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Correspondence analysis (CA) is a statistical visualization method for
picturing the association between the levels of categorical variables (CVs).
Specifically, simple and multiple correspondence analysis (MCA) is used to
analyze two-way and multiway data respectively. Biplots play an impor-
tant role in visualization of association. This paper overviews the popular
approaches of MCA and discusses the role of biplots in CA. We discuss the-
oretical issues involved in different methods of MCA and demonstrate each
of these methods through examples. The main aim of the present paper is
to highlight the importance of MCA based on separate SVDs. We study the
association pattern in mother-child behavior over time, using MCA based on
separate SVDs.

keywords: Simple Correspondence analysis, Multiple Correspondence Anal-
ysis, Biplot, Multi-way contingency table.

1 Introduction

CA have numerous applications in various disciplines, such as archaeology, ecology, med-
ical and health sciences, social sciences, psychological behavior, etc. The use of CA and
MCA is well established in behavioral and social science research for understanding
relationships between two or more CVs. Nowadays, in many scientific investigations, in-
cluding sensory evaluation, market research and customer satisfaction evaluations, etc.,
questionnaires and survey results in a large number of responses to questions with a
limited number of answer categories and the aim is to study the behavioral approach
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of individuals as per their responses. Virtually every research project categorizes some
of its observations into neat, little distinct bins: male or female; marital status; broken
or not broken; and so on. The data by categories is recorded as counts, i.e. how many
observations fall into a particular bin. The explosion in the development of methods for
analyzing such type of categorical data began in the 1960s and has continued apace in
recent years. The aim of the categorical data analysis is to study the association between
the CVs. Many methodologies have been discussed in literature to study the association
between CVs, one such popular method is CA. CA is widely used in different fields such
as ecology, archaeology, various disciplines of the sciences, etc. Karl Pearson and R.A.
Fisher were central to the original statistical development of the tools needed to perform
CA.

The numerical and graphical analysis of the association between CVs has a long and
interesting history. Chi-square statistic is used to test the significance of the association
between the CVs. If there is a statistically significant association between CVs, then
the nature of the association may be studied by performing CA. CA is a technique that
allows a user to graphically display the row and column categories and provides a visual
inspection of their “correspondences” or associations, at a categorical level. The core of
CA was established in 1963 and then combined with clustering methods. It is originally
introduced by Bnzecri (1969). A Systematic developments in CA is given by Beh (2004).
Beh and Lombardo (2012) described the growth of CA from an international perspective.

There are many introductory discussions on some of the key aspects of CA. Although
the literature overview of CA and MCA given by the many researchers is very good, but
are frequently too technical. Therefore, our approach is to discuss briefly on the technical
details of different approaches to MCA and simultaneously focus on the concepts and
applications of MCA for the extensive understanding. The main focus is on conceptual
understanding and applications of MCA methods to social and behavioral sciences data
to encourage researchers to use MCA. The purpose of this paper is to specifically discuss
applications of various methods of MCA to behavioral data.

This paper is organized as follows. In Section 2, we discuss the concept of biplot and
its application in CA. In Section 3, The method of SCA and popular approaches to
perform MCA are discussed. We demonstrate each approach of MCA through examples
in Section 4. Finally, we discuss the applications of CA/MCA with computational issues
in Section 5.

2 Biplot

A human can inspect two-dimensional presentations or three-dimensional structures eas-
ily. Viewing objects in more than three-dimensions has seemed beyond the scope of
human perception. More often, we have the data where the rows of the data matrix
are usually observed sampling units such as individuals, countries, demographic groups,
locations, cases, objects, etc. and the columns are variables describing the rows such as
responses to a questionnaire, economic indicators, product purchased, environmental pa-
rameters, genetic markers, etc. In such situations, the researchers are mainly interested
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to visualize the data in low-dimensional plots, especially in two-dimensional. Biplot is
such type of exploratory graph and is a generalization of the simple two-variable scatter
plot.

Biplot was originally proposed by Gabriel (1971) in a principal component analysis. It
is a graphical display of the rows and columns of a data matrix as points (or, equivalently,
as vectors) in a low-dimensional Euclidean space, usually of dimensionality two or three.
The points have specific interpretations in terms of scalar products. The idea is to
recover individual element of the data matrix approximately through the scalar products.
Geometrically, the scalar product of x = (x1, x2, ..., xk)

T and y = (y1, y2, ..., yk)
T is given

as follows.

xT y = ‖x‖‖y‖ cos θ

where, ‖x‖ is the norm of x and θ is angle between x and y.
To clear the concept of biplot in a very simple way, Greenacre (2010) considers the

decomposition of a 5 × 4 matrix (T ) into 5 × 2 left matrix (X) and 2 × 4 right matrix
(Y T ) as T = XY T and is given as follows.

8 2 2 −6

5 0 3 −4

−2 −3 3 1

2 3 −3 −1

4 6 −6 −2

 =


2 2

1 2

−1 1

1 −1

2 −2


(

3 2 −1 −2

1 −1 2 −1

)

The rows of the left matrix X and columns of the right matrix Y provide two sets
of points BP = {x1, x2, x3, x4, x5} and BV = {y

1
, y

2
, y

3
, y

4
}. BP considered as a set of

biplot points and BV is considered as a set of biplot vectors/biplot axes. The biplot
points when projected onto biplot axes recover the values in target matrix. Calibration
of biplot axes can be done to read off the values of the target matrix directly from
projections. Different versions of biplot are used as per the applicable area. The biplot
for the above decomposition is shown in Figure 1.

The decomposition XY T of T in the above discussion is not unique. One of the con-
venient way of obtaining a unique decomposition of T , with convenient properties, is to
use the singular value decomposition (SVD). SVD plays a fundamental role underlying
the theory and computation of biplot. This decomposition provides the coordinates of
the points and vectors in the biplot with respect to the dimensions that are ordered
from the most to the least important, so that the reduced dimension of the space that
retains the major part of the original data can be selected. Biplot based on SVD is the
same concept to visualize the data graphically in two-dimensional space. Decomposi-
tions based on SVD with different scaling of biplot point/axes lead to different versions
of biplot with different properties. The SVD of m× n matrix T is as follows.

