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Segmentation or change point detection is a very common topic in time
series analysis, anomaly detection and pattern recognition. In Breitenberger
et al. (2017) the time series generated by sensors with 3D accelerometers
were analysed. It was noticed that such series consist of segments of in-
dependent and correlated observations. Hence the appropriate methods for
change point detection for both data types must be implemented simultane-
ously. This paper provides an auxiliary comparison analysis which we intend
to implement later for the above mentioned acceleration data. The available
methods require usually a long execution time, so that it is time-consuming
if several methods should be compared. In the framework of the present
publication we want to give additional help for detecting a suitable change
point detection method and for finding a good parameter setting. Our analy-
sis is performed on simulated time series, that are normally distributed with
constant but unknown mean and changes in variance.
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1 Introduction

In application areas like biometrics, neurology, speech recognition, agriculture, clima-
tology, finance, telecommunication systems, etc., where data samples are represented in
form of non-stationary time series, it is often necessary to segment the given series into
stationary blocks. Such a segmentation includes evaluation of the periods of stationarity
and homogeneity, identification of the change point times of some specified characteris-
tic values like mean, variance, correlation and allows to understand the similarity inside
each recognized block. The main problem of the segmentation or change point analysis
consists in defining statistical tests for detection and estimation of the change point po-
sition. The special task considered here is a multiple change point case which requires
appropriate recursive algorithms with a small evaluation time. The present change point
detection methods can be classified into two groups: retrospective (offline) and real-time
(online) methods. Real-time change point detection is very useful in robot control, where
immediate responses are required. Retrospective methods, in contrast, tend to give more
robust and accurate detections. Nowadays exist many different approaches for finding
change points. Some of these approaches use the cumulative sums (Badagián et al.,
2009; Inclán and Tiao, 1994), the ratios of probability densities (Liu et al., 2013), the
likelihood-ratio methods (Ibrahim et al., 2003; Rohrbeck, 2013), the Bayesian methods
(Ryan et al., 2007) or the standard F-Test (Tsay, 1988; Ureche-Rangau and Speeg, 2011).

This paper represents the following new results. In this study, five offline and three
online methods are compared on the basis of normally distributed time series data. All
methods – except one that is called BOCPD later – use sliding time windows, such
that only parts of the time series data have to be used for analysis. For this purpose,
we choose the window lengths 50, 200 and 500. As soon as the variances within these
intervals become too different, an alarm for a change point is given. One out of the
eight methods is new and is called HeurMeth. It should be marked that the usually
retrospective methods have been implemented for sliding time windows too. So, the
retrospective analyses are applied for each time segment independently. In our study,
we assume that we do not know the number and type of change points in the data
streams. We only know, that there are some changes in variance and we want to find
them in an online manner.

The paper is organized as follows. In section 2, we start with the definition of a
change point problem. In section 3, we will present the different change point detection
methods used in our study. In section 4, we will introduce the data generation process
for time series with one change point. Afterwards, we will display our simulation results
regarding the data sequences defined in this section. In section 5, we will make a further
case study for simulated time series with four change points instead of one change point.
After the presentation of the new data generation process, we will again show some
results concerning the comparison of different change point detection methods – for two
online methods also with an additional variance stabilizing transformation. In section
6, we confirm our results by a further simulation study that contains much more time
series with one and without any change point respectively. In section 7, we give a short
summary of the most important results. For preserving the text flow, additional figures
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can be found in the appendix.

2 The Change Point Problem

For the definition of a change point problem, we follow an earlier definition found in
Badagián (2015). Let x = {x1, x2, . . . , xn} be a given time series with m change points
at the time points t∗1, . . . , t

∗
m with 1 < t∗1 < · · · < t∗m ≤ n. The probability density

function f(xt|θ) depending on the parameter θ is of the form

f(xt|θ) =


f(xt|θ1), for 1 ≤ t ≤ t∗1 − 1,

f(xt|θ2), for t∗1 ≤ t ≤ t∗2 − 1,

. . . . . .

