/USD GARCH 0.0051 0.3423 0.0665 0.1379 0.0070

EGARCH 0.9949 0.9964 0.3859 0.6249 0.0480

GJR 0.6577 0.0036 0.0630 0.1365 0.0056

Linear 0.9336 0.6141 0.9370 1 0.000

Poly. 0.8621 0.3751 0.8635 0.000 0.000

Radial 0.9930 0.952 0.9944 1 1

USD/CAD GARCH 0.000 0.000 0.000 0.2539 0.000

EGARCH 1 1 0.0019 0.9474 0.0101

GJR 1 0.000 0.000 0.3384 0.000

Linear 1 0.9981 1 0.9957 0.9751

Poly. 0.7461 0.0526 0.6616 0.0043 0.0063

Radial 1 0.9899 1 0.0249 0.9937

USD/CHF GARCH 0.000338 0.006824 0.000 0.000 0.000

EGARCH 0.9997 0.9996 0.000 0.000 0.000

GJR 0.9932 0.0003534 0.000 0.000 0.000

Linear 1 1 1 0.8307 0.7496

Poly. 1 0.1675 0.1183 0.1439 0.1441

Radial 0.4776 0.01037 0.2923 0.3504 0.8559
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H0 : E(at)row = E(at)column vs. H1 : E(at)row > E(at)column,

where at = |σ̂2t − y2t |.
Table 4 gives the results from this DM test. Each p-value in the table indicates the

significance of the model in the row versus the model in the column. For each dataset in
the table, we are particularly interested in the upper triangle of the matrix, especially,
the bold and highlighted p-values. We can see that GARCH-SVM forecasts are better
than GARCH, E-GARCH, and GJR-GARCH except for AUD/USD and USD/CAD
datasets. This may result from the fact that these two datasets have high kurtosis.
However, the radial basis kernel function seems to accommodate this and the GARCH-
SVM significantly outperforms in all datasets.

5 Conclusion

In this paper, we attempted to estimate the volatility using the support vector ma-
chine based on GARCH(1,1)-framework. Overall, this attempt was successful in both
simulations and real data examples. Empirical studies have shown that heavy-tailed
distribution is evident in many financial time series datasets. To account for this, we
used the t-distribution with 3 degrees of freedom. We noted that GARCH-SVM works
pretty well under the heavy-tailed distribution as wells as the normal distribution.

We used six different foreign exchange rate datasets to examine the GARCH-SVM
model and we noted that polynomial-based GARCH-SVM significantly gives better pre-
dictive potential in four out of six datasets; the linear-based model gives better potential
in five out of six datasets; the radial basis gives better potential in all six datasets. While
there is no literature on selecting an optimal kernel function, we found that if the dataset
has a very high kurtosis the radial basis function works the best.
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