T = UΣV T
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Figure 1: Biplot Corresponding to data matrix T

where, U and V are m ×m and n × n matrices, respectively such that UUT = Im and
V V T = In, Σ is m× n rectangular diagonal matrix of singular values σ1, σ2, ..., σr, and
r = rank(T ). This decomposition of T is used to obtain the symmetric biplot associated
with data matrix T . The first two columns of A = UΣ1/2 and B = V Σ1/2 provide
two sets of points Bp = {x1, x2, ..., xm} and BV = {y

1
, y

2
, ..., y

n
} in R2 of which BP is

considered as a set of biplot points and BV is considered as a set of biplot vectors/biplot
axes.

The basic idea of biplot is very simple and like all simple solutions to complex prob-
lems it is both powerful and useful. The biplot makes information in a table of data
transparent and revealing the main structures in the data in a methodical way. Biplots
show the following quantities of a data matrix in one display.

(i) The variance-covariance structure of the variables, i.e. the inner product between
two variables and the cosine of the angle between them approximates their corre-
lation with equality if the fit is perfect.

(ii) It explores the relationship (interrelationship) among (between) rows and columns.

(iii) The Euclidean distances between observations in the multidimensional space is
also shown.

Interpretations from biplot

(i) Angle between the biplot points
The cosine of the angle between the lines drawn to each pair of biplot axes and
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points show the correlation between the two corresponding variables (i.e. If the
angle between two row vectors is small, they have similar response patterns over
columns whereas if the angle between two column vectors is small, then they
are strongly associated). Thus, a small angle between two vectors indicates that
the two variables are highly correlated. While if two vectors form an angle of
900 (greater than 900) then corresponding variables are uncorrelated (negatively
correlated).

(ii) Biplot vector length
The length of the biplot vector indicates how well the variables are represented by
the graph with a perfect fit if all vectors have equal lengths. Specifically, more the
vector length, better is its discrimination ability.
Biplots play a fundamental role in the theory of CA. For this reason, the use of
biplots in a CA context has exponentially grown up over the years. The compu-
tational algorithm and some related issues of CA along with biplots are discussed
in the next section.

3 Correspondence Analysis (CA)

CA is a statistical visualization method for studying the association between the levels
of CVs. We discuss SCA and different methods of MCA in the following.

3.1 Simple CA

SCA is performed to study the association between two categorical variables. Let N be
the j1 × j2 data matrix (contingency table) with (i1, i2)

th cell entry ni1i2 , i1 = 1, 2, · ·
·, j1 and i2 = 1, 2, · · ·, j2. The data matrix is converted to the correspondence matrix
P by dividing N by its grand total n =

∑j1
i1=1

∑j2
i2=1 ni1i2 , i.e P = N

n . Let ri1 =∑j2
i2=1 pi1i2 and ci2 =

∑j1
i1=1 pi1i2 be the row and column masses (marginal),

pi1i2
ri1

and
pi1i2
ci2

be the ith1 row and ith2 column profile respectively. Let Dr = diag(r) and Dc =

diag(c) be the diagonal matrices of row and column masses respectively where r =(
r1 r2 ... rj1

)T
and c =

(
c1 c2 ... cj2

)T
. The computational algorithm to

obtain coordinates of the row and column profile with respect to the principal axes using
SVD is as follows.

(i) Calculate the matrix S of standardized residuals of order j1 × j2.

S = D
−1/2
r (P−rcT )D

−1/2
c i.e. si1i2 =

pi1i2−ri1ci2√
ri1ci2

, i1 = 1, 2, ..., j1 and i2 = 1, 2, ..., j2

(ii) Now perform SVD on S as,
S = UΣV T

where UUT = I and V V T = I, ρ = rank(S) and Σ = diag(σ1, σ2, ..., σρ, 0, ..., 0)
and σ1, σ2, ..., σρ are non-negative singular values of S in descending order.
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(iii) Calculate the total inertia of the data matrix as: intertia =
∑j1

i1=1

∑j2
i2=1 s

2
i1i2

The Chi-square statistic is calculated as: χ2 = n× intertia

(iv) Obtain the standard, principal and biplot coordinates of rows and columns as
follows.

Coordinates Rows Columns

Standard Coordinates Φ = D
−1/2
r U Γ = D

−1/2
c V

Principal Coordinates F = D
−1/2
r UΣ F = D

−1/2
r V ΣT

Biplot Coordinates F̃ = UΣγ , γ = 0, 1, 1/2 G̃ = V Σ1−γ

The columns of Φ, Γ, F ,G, F̃ , G̃ matrices are referred as the principal axes, or
dimensions, of the solution. The coordinates have different scaling and have differ-
ent interpretations. For exploring the association between two CVs, the joint map
of row and column coordinates is obtained. The variations in plots are as follows.

• Correspondence plot using standard coordinates: The correspondence
plot obtained by using row and column standard coordinates gives equal
weights to each of the dimensions and the weight associated with each di-
mension of a plot is 1. Hence, a unit principal inertia is associated with each
of the dimension.

• Correspondence plot using principal coordinates: In this plot the row
and column principal coordinates are plotted. The objective is to reflect the
strength of the association that exists between the variables. In this case, the
mth principal axis is associated with an inertia σ2m instead of unit principal
inertia.

• Biplot: The biplot coordinates are obtained by the rescaling the principal coor-
dinates, so as to provide a meaningful interpretation of the distance between
a row and a column principal coordinates in a low-dimensional space. The
advantage of using biplot is that the distance between row and column point
makes some sense, unlike the correspondence plot obtained by using principal
coordinates. For this reason, the use of biplot in a CA context has exponen-
tially grown up over the years. For more details refer Beh and Lombardo
(2014).

The interpretations related to numerical results, correspondence plot and biplot are as
follows.
Inertia: The inertia is equivalent to the statistical concept of variance. The higher
inertia score indicates a stronger model fit (i.e. large variance). The singular value in-
dicates the relative contribution of each dimension to an explanation of the inertia, or
proportion of variation, in the participant and variable profiles. The singular values can
be interpreted as the correlation between the rows and columns of the contingency table.
Chi-square statistic: The Chi-square test of independence is used to determine whether
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the association between two CVs is significant using the Chi-square statistic. For the
significant Chi-square value, the association between the two CVs is confirmed.
Biplot: The biplot visualizes the row and column points in a joint map. From the
graphical display if the row and column points are plotted close to one another, and if
the same row and column points significantly contribute to the total inertia in the SCA,
then the two CVs are concluded to be associated.

The method of SCA, which studies the association between only two CVs, is extended
to MCA. MCA explores the association between more than two CVs. We discuss the
method of classical MCA in the following.