f(xt|θm+1), for t∗m ≤ t ≤ n,

where θ1 6= θ2 6= · · · 6= θm+1 are the variances for each block of observations. In
general, the aim consists in detection and identification of the positions t∗1, t

∗
2, . . . , t

∗
m

and estimation of the unknown parameters θi, i = 1, 2, . . . ,m+ 1.
The problem of the multiple change point detection can be formally rewritten as

hypothesis testing:

H0 : Xt ∼ f(xt|θ0), 1 ≤ t ≤ n, (1)

H1 : Xt ∼ f(xt|θ1), 1 ≤ t ≤ t∗1 − 1, Xt ∼ f(xt|θ2), t∗1 ≤ t ≤ t∗2 − 1, . . . ,

Xt ∼ f(xt|θm+1), t
∗
m ≤ t ≤ n, θ1 6= θ2 6= · · · 6= θm+1.

Now, θ corresponds to the variance of observation t.
In the present paper, the density functions f(x1|θ1), f(x2|θ2), . . . , f(xt|θm+1) belong

to a normal distribution family N (0, σ2) with zero mean, i.e. θi = σ2i and

f(xt|σ2i ) =
1√

2πσ2i

e
− x2t

2σ2
i , i = 1, 2, . . . ,m+ 1,

hence, the change point detection problem (1) is equivalent to the following hypothesis
testing:

H0 : σ21 = σ22 = · · · = σ2m+1 = σ2 (2)

H1 : σ21 = · · · = σ2t∗1−1 6= σ2t∗1 = · · · = σ2t∗2−1 6= . . .

6= σ2t∗m−1
= · · · = σ2t∗m−1 6= σ2t∗m = · · · = σ2n.

Note that within the paper we provide comparison analysis of the different change point
detection methods applied to the observations which will be regarded as independent.
Nevertheless, we intend to use additionally the methods which are normally applicable
in case of correlated data. As it was noticed in Breitenberger et al. (2017), the time
series generated by the sensors with 3D accelerometers may consist of segments with
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independent and correlated observations. Therefore, the change point detection for both
data types must be implemented simultaneously. Hence we want to propose an auxiliary
comparison analysis in order to check the quality of the different types of methods under
the assumption of independence. But to complete the picture we give some examples
for segmentation of correlated data in remark 1.

3 Change Point Detection Methods

In table 1, the different change point detection methods are listed. The methods ICM
and SIC are normally used for dependent observations. The abbreviations BSOP and
HeurMeth are not common in literature and represent abbreviations used in this pub-
lication. In the following, we shortly present the ideas of each method; the last three
methods are typical online methods.

• The first method, ICSS, uses cumulative sums of squares, which are centered and
normalized. The test statistic

M(k) =
√
n/2 max

k

{∑k
t=1 x

2
t∑n

t=1 x
2
t

− k

n

}
, 0 < k < n, (3)

behaves asymptotically like a Brownian bridge. This statistic oscillates around 0,
but if a sudden change in variance happens, it will leave some specified boundaries.
The null hypothesis is rejected when the maximum value of the function M(k) is
greater than the asymptotic critical value D∗.05 = 1.358 and the change point is
located at k̂ for which M(k) > D∗.05 and M(k̂) = maxkM(k).

• ICM algorithm searches for changes in the parameters of a RCA(1)-model (first
order random coefficient autoregressive model) defined as

xt = (φ+ bt)xt−1 + εt, where

(
bt

εt

)
∼ iid

((
0

0

)
,

(
ω2 0

0 σ2

))
. (4)

This iterative cusum method is based on ideas of the ICSS method, where

M(k) = max
k

k2

n
(θ̂k − θ̂n)Γ−1(θ̂k − θ̂n) (5)

with θ̂k = (φ̂k, ω̂
2
k, σ̂

2
k)
′, where the estimators are obtained by minimization of∑k

t=1(xt− φxt−1)2 and
∑k

t=1((xt− φ̂kxt−1)2−ω2x2t−1− σ2)2 and matrix Γ can be
estimated adequately. If M(k) > D∗, where D∗ is a critical value with 1− p level
of significance, there is a shift in the time series at time k̂. The critical value is
computed for the 0.01 significance level using simulated time series.