3.2 Classical MCA

It is the favored approach to MCA in which multi-way contingency table is transformed
into an indicator matrix or a Burt matrix and then SCA is applied to one of them.
This approach is an extension of the SCA which allows one to analyze the pattern of
relationships among several categorical dependent variables. We first introduce notations
involved in MCA.

Consider a study which consists of n records on p CVs. Let jk be the number of
categories of kth CV, k = 1, 2, ..., p and Xk be the n× jk indicator matrix with (i1, i2)

th

element 1(0) if ith1 individual or unit is (is not) classified into ith2 category of that CV.

Then n × J matrix X =
[
X1 X2 ... Xp

]
is called super-indicator matrix where,

J =
∑p

k=1 jk. The J × J matrix B = XTX plays an important role in performing
MCA and is called a Burt matrix. For multi-way contingency table, the Burt matrix
B = XTX is as follows.

B =


XT

1 X1 XT
1 X2 ... XT

1 Xp

XT
2 X1 XT

2 X2 ... XT
2 Xp

...
...

. . .
...

XT
p X1 XT

p X2 ... XT
p Xp

 =


D1 XT

1 X2 ... XT
1 Xp

XT
2 X1 D2 ... XT

2 Xp

...
...

. . .
...

XT
p X1 XT

p X2 ... Dp



The Burt matrix B has a square block Dj on the diagonal where Dj is the diagonal
matrix with marginal frequencies of jth CV, j = 1, 2, ..., p. Each of the off-diagonal
submatrix is a rectangular block of a two-way contingency table associated with a pair
of CV.

Classical MCA can be performed in two ways, either by performing SCA on super-
indicator matrix X or on B. The two forms of classical MCA are discussed in the
following.

(a) Computations based on an indicator matrix
In this approach, SCA is performed on the super-indicator matrix. It gives J − p
nonzero singular values and the squared singular values represent principal inertias.
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The column and row standard or principal coordinates for the first two dimensions
are to be calculated for graphical display of the results.

(b) Computations based on Burt matrix (B)
The computation of MCA in this case is an application of the SCA algorithm to the
Burt matrix B. In this approach, the singular values represent principal inertias.
Since Burt matrix is symmetric, the standard or principal coordinates for rows
and columns are identical and hence any one of them are used to obtain graphical
association.
Some of the properties of MCA based on super-indicator matrix are related to that
of MCA based on the Burt matrix. These are listed in the following

Greenacre (2007) differentiates the properties of MCA based on super-indicator matrix
with that of MCA based on the Burt matrix. These are listed in the following.

• The standard coordinates of the rows (equivalent to columns) of Burt matrix are
identical to the standard coordinates of the columns of indicator matrix X.

• The principal inertias of the Burt analysis are the squares of those of the indicator
matrix. Hence the percentages of inertia are always going to be higher in the Burt
analysis. Actually, in Burt analysis the total inertia (inertia(B)) is the average of
the inertias of all subtables, including the offensive ones on the diagonal.

• The difference between the computation methods is that the Burt version of MCA
gives principal coordinates which are reduced in scale compared to the indicator
version, where the reduction is relatively more on the second axis compared to the
first.

In classical MCA based on Burt matrix, the percentages of inertia is artificially high
since the analysis tries to explain the inertia in the whole table with higher inertias on
the diagonal. Hence the inertia explained by the first dimension is severely underesti-
mated. Thus, the inclusion of the tables on the diagonal of the Burt matrix degrades
the whole MCA solution. To overcome this drawback Greenacre (2007) introduces JCA.
The JCA is the approach where the inflated total inertia in classical MCA is adjusted.
The details of the method are discussed in the following section.

3.3 Joint CA

In this approach, adjusted Burt matrix is considered to rectify the problem in the first
technique. In the method of classical MCA using Burt matrix, the block diagonals of
Burt matrix have extremely high inertias which lead to inflation of inertia. It is possi-
ble to improve the calculation of explained inertia by completely ignoring the diagonal
blocks in search of an optimal solution. To do this, Greenacre (1988) proposes a special
algorithm called JCA. JCA is fitting of the off-diagonal cross-tabulations of all pairs of
variables, ignoring the cross-tabulations on the block diagonal of the Burt matrix.
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The algorithm to perform JCA is an iterative algorithm which performs SCA on the
Burt matrix in such a way that attention is focused on optimizing the fit to the off-
diagonal blocks only. The method starts from the classical MCA solution and then
replaces the diagonal blocks with values estimated from the solution itself, using the
reconstitution formula (Greenacre (2007)). Then the relative frequencies of the diagonal
blocks of the Burt matrix are replaced with the estimated values which give the modified
Burt matrix. SCA is performed on the modified Burt matrix to get a new solution, from
which the diagonal blocks are replaced again with estimates from the new solution to get
a new modified Burt matrix. This process is repeated several times until convergence,
and at each iteration, the fit to the off-diagonal blocks is improved. Greenacre (1988)
summarizes the inertia components of MCA of p CVs through the inertia of diagonal
blocks and off-diagonal blocks of the Burt matrix as follows.

Total inertia of the Burt analysis: inertia(B)

Chi-square statistic for Burt analysis, χ2
(B): n× inertia(B)

Sum of inertias of p diagonal blocks: J − p

Sum of inertias of all two-way blocks: p2inertia(B) = p2
χ2
(B)

n

Sum of inertias of all off-diagonal blocks: p2
χ2
(B)

n−(J−p)

Average inertia of off-diagonal blocks: p
(p−1)

(
χ2
(B)

n −
(J−p)
p2

)
The average inertia of off-diagonal blocks of Burt matrix is nothing but the adjusted

inertia in JCA. The total inertia of the Burt matrix is artificially inflated by (J − p) in
classical MCA.

For the classical MCA or JCA, the categorical data must be in the form of super-
indicator matrix X. When more number of CVs and records are under study, it would
be difficult to construct such an indicator matrix and its size would be relatively more.
The other approach is MCA based on the separate SVDs in which multi-way contingency
table is used directly and is discussed in the following.

3.4 MCA based on Separate SVDs

Kroonenberg (2008) discusses the notion of separate SVDs for analysis of a 3-way array
of subjects by variables and by conditions. To study the association of such a 3-way
array, Kroonenberg (2008) treats it as a set of matrices and apply two-mode SVD to
each of the matrix in a set. We discuss this method in the following.

Let N be a three-way data array (contingency table) of size j1 × j2 × j3 associated
with n records on three CVs A, B and C. Let jk be the number of categories of kth

CV, k = 1, 2, 3. Let ni1i2i3 be the number of records classified into ithk category of kth
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CV, ik = 1, 2, ..., jk, k = 1, 2, 3. The corresponding 3-way contingency table can be
represented as given in Table 1.

Table 1: The representation of 3-way contingency table
Categories

of variable
C

A↓
B−→

1 2 · · · j2 1 2 · · · j2 · · · 1 2 · · · j2

1 n111 n121 · · · n1j21 n112 n122 · · · n1j22 · · · n11j3
n12j3

· · · n1j2j3

2 n211 n221 · · · n2j21 n212 n222 · · · n2j22 · · · n21j3
n22j3

· · · n2j2j3

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

.

.

.

j1 nj111 nj121 · · · nj1j21 nj112 nj122 · · · nj1j22 · · · nj11j3
nj12j3

· · · nj1j2j3

To perform classical MCA, a super-indicator matrix X of size n× J is to be obtained
using N where J =

∑3
k=1 jk. In this method, MCA is performed on N rather than the

super-indicator matrix X or the Burt matrix B = X
′
X of size J × J .

In the method of MCA based on separate SVDs, SVD is performed on each of the
frontal slice of the standardized residual matrix. We discuss the slice representation of
3-way array in the following.

A three-way array can be seen as a collection of two-way matrices, often referred as
slices or slabs. There are three different types of slices/arrangements for this and are
referred to as horizontal slices, lateral slices and frontal slices. Thus, a three-way data
array N can be visualized as an array of j1 horizontal slices (of order j2×j3) as in Figure
2(a) or an array of j2 lateral slices (of order j1 × j3) as in Figure 2(b) or an array of j3
frontal slices (of order j1 × j2) as in Figure 2(c) (Kroonenberg (2008)). We denote ith1
horizontal slice of N by N(i1, :, :), i

th
2 lateral slice of N by N(:, i2, :) and ith3 frontal slice

of N is denoted by N(:, :, i3).

Figure 2: Slices of three-way data array: Horizontal slices, Lateral slices and Frontal
slices

Particularly N in Figure 2(c) can be expressed as in Figure 3.
Thus, in the method of MCA based on separate SVDs, SVD is performed either on
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Figure 3: Representation of Frontal slices of three-way array N

the horizontal slices or on lateral slices or on the frontal slice of the standardized resid-
ual matrix. When interest is in studying the association of CVs A and B across the
categories of C, separate SVDs is to be performed on the frontal slices of standardized
residuals array. The algorithm for performing MCA based on separate SVDs on the
frontal slices is as follows.

(i) Obtain the three-way array P = ((pi1i2i3)) as P = N
n so that 0 ≤ pi1i2i3 <

1,∀(i1, i2, i3) and
∑j1

i1=1

∑j2
i2=1

∑j3
i3=1 pi1i2i3 = 1.

(ii) Obtain P̂ = ((p̂i1i2i3)) where p̂i1i2i3 = pi1..p.i2.p..i3 , ik = 1, 2, ...jk, k = 1, 2, 3.

and pi1.. =
∑j2

i2=1

∑j3
i3=1 pi1i2i3 , i1 = 1, 2, ..., j1,

p.i2. =
∑j1

i1=1

∑j3
i3=1 pi1i2i3 , i2 = 1, 2, ..., j2,

p..i3 =
∑j1

i1=1

∑j2
i2=1 pi1i2i3 , i3 = 1, 2, ..., j3.

Let r =
(
p1.. p2.. · · · pj1..

)T
be the vector of masses for CV A,

c =
(
p.1. p.2. · · · p.j2.

)T
be the vector of masses for CV B,

t =
(
p..1 p..2 · · · p..j3

)T
be the vector of masses for CV C.

(iii) Calculate the array of standardized residuals S = ((si1i2i3)) of size j1 × j2 × j3 as,

si1i2i3 =
pi1i2i3 − p̂i1i2i3√

p̂i1i2i3
, ik = 1, 2, ..., jk, k = 1, 2, 3
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Let ρi3 be the rank of ith3 frontal slice S(:, :, i3) (of size j1× j2) of S, i3 = 1, 2, ..., j3.

(iv) Application of SVD on each of the frontal slice S(:, :, i3) gives the following decom-
positions.

S(:, :, i3) = U(:, :, i3)Σ(:, :, i3)V (:, :, i3)
T , i3 = 1, 2, ..., j3,

where U(:, :, i3), V (:, :, i3) are the orthogonal matrices of size j1 × j1 and j2 × j2
respectively and Σ(:, :, i3) is the rectangular diagonal matrix of non-negative sin-
gular values σ2i31, σ

2
i32
, ..., σ2i3s of size j1 × j2.

The total inertia of the 3-way array is,

j3∑
i3=1

ρi3∑
s=1

σ2i3s =

j1∑
i1=1

j2∑
i2=1

j3∑
i2=1

S2
i1i2i3 ,

and the Chi-square statistic is,

χ2 = n

j3∑
i3=1

ρi3∑
s=1

σ2i3s.

(v) Obtain the standard and principal coordinates of biplot associated with CV A
and B across C. The standard coordinates can be obtained through the following
matrices for i3 = 1, 2, ..., j3.

Φ(:, :, i3) = D
− 1

2
r U(:, :, i3), (of size j1 × j2),

and Γ(:, :, i3) = D
− 1

2
c V (:, :, i3), (of size j2 × j1).

While the principal coordinates and biplot coordinates are calculated through the
following matrices.

F (:, :, i3) = D
− 1

2
r U(:, :, i3)Σ(:, :, i3) , (of size j1 × j2),

and G(:, :, i3) = D−frac−12c V (:, :, i3)Σ(:, :, i3)
T , (of size j2 × j1),

F̃ (:, :, i3) = U(:, :, i3)Σ(:, :, i3)
γ , (of size j1 × j2),
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and G̃(:, :, i3) = V (:, :, i3)(Σ(:, :, i3)
T )γ , (of size j2 × j1).

Now, the first two columns of F̃ (:, :, i3) and G̃(:, :, i3) give j1 pairs of principal
coordinates for CV A and j2 pairs of principal co-ordinates for CV B across ith3
category of C respectively, i3 = 1, 2, ..., j3.