• The SIC method is normally applicable for the autoregressive process, e.g. for the
order 1 and one change point:

xt =

{
c1 + φ1xt−1 + εt, 1 ≤ t ≤ t∗1 − 1,

c2 + φ2xt−1 + εt, t∗1 ≤ t ≤ n.
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The method combines the binary segmentation procedure with a test statistic that
is based on Schwarz Information Criterion. In general, SIC is defined as

SIC = −2 logL(θ̂) + k log n, (6)

where L(θ̂) is the maximum-likelihood function of the model, k the number of
parameters to be estimated (free parameters) and n the sample size. Let SICH0(n)
the SIC underH0 in (2) where no change point in a data sample exists and SICH1(k)
the criterion under the assumption of a change point at t = k, 1 ≤ k ≤ n. The
rejection of H0 is based on the principle of minimum information criterion, namely
H0 is not rejected if SICH0(n) < mink SICH1(k) and is rejected otherwise. In this
case, the position of the change point t∗ is defined by k̂ in such a way that

SIC(k̂) = min
1<k<n

SICH1(k). (7)

Table 1: Variance change detection methods and their introduction in literature

Short-form Long-form of method

of method

ICSS Iterated cumulative sums of squares (Inclán and Tiao, 1994)

ICM Iterative CUSUM method (Badagián et al., 2009)

SIC Autoregressive model using Schwarz Information Criterion (Ibrahim et al., 2003)

BSOP Binary segmentation and optimal partitioning (Rohrbeck, 2013)

RuLSIF Relative unconstrained least-squares importance fitting (Liu et al., 2013)

BOCPD Bayesian online change point detection (Ryan et al., 2007)

HeurMeth Heuristic method based on moving variance differences

F-Test Fisher ratio statistic (moving variance ratios) (Tsay, 1988; Ureche-Rangau and Speeg, 2011)

• The BSOP method is based on cost functions for different segments of the sequence
and a penalty term that penalizes a high amount of change points in order to avoid
overfitting. Binary segmentation is an iterative approach for minimizing an existing
cost function by splitting into two cost functions. With optimal partitioning, a
global minimum of the minimization problem can be found. The cost function for
the given data sample is determined to

C(s, t) =
t∑
i=s

[ x2i
σ̂2(s, t)

+ log(2πσ̂2(s, t))
]
, (8)

where σ̂2(s, t) = 1
t−s
∑t

i=s x
2
i and s = 1, t = n at the beginning of the procedure.

To get a change point, first the integer value k∗ must be determined,

k∗ = arg min
k

[C(s, k) + C(k + 1, t) + log(n)], (9)

and second, it is necessary to check whether

C(s, k∗) + C(k∗ + 1, t) + log(n) < C(s, t). (10)
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• The method RuLSIF is based on non-parametric divergence estimation between
two retrospective segments. This method uses the relative Pearson divergence
(PE) as a divergence measure, which is estimated by a method of direct density-
ratio estimation. This estimation is called unconstrained least-squares importance
fitting (uLSIF) and it directly learns the density-ratio function in the least-squares
fitting framework. The uLSIF-based method is further improved by considering
relative density ratios. By using a density ratio estimator ĝ(x1, . . . , xn), the α-
relative PE divergence is approximated as

P̂Eα = − α

2n

∑
t

ĝ(xt:t+k−1)
2 − 1− α

2n

∑
t

ĝ(xt−k:t−1)
2

+
1

n

∑
t

ĝ(xt:t+k−1)−
1

2

(11)

for two consecutive time series segments xt−k:t−1 and xt:t+k−1 with k + 1 ≤ t ≤
n− k + 1. To identify a change point the value (11) is compared with an optimal
critical score value which can be evaluated by simulated time series.

• BOCPD is a Bayesian online method, that computes the probability distribution
P[rt|x1:t] of the length of the current run rt (time since the last change point).
The method is based on causal predictive filtering – generating a distribution
P[xt+1|x1:t] of the next unseen datum of the sequence out of the data already
observed. The change point probability is defined as

P[rt = 0, x1:t] =

t−1∑
j=0

P[rt−1 = j|x1:t−1]P[x1:t−1]π
(j)
t H(t), (12)

where P[x1:t−1] =
∑t−1

j=0 P[rt−1 = j, x1:t−1], P[rt = j|x1:t] = P[rt=j,x1:t]
P[x1:t] ,π

(j)
t =

fN (µ
(j)
t ,τ

2(j)
t )

(xt), j = 0, 1, . . . , t− 1, and H(t) is the hazard function.

• The heuristic method HeurMeth is derived from the Mann-Whitney statistic for
medians and simply computes the absolute differences of the medians of variances
of two subsequent sliding windows W1 and W2,

H(t0, n) = |ỹW1(t0) − ỹW2(t0)|, (13)

where ỹW1(t0) and ỹW2(t0) are the empirical medians for the testing point t0. If
the maximum of this statistic max

1<t0<n
H(t0, n) takes a value which is greater as a

predefined threshold cn, a change point is found. To speed up execution time, we
used instead of the calculation of one variance out of the data of the whole sliding
window the calculation of several variances of length 10 and used the median for
further comparisons. This is the only new method of this study.
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• The last method is based on the maximum of the Fisher ratio statistic, which
is commonly used for validating differences in the variances of two normally dis-
tributed samples. The test statistic is based on the moving variance ratio

F (t0, n) =
s2W1(t0)

s2W2(t0)

(14)

and is defined as

F̃ (t0, n) = max{F (t0, n), 1/F (t0, n)}, (15)

where s2W1(t0)
and s2W2(t0)

are the empiric variances for sliding windows W1 and W2

respectively. The change point is selected, if max
1<t0<n

H(t0, n) > cn.

All methods have been implemented in a way to be able to find multiple change points
in a time series. The methods RuLSIF, HeurMeth and F-Test use two adjacent sliding
time windows (with a shift of 1 time point), the methods ICSS, ICM, SIC and BSOP use
only one sliding time window (with a shift that corresponds to the half of the window
length to speed up the retrospective methods) and the method BOCPD does not need
any sliding time window, as it is computed for each new data point.

4 Case Study I

4.1 Data Generation

For our study, time series with n = 1000 and one change point at position t0 = 501 have
been generated, where

Xt ∼ N (0, σ21), 1 ≤ t ≤ t0 − 1, Xt ∼ N (0, σ22), t0 ≤ t ≤ n.

Let E = {1, 2, 3, 4, 6, 8, 10, 15} be a set of values. Then, the standard deviations satisfy
σ1 ∈ E and σ2 ∈ E \ {σ1}. With all possible combinations, we get |E|(|E| − 1) = 56
time series with different changes in variance.

Figure 1: Simulated time series with one change point (σ1 = 1 and σ2 = 4)

Figure 1 shows an exemplary time series for σ1 = 1 and σ2 = 4 with a change point at
t0 = 501 and was realized in Mathematica by the repeated application of the command
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RandomVariate[NormalDistribution[0,sigma]].

This gives us a sequence of pseudorandom variates from the symbolic distribution.

4.2 Simulation Results

For comparison purposes, we compute the F1 score (F-measure), the balanced accuracy
(mean of sensitivity and specificity), the AUC-values of ROC-curve (Area Under Curve
value of Receiver Operating Characteristic curve) as well as the AUC-values of PR-
curve (Precision Recall curve) of each method for different sliding window lengths (50,
200, 500) and for different passes in time (forward, backward or forward and backward
computation). Forward computation in our context means, that the sliding time windows
pass over the time series in ongoing manner from the first to the last sample, whereas in
the backward computation case we start with the shifting process at the end of the time
series and slide over it till we reach the beginning of the time series. For the combined
forward and backward computation, we apply the union command for the found change
point positions of each computation to get the set of new change points.