(vi) To visualize the association of A and B across categories of C, plot j1j3 co-ordinates
from F̃ and j2j3 co-ordinates from G̃ to get biplot which is equivalent to superim-
position of j3 biplots for CVs A and B across each category of C (but not equivalent
to superimposing of j3 biplots obtained by performing SCA on N(:, :, i3). Since
the coordinates of all the biplots are obtained from a standardized residual array
S, we overlay the biplots to visualize the association of any pair of CVs across the
categories of other. This plot explores the association of CVs A and B across all
the categories of C.

The total inertia obtained through the MCA based on separate SVDs is less than that of
obtained through MCA based on Burt matrix. The differences in the MCA using Burt
matrix and MCA based on separate SVDs are due to the use of transformation of the
multi-way array to indicator matrix/Burt matrix in the former case. It can be observed
that the elements of Burt matrix B are sub-totals (i.e. the totals of horizontal, lateral
and frontal slices) of 3-way array N . In general, the relation between the Burt matrix
B = (bij) of size J × J and the 3-way contingency table N = (ni1i2i3) of size j1× j2× j3
is as follows. For j = 1, 2, ..., J and i ≤ j,

bij =



ni.. if i, j = 1 : j1;

n.i−j1. if i, j = j1 + 1 : j1 + j2;

n..i−(j1+j2) if i, j = j1 + j2 + 1 : j1 + j2 + j3;

ni(j−i1). if i = 1 : j1, j = j1 + 1 : j1 + j2;

ni.j−(j1+j2) if i = 1 : j1, j = j1 + j2 + 1 : j1 + j2 + j3;

n.i−j1(j−(j1+j2)) if i = j1 + 1 : j1 + j2, j = j1 + j2 + 1 : j1 + j2 + j3;

0 elsewhere.

Features of the MCA based on separate SVDs

(a) When interest is in studying the association between CV A and C (B and C)
across the categories of B(A), separate SVD on the lateral slices (horizontal slices)
of S is to be performed.

(b) It is observed that if MCA is performed for all pairs of CVs across the other CV,
then it leads to the exactly equal total inertia and similar interpretations about
the association. Hence, it is reasonable to perform MCA based on separate SVDs
on any one of the slices as per interest.
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(c) In this method, the algorithm utilizes a complete 3-way contingency table data in
its original form in the calculation of a 3-way array of standardized residuals and
performs separate SVDs on either its horizontal or lateral or frontal slices. Thus,
this algorithm is not equivalent to performing SCA for each of the horizontal or
lateral or frontal slices of the N .

Overall, the MCA based on separate SVDs allows one to study the association of any
pair of CVs across the other. Further, since separate SVDs performed on an array of
standardized residuals, the problem of inflation of total inertia as in the case of classical
MCA is overcome.

The drawback of this method is that all analyses are independent in the sense that
in no way, the SVD of one frontal slice is related to that of another frontal slice. The
separate SVDs is advantageous when there are no individual differences or when there
is no interest in the modeling terms (Kroonenberg (2008)).

The other approach to study the pairwise association between the CVs is stacking
or concatenation of multi-way table in the two-way table and is discussed in the next
subsection.

3.5 MCA based on Stacking and Concatenation

Stacking method of MCA is a moderately less popular approach and is discussed by
Weller and Romney (1990). In this approach three-way contingency table is stacked to
form a two-way contingency table. Performing MCA via stacking involves forming a two-
way contingency table from the multi-way table by placing each slice of the array on top
of each other. Depending on the association structure that the researcher is interested in
exploring, the stacking can be done. We discuss this approach for three-way contingency
table.

Let N be i1 × i2 × i3 be a 3-way contingency table. Now, the stacking can be done
in three-ways. To study the association between CVs B and C the horizontal slices
N(i1, :, :) of N are stacked into a two-way table while to study the association between
A and C, the lateral slices N(:, i2, :) of N are stacked into two-way table. If one is
interested in studying the association between A and B, the frontal slices N(:, :, i3) of
N are stacked into a two-way table. The stacking of frontal slices can be represented as



446 Khangar, Kamalja

follows.


N(:, :, 1)

N(:, :, 2)
...

N(:, :, i3)

 =



n111 n121 · · · n1j21

n211 n221 · · · n2j21
...

...
. . .

...

nj111 nj121 · · · nj1j21

n112 n122 · · · n1j22

n212 n222 · · · n2j22
...

...
. . .

...

nj112 nj122 · · · nj1j22
...

...
. . .

...

n11j3 n12j3 · · · n1j2j3
n21j3 n22j3 · · · n2j2j3

...
...

. . .
...

nj11j3 nj12j3 · · · nj1j2j3


The stacked table is a two-way contingency table to which SCA is performed.

Another type of stacking related to the Burt matrix is known as concatenation, which
is discussed by Greenacre and Blasius (1994). Concatenation is the stacking of the
bivariate marginal for two particular variables. The Burt matrix considers all three con-
catenations simultaneously, with the univariate marginals included. The demonstration
of this method is given through example in Section 4.

Techniques of MCA discussed so far consists of applying SVD to the standardized
residual matrix. The other technique is to use generalized SVD, and is discussed by
Kroonenberg (2008), Carlier and Kroonenberg (1996), Beh (1998), etc. We review the
modelling approach briefly.

3.6 The modeling approaches to CA

The approach for performing MCA using a generalization of SVD known as a model-
ing approach. There are many models of decomposition such as the PARAFAC model
propsed by Harshman (1970), the CANDECOMP model by Carroll and Chang (1970)
and Tucker 3 model by Tucker (1963), Tucker (1966) and are discussed by Beh (1998).
Thus, modeling approach is used by performing generalized SVD on three-way contin-
gency table. Beh (1998) discusses the Tucker 3 model, the CANDECOMP model, and
PARAFAC model in detail.

3.7 Ordinal CA

The SCA of a two-way contingency table is a very versatile tool to understand the
structure of the association among CVs. In cases where the variables consist of ordered
categories, there are a number of approaches that can be employed and these generally
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involve an adaptation of SVD. An alternative decomposition method has been also used
for cases where the row and column variables of a two-way contingency table have
an ordinal structure. SCA of a two-way contingency table using an amalgamation of
SVD and Bivarite Moment Decomposition (BMD) is known as ordinal SCA. A benefit
of this technique is that it combines the classical technique with the ordinal analysis
by determining the structure of the variables in terms of singular values and location,
dispersion and higher-order moments.