The just mentioned statistics generate values between 0 and 1, whereby value 1 is
the best outcome. All computations are made with the help of the computer algebra
system Mathematica (Version Number 10.3.1.0). To be able to compute sensitivities,
specificities, recalls and precisions, we define that a change point is found correctly, if it
is located in the interval {t0 − 5, t0 + 4}. If a change point lies outside this interval, we
will detect a false positive. So, for binary classification, we count the number of intervals
of length 10 (except at each edge we have length 15) that contain one or more change
points (positives) versus the number of intervals that do not include a change point
(negatives). The optimal case would lead to 56 true positives and 5488 (=98*56) true
negatives. As the used classes are of very different sizes, it is important to have a look
at indicators used in information retrieval – in our case the F1 score and the AUC-values
of the precision-recall-curve. More information on plotting ROC- and PR-curves can be
found in Fawcett (2006) and Saito and Rehmsmeier (2015). In our plots we used vertical
averaging for the occurrence of equal x-values and different y-values.

We start with some plots of the F1 score and the balanced accuracy (see figure 5 till
8 in the appendix). These plots display the used parameter choices and are shown for
forward and backward computation together. The darker an area is, the higher are these
measures and we can find an optimal parameter setting for each method. The method
BSOP reached the highest F1 score for all different window lengths and the highest
balanced accuracy for the window length 500. The method F-Test showed the highest
balanced accuracy for window length 50 and 200.

Next we consider the ROC-curves and PR-curves of all methods for different window
lengths. We want to mention, that the method BOCPD does not use window lengths
– so these curves will remain the same (see figure 9 and 10 in the appendix). With the
help of the areas under the curves, we want to find a tendency for the effectiveness of
each change point detection method. Therefore, we want to refer to figure 11 and 12. If
we consider the areas under the ROC-curve, the method F-Test is the best method for
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window length 50, whereas the method RuLSIF is for the window lengths 200 and 500
best. A different picture show the areas under PR-curve. Here, the method BSOP was
best for all window lengths.

In table 2, we summarize the best methods for the different statistics and window
lengths, and we also give the values of the statistics in brackets.

Table 2: Change point detection methods that reached the maximum of a special statistic
for different window lengths (for time series with one change point and usage
of forward and backward computation together)

Window length 50 Window length 200 Window length 500

Max(F1 score) BSOP (0.66) BSOP (0.73) BSOP (0.78)

Max(Balanced accuracy) F-Test (0.84) F-Test (0.91) BSOP (0.89)

AUC-ROC F-Test (0.93) RuLSIF (0.96) RuLSIF (0.93)

AUC-PR BSOP (0.59) BSOP (0.70) BSOP (0.66)

If we expand the interval length for finding an correct change point from 10 to 20,
the method ICSS will provide better results, but it remains under the maximum values.
Apart from that, the results keep almost the same. Only for higher window lengths,
the statistical values increased, e.g. the method BSOP has now an AUC-PR value of
0.90 instead of 0.66 for window length 500 and balanced accuracy of 0.97 instead of 0.89
for the optimal parameter setting. In contrast to table 2, the method F-Test is slightly
outbid by BSOP for the balanced accuracy with window length 200 and the method
RuLSIF is outbid by BSOP for the AUC-ROC with window length 500.

Now we want to consider the changes in performance, if we only make a forward com-
putation. First, we again consider the table of the best methods for different statistics
and window lengths (see table 3).

Table 3: Change point detection methods that reached the maximum of a special statistic
for different window lengths (for time series with one change point and usage
of forward computation)

Window length 50 Window length 200 Window length 500

Max(F1 score) BSOP (0.69) BSOP (0.73) BSOP (0.78)

Max(Balanced accuracy) F-Test (0.84) RuLSIF (0.91) BSOP (0.89)

AUC-ROC F-Test (0.93) F-Test (0.95) RuLSIF (0.93)

AUC-PR BSOP (0.61) BSOP (0.71) BSOP (0.67)

The results of the best methods stay almost the same. Only two modifications re-
garding balanced accuracy and AUC-ROC for window length 200 can be considered –
the methods RuLSIF and F-Test change their role. Except of this modification, also
figure 11 remains very similar. Only for window length 50, method RuLSIF drops down
to 0.66 points. In figure 12, BSOP is still the best method for all window lengths and
everything remains equal.

Remarkable is the fact that the maxima of F1 score and AUCPR-value of forward
computation are at the same level as the maxima of forward and backward computation
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together (+0.012 and +0.009 respectively in the mean). Usually, one would expect much
lower statistics. The maximum of balanced accuracy as well as the maximum of AUC-
value of ROC-curve remain also at the same level (+0.001 and −0.005 respectively in
the mean). As conclusion, only the use of forward computation must not be worse, and
computation time is of course better.

Table 4: Performance indicators for forward computation and time series with one
change point (note the following abbreviations: I1 = Max(F1 score), I2 =
Max(Balanced accuracy), I3 = AUC-ROC, I4 = AUC-PR, V+/- = all vari-
ance changes are considered, V+ = only variance increases are considered, V-
= only variance decreases are considered)

Window length 50 Window length 200 Window length 500

I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

V+/- 0.50 0.80 0.85 0.38 0.62 0.82 0.84 0.49 0.62 0.81 0.80 0.47

V+ 0.50 0.79 0.88 0.42 0.65 0.83 0.86 0.52 0.65 0.82 0.84 0.55ICSS

V- 0.56 0.82 0.82 0.41 0.59 0.82 0.82 0.44 0.60 0.81 0.76 0.39

V+/- 0.04 0.60 0.60 0.02 0.05 0.61 0.62 0.02 0.05 0.61 0.62 0.02

V+ 0.04 0.61 0.61 0.02 0.05 0.63 0.61 0.02 0.04 0.58 0.56 0.02ICM

V- 0.04 0.61 0.59 0.02 0.04 0.63 0.62 0.02 0.07 0.67 0.67 0.03

V+/- 0.02 0.53 0.52 0.01 0.02 0.54 0.53 0.01 0.06 0.63 0.62 0.02

V+ 0.03 0.64 0.65 0.02 0.03 0.57 0.56 0.01 0.08 0.71 0.71 0.03SIC

V- 0.01 0.43 0.39 0.01 0.02 0.53 0.50 0.01 0.04 0.57 0.53 0.02

V+/- 0.69 0.81 0.84 0.61 0.73 0.86 0.87 0.71 0.78 0.89 0.89 0.67

V+ 0.68 0.80 0.83 0.59 0.71 0.82 0.84 0.64 0.73 0.86 0.87 0.57BSOP

V- 0.70 0.82 0.84 0.63 0.81 0.90 0.89 0.77 0.85 0.93 0.92 0.77

V+/- 0.24 0.67 0.66 0.18 0.34 0.91 0.95 0.29 0.25 0.86 0.93 0.23

V+ 0.02 0.50 0.37 0.01 0.30 0.89 0.92 0.15 0.23 0.84 0.92 0.09RuLSIF

V- 0.40 0.85 0.94 0.38 0.50 0.93 0.97 0.47 0.38 0.88 0.94 0.34

V+/- 0.26 0.62 0.62 0.11 0.26 0.62 0.62 0.11 0.26 0.62 0.62 0.11

V+ 0.42 0.76 0.77 0.22 0.42 0.76 0.77 0.22 0.42 0.76 0.77 0.22BOCPD

V- 0.00 0.50 0.47 0.01 0.00 0.50 0.47 0.01 0.00 0.50 0.47 0.01

V+/- 0.11 0.69 0.76 0.04 0.16 0.75 0.84 0.06 0.09 0.79 0.84 0.04

V+ 0.18 0.70 0.75 0.05 0.15 0.75 0.83 0.06 0.09 0.79 0.84 0.04HeurM.