The major problems of SCA can be overcome by considering ordinal CA. In ordinal
CA, orthogonal polynomial are generated and it require a set of scores which reflect
the ordered structure of a set of categories. While showing categories of CV within a
variable may or may not be different, there is no clear interpretation from SCA, of how
these within-variable categories may or may not be different. The technique or ordinal
CA solve this particular problem and it was developed by Beh (1998).

Beh (1998) used Emerson (1968) orthogonal polynomials which require the input of
a scoring scheme to reflect the ordered structure of the categories. These orthogonal
polynomials used to quantify ordered variables. The method of SCA and MCA using
orthogonal polynomials visualizes the relationship between the categories, in terms of
the location, dispersion and higher order components, when the data consists of at least
one ordered CV.

The ordered CA of the symmetric association between the variables allows for a parti-
tioning of the inertia into sources of variation attributable by specific orthogonal polyno-
mials. Such a partitioning is based on the relevance and/or significance of the generalized
correlations between these polynomials. These correlations are also used to evaluate the
sources of inertia due to these polynomials.

Now, we demonstrate each of the above discussed techniques to perform MCA through
examples. The numerical results, as well as a graphical display (biplot) associated with
each of the technique, are given in the next section.

4 Applications

In this section, we apply the different approaches of MCA to the behavioral data. We
study attitude of Americans towards life according to marital status, attitude of in-
dividuals towards the abortion according to their religion and years of education and
association pattern in mother-child behavior across time using different methods of CA.
We also compare the results of MCA based on separate SVDs with that of the classical
MCA and JCA.

Example 1 A General Social Survey conducted on 995 Americans in 1993. In this
survey the individuals are classified according to their marital status and their attitude
towards life as dull, routine or exciting. The objective is to study the association between
marital status and attitude towards life. The two-way contingency table associated with
this survey is given in Table 2. We analyze this data using SCA. We develop Matlab
function to perform SCA. The details of nonzero singular values (SV), inertia and %
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Table 2: Two-way contingency table classifying 996 Americans according to their Marital
Status and Attitude towards life

Marital Status
Attitude about life

Dull Routine Exciting

Married 21 241 251

Widowed 17 54 40

Divorced 10 74 65

Separated 6 11 8

Never Married 11 79 108

of total inertia led by SCA are summarized in Table 3. While Figure 4 represents
the correspondence plot of principal coordinates which shows the pattern of association
between the marital status and attitude towards life obtained by performing SCA.

Table 3: Result of SCA

SV Inertia % of Inertia

0.1878 0.0353 89.53

0.0642 0.0041 10.47

0.0000 0.0000 0.00

Total 0.0394 100

χ2 statistic 39.242

p-value 1.5424E-08

The principal inertia along the two principal axes is 0.0394. Thus, it is a remarkably
good plot for representing the variation of row and column profiles. The association
between marital status and attitude towards life from Figure 4 can be interpreted as
follows.

• Never married individuals have exciting attitude towards life.

• Separated individuals have dull attitude towards life.

• Divorced individuals have routine attitude towards life.

Now, we use classical method of MCA, JCA, MCA based on separate SVDs and stacking
to the data in Example 2. We compare the results of all these methods.
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Figure 4: Biplot for SCA

Example 2 Consider the cross-classification of 3181 individuals about attitude to-
wards abortion, according to religion and years of formal education (data used by Böck-
enholt and Böcknholt (1990) and then by DAmbra and Amenta (2011) and D’Ambra
et al. (2012)). The summary of CVs and their categories is given in Table 4 while the
associated contingency data given in Table 5.

Table 4: Summary of CVs and their categories for Example 2

Name of the CV Categories of CV

Religion (A)
Northern Protestant (A1), Southern Protestant (A2),

Catholic (A3)

Attitude towards

abortion (B)
Positive (B1), Neutral (B2), Negative (B3)

Years of education (C) ≤ 8(C1), 9− 12(C2), ≥ 13(C3)

Table 5: Cross-classification of 3181 individuals for Example 2

Categories

of variable

C ↓
C1 C2 C3

A ↓ B → B1 B2 B3 B1 B2 B3 B1 B2 B3

A1 49 46 115 293 140 277 244 66 100

A2 27 34 117 134 98 167 138 38 73

A3 25 40 88 172 103 312 93 57 135

(a) Analysis based on Classical MCA
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We analyze this data using classical MCA and joint CA in (ca-package) of R-
software. The details of numerical results obtained by performing classical MCA
using an indicator and Burt matrix and JCA are summarized in Table 6, Table
7 and Table 8 respectively. While Figure 5, 6 and 7 represent the biplot which
shows the pattern of association between the categories of all the three CVs ob-
tained by performing classical MCA using an indicator and Burt matrix and JCA
respectively.

Table 6: Results of classical MCA using indicator matrix

SV Inertia % of Inertia

0.9505 0.9034 45.2

0.8255 0.6815 34.1

0.4508 0.2032 10.2

0.4080 0.1664 8.3

0.1738 0.0302 1.5

0.1235 0.0152 0.8

Total 2.0000 100

Figure 5: Biplot for MCA using indicator matrix

The total inertia for classical MCA using indicator matrix is 2.00 while using Burt
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Table 7: Results of classical MCA using Burt matrix

SV Inertia % of Inertia

0.9034 0.8162 60.43

0.6815 0.4644 34.38

0.2032 0.0413 3.06

0.1664 0.0277 2.05

0.0302 0.0001 0.07

0.0152 0.0002 0.02

Total 1.3499 100

χ2 statistic 4294.032

p-value 0.00

Figure 6: Biplot for MCA using Burt matrix

Table 8: Results of JCA

SV Inertia % of Inertia

0.8551 0.7313 71.3

0.5222 0.2727 26.6

Total 1.0261 97.9

χ2 statistic 3264.024

p-value 0.00
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Figure 7: Biplot for JCA

matrix it is 1.35. The percentage of inertia explained by the first principal axis
for classical MCA using Burt matrix is 60.43%, which is higher than 45.2% that
of indicator matrix. The total inertia for JCA is 1.0261 while the percentage of
inertia explained from the first principal axis is 71.3%. The total inertia of classical
MCA with indicator matrix seems to be overestimated. Overall, the association
pattern in Figure 5, Figure 6 and Figure 7 are similar and summarized as follows.

• North Protestant (A1) with less than 8 years of formal education (C1) tend to
have positive attitude (B1) towards abortion.

• South Protestant (A2) with 9-12 years of education (C2) tend to have neutral
attitude (B2) towards abortion.

• Catholic (A3) with more than 12 years of education (C3) tend to have negative
attitude (B3) towards abortion.

(b) Analysis using MCA based on Separate SVD
A 3-way array N associated with contingency data in Table 4 is of size 3× 3× 3.
Since here the objective is to study the association between the attitude towards
abortion (B) and years formal of education (C) across the religion (A), we per-
form MCA based on separate SVDs on horizontal slices of N (i.e. along B and C
across the categories of A). The horizontal slices of the 3-way array (i.e. cross-
classification matrix along its second and third dimension) can be specified as
follows.

N(:, :, 1) =

 49 293 244

46 140 66

115 277 100

 , N(:, :, 2) =

 27 134 138

34 98 38

117 167 73

,
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N(:, :, 3) =

 25 172 93

40 103 57

88 312 135


Table 9 shows details of nonzero singular values (SV), inertia and % of inertia
obtained by performing MCA based on separate SVDs while Figure 8 shows the
corresponding biplot.

Table 9: Results of MCA based on separate SVDs for Example 2 along B and C across
the categories of A

Categories

of A
SV Inertia % of Inertia Total

A1

0.1950 0.0380 41.41

41.710.0145 0.0002 0.23

0.0084 0.0001 0.08

A2

0.1733 0.0300 32.7

38.340.0714 0.0051 5.55

0.0088 0.0001 0.09

A3

0.1207 0.0146 15.86

19.950.0601 0.0036 3.93

0.0120 0.0001 0.15

Total 0.0918 100 100

χ2statistic 292.0158

p-value 4.20 E-60

The points far from the origin and close to each other are considered for interpre-
tations from the biplot since more the vector length, better is the discrimination
ability. The interest would be in pairs of categories of CVs B and C across the same
category of A. Such pairs of points are marked in ellipses. It can be seen from Fig-
ure 6 that the biplot points associated with the pairs (C3A1, B1A1), (C3A2, B1A2),
(C1A2, B3A2), (C2A2, B2A2) and (B3A3, C2A3) are close to each other and also
have more discrimination ability. For each of these points the association between
the CVs B and C across the same category of A can be interpreted as follows.

• (C3A1, B1A1) and (C3A2, B1A2): North protestants (A1) and South protestants
(A2) with more than 13 years of formal education (C3) tend to have positive
attitude (B1) towards abortion.
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Figure 8: Biplot showing association betweenB (attitude towards abortion) and C (years
of education) across A (Religion) (% of inertia explained is 99.68)

• (C1A2, B3A2): South protestants (A2) with less than 8 years of formal education
(C1) tend to have negative attitude (B3) towards abortion.

• (C2A2, B2A2): South protestants (A2) with 9-12 years of formal education (C2)
tend to have neutral attitude (B2) towards abortion.

• (B3A3, C2A3): The catholics (A3) in the study with 9-12 years of formal educa-
tion (C2) tend to have negative attitude (B3) towards abortion.

Thus, for the North Protestant and South Protestant regions, as the number of
years of formal education increases, the attitude towards abortion tend to increase
(negative to positive). Figure 8 shows the clear association between the attitude
towards abortion and years of formal education across the religion.
We perform MCA based on separate SVDs on both lateral slices (i.e. along A and
C across categories of B) and frontal slices (i.e. along A and B across categories
of C). Table 10 and Table 11 summarize the numerical results for the MCA along
A and C across the categories of B and MCA along A and B across categories of
C respectively. While Figure 9 and Figure 10 shows the pattern of association for
these cases.

The interpretations from the overlaid biplots in Figure 7 and Figure 8 are almost
equivalent as from Figure 6. Also, it can be seen that the inertia for MCA along
any pair of CVs across the other is the same. Thus, it is reasonable to perform
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Table 10: Results of MCA based on separate SVDs for Example 2 along A and C across
categories of B

Categories

of B
SV Inertia % of Inertia Total

B1

0.1919 0.0368 40.11

54.030.1059 0.0112 12.21

0.0398 0.0016 1.72

B2

0.0460 0.0021 2.31

2.820.0169 0.0003 0.32

0.0134 0.0002 0.20

B3

0.1650 0.0272 29.65

43.140.0942 0.0089 9.66

0.0593 0.0035 3.83

Total 0.0918 100 100

χ2 statistic 292.0158

p-value 4.20 E-60

Figure 9: Biplot showing association between A (religion) and C (years of education)
across B (attitude towards abortion) (% of inertia explained is 94.26)
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Table 11: Results of MCA based on separate SVDs for Example 2 along A and B across
categories of C

Categories

of C
SV Inertia % of Inertia Total

C1

0.1714 0.0294 32

37.240.0689 0.0047 5.17

0.0081 0.0001 0.07

C2

0.1038 0.0108 11.73

15.250.0565 0.0032 3.48

0.0056 0.0000 0.03

C3

0.2079 0.0432 47.07

47.520.0184 0.0003 0.37

0.0084 0.0001 0.08

Total 0.0918 100 100

χ2 statistic 292.0158

p-value 4.20 E-60

Figure 10: Biplot showing association between A (religion) and B (attitude towards
abortion) across C (years of education) (% of inertia explained is 99.82)
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MCA along any one pair of CVs. For a given situation the pair of CVs may be
chosen as per the interest of the researcher.

(c) MCA with Stacking
Continuing with Example 2, if the objective is to study the association between
the attitude towards abortion and years of education across the religion only per-
form SCA on the stacked two-way contingency table which is obtained by stacking
N(1, :, :), N(2, :, :) and N(3, :, :) of N in Table 5. The details of numerical results
are given in Table 12 and the corresponding plot is given in Figure 10. The first
and second principal axis accounts 86.48% and 13.52% of the total inertia in the
data. Thus, the plot in Figure 10 explains 100% of the total inertia. The associa-
tion between the years of formal education and attitude towards abortion can be
interpreted as follows.

Table 12: Results of MCA using stacking

SV Inertia % of Inertia

0.2435 0.0593 86.48

0.0963 0.0093 13.52

Total 0.0686 100

χ2 statistic 218.2166

p-value 1.61 E-37

• The individuals above 13 years of formal education (C3) have a positive attitude
(B1) towards abortion.

• The individuals with less than 8 years of formal education (C1) have a negative
attitude (B3) towards abortion.

• The individuals with 9-12 years of formal education (C2) have a negative attitude
(B3) towards abortion.

Here, the attitude of each religion North protestant, south protestant and catholic
is investigated towards the abortion.

Example 3 This example considers a data about 30 mother-child pairs’ behavior during
the first six months of life. This data is analyzed by Carlier and Kroonenberg (1996)
and collected by Van den Boom (1988). The data is about infant-mother pairs’ behavior
with 7 infant categories and 6 behaviors of mother across first 6 months with 143100 re-
spondents. Thus, the data set under consideration forms a three-way contingency table
of order 7× 6× 6. Out of these three variables, one variable is ordinal but is considered
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Figure 11: Biplot of MCA using Stacking

nominal. The summary of CVs and their categories is given in Table 13.
We perform MCA based on separate SVDs along A and B across the categories of C.

Table 13: Summary of CVs and their categories for Example 3

Name of the CV Categories of CV

Infant behavior (A)
Inactive (A1), Smile (A2), Look (A3), Vocalize (A4),

Explore (A5), Crying (A6), Sucking (A7)

Mother’s Behavior (B)
Other (B1), Looking (B2), Stimulating (B3),

Offering (B4), Contact (B5), Soothing (B6)

Month (C)
First Month (C1), Second Month (C2), Third Month (C3),

Fourth Month (C4), Fifth Month (C5), Sixth Month (C6)

Table 14 shows details of nonzero singular values, inertia (I) and % of inertia I, while
Figure 7 shows the corresponding biplot. The interpretations of MCA based on separate
SVDs are equivalent to those given by Carlier and Kroonenberg (1996). Further, inertia
in both the methods is equal and is 0.7513. The pairs of biplot points close to each
other, and their interpretations from Figure 7 are as follows.

• (A6Ci, B6Ci), i = 1 : 6 : When the infant is crying (A6), irrespective of month (for all
six months), mother is soothing (B6)(Marked with same colored ellipses).
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Table 14: Results of MCA based on separate SVDs for Example 3
Categories of C SV I % of I Total Categories of C SV I % of I Total

C1

0.3159 0.0998 13.28

25.57 C4

0.2451 0.0601 8.00

11.61

0.2738 0.0749 9.97 0.1252 0.0157 2.09

0.1062 0.0113 1.50 0.0778 0.0061 0.81

0.0619 0.0038 0.51 0.0467 0.0022 0.29

0.0438 0.0019 0.26 0.0438 0.0019 0.26

0.0181 0.0003 0.04 0.0360 0.0013 0.17

C2

0.3222 0.1038 13.82

20.93 C5

0.2199 0.0483 6.43

12.92

0.1604 0.0257 3.42 0.1867 0.0348 4.64

0.1261 0.0159 2.12 0.0864 0.0075 0.99

0.0924 0.0085 1.14 0.0708 0.0050 0.67

0.0484 0.0023 0.31 0.0341 0.0012 0.15

0.0311 0.0010 0.13 0.0162 0.0003 0.04

C3

0.2300 0.0529 7.04

11.32
C6

0.2705 0.0732 9.74

17.65

0.1508 0.0227 3.03 0.2047 0.0419 5.58

0.0694 0.0048 0.64 0.1087 0.0118 1.57

0.0526 0.0028 0.37 0.0615 0.0038 0.50

0.0357 0.0013 0.17 0.0407 0.0017 0.22

0.0232 0.0005 0.07 0.0181 0.0003 0.04

Total 0.7513 100 100

Figure 12: Biplot showing association between Mother-child behavior over Time)
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• (A5C5, B1C5): The infant is exploring (A5) when mother is engaged in other activities
(B1) in fifth the month (C5).

• (A1C1, B2C1) and (A1C1, B5C1): The infant is inactive (A1) when mother tends to
seek look (B2) and contact (B5) at the infant in the first month (C1).

• (A2C2, B3C2) and (A4C2, B3C2): The infant is smiling (A2) and vocalizing (A4) when
mother stimulates (B3) in the second month (C2).

• (A3C3, B1C3) and (A3C3, B5C3): The infant is looking (A3) when mother is doing
other child non-related things (B1) and contact (B5) at the infant in the third
month (C3).

• (A2C4, B3C4) and (A2C4, B4C4): The infant is smiling (A2) when the mother is stim-
ulating (B3) and offering (B4) to the infant in the fourth month (C4).

• (A7C5B1C5), (A7C5, B2C5) and (A7C5, B4C5): The infant is sucking (A7) when mother
is doing other child non-related things (B1), looking (B2) and offering (B4) to the
infant in the fifth month (C5).

• (A5C6, B1C6) and (A7C6, B1C6): The infant is exploring (A5) and sucking (A7) when
mother does other non-child related things (B1) in the sixth month (C6).

The interpretation of biplot points which are in opposite direction are as follows.

• (A1C1, B4C1): The infant is inactive (A1) in the first month (C1) then the mother not
offering (B4).

• (A1C5, B1C5): The infant is inactive (A1) in the fifth month (C5) then the mother not
engaged in the other activities (B1).

• (A1C6, B3C6): The infant is inactive (A1) in the sixth month (C6) then mother is not
stimulating (B3).

Thus, it is observed that the interpretations obtained through the overlaid biplot in
Figure 11 for MCA based on separate SVDs are equivalent to the interpretations from
joint biplot obtained using a three-way generalization of the SVD as given by Carlier
and Kroonenberg (1996).

5 Discussion

The main objective of this paper is to provide a brief overview of different approaches to
MCA and discuss its applications in the behavioral studies. We summarize the popular
approaches of MCA along with their advantages and disadvantages and demonstrate
these through examples. CA is applicable in a diverse range of situations. It has been
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beneficial in a variety of research areas such as social sciences, engineering, health sci-
ences, medicine, archeology, ecology, software development, market research, etc. Ex-
amples of the use of CA can be found in medical research (Greenacre (1992)), students’
and teachers’ cognitions about good teachers (Beishuizen et al. (2001)), higher educa-
tion institution image (Ivy (2001)), personalities (Nishisato (2014)), marketing research
(Bendixen (1996)). Considering the widespread applicability of CA, we hope that this
paper will motivate the researchers to apply this powerful tool of MCA for achieving
their research objectives in behavioral sciences.
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