V- 0.10 0.71 0.77 0.03 0.19 0.75 0.84 0.06 0.11 0.79 0.84 0.04

V+/- 0.45 0.84 0.93 0.34 0.19 0.91 0.95 0.12 0.10 0.83 0.88 0.06

V+ 0.47 0.82 0.90 0.32 0.19 0.91 0.95 0.12 0.10 0.82 0.88 0.06F-Test

V- 0.49 0.87 0.96 0.37 0.19 0.93 0.95 0.12 0.12 0.84 0.88 0.05

Another interesting point is the following: Are the methods equally good for variance
increases and variance decreases respectively? To answer this question, we want to
refer to table 4, where all performance indicators can be found for the whole dataset
and also for the half of the dataset due to the splitting into variance changes that are
going upwards versus the changes going downwards. The colored fields signalize for each
method the better recognized kind of change. The methods ICSS, SIC and BOCPD
show higher indicators for upward changes, whereas the methods ICM, BSOP, RuLSIF,
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HeurMeth and F-Test have higher rates for downward changes. Especially the methods
RuLSIF and BOCPD display divergences that should be regarded.

Remark 1. Table 4 shows that the methods ICM and SIC intended for the correlated
data sets have unsatisfactory efficiency for independent data. For correlated data the
F1 score resulted a good segmentation quality. The next table confirms this observation
for stationary processes AR(1) and MA(1) with parameter 0.8 changing to -0.8.

Table 5: Performance indicator I1 for V+

Window length 50 Window length 200 Window length 500

MA(1) ICM 0.80 0.74 0.86

MA(1) SIC 0.65 0.76 0.91

AR(1) ICM 0.76 0.60 0.83

AR(1) SIC 0.69 0.83 0.89

5 Case Study II

5.1 Data Generation

In Case Study II, we consider time series x of length n = 1000 with four change points
at the positions t1 = 256, t2 = 466, t3 = 536 and t4 = 746. Now the random variable Xt

satisfies

Xt ∼ N (0, σ21), 1 ≤ t ≤ t1 − 1, Xt ∼ N (0, σ22), t1 ≤ t ≤ t2 − 1,

Xt ∼ N (0, σ21), t2 ≤ t ≤ t3 − 1, Xt ∼ N (0, σ22), t3 ≤ t ≤ t4 − 1,

Xt ∼ N (0, σ21), t4 ≤ t ≤ n.

The set E remains equal to Case Study I, so we again have 56 time series. Figure 2
shows an exemplary time series for σ1 = 1 and σ2 = 4 with four change points that are
marked through vertical lines.

Figure 2: Simulated time series with four change points (σ1 = 1 and σ2 = 4)
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5.2 Simulation Results

We again use the same statistics for comparison of the different methods. As we have time
series with more than one change point now, we also want to additionally implement a
variance stabilization method for the methods HeurMeth and F-Test, and we will denote
these methods with HeurMethSt and F-TestSt. As soon as a change point at time t0 is
found, the data before time t0 is transformed according to the formula

x∗t =

{
1

t0−1
∑t0−1

t=1 xt +
√
F (t0)

(
xt − 1

t0−1
∑t0−1

t=1 xt

)
t < t0,

xt, t ≥ t0,
(16)

where F (t0) is defined as before as the variance of the later time window divided by the
variance of the foregoing time window. With this transformation, the shift in variance
at point t0 is eliminated and the change point detector can proceed further on the
transformed time series.

In this section, the definition of a correctly found change point remains equal (interval
of length 10 around each change point) and we now have 224 (=56*4) true positives
versus 5376 (=56*96) true negatives in the optimal classification case. The parameter
selections of all methods stay the same and the computation of all statistics is conducted
in an analogous manner. At this point, we consider once again the table with the best
change point detection methods concerning our chosen statistics and window lengths in
table 6.

Table 6: Change point detection methods that reached the maximum of a special statistic
for different window lengths (for time series with several change points and usage
of forward and backward computation together)

Window length 50 Window length 200 Window length 500

Max(F1 score) F-TestSt (0.48) BSOP (0.48) BSOP (0.55)

Max(Balanced accuracy) F-Test (0.85) BSOP (0.85) BSOP (0.86)

AUC-ROC F-Test (0.89) ICSS (0.87) BSOP (0.86)

AUC-PR F-TestSt (0.40) ICSS (0.35) BSOP (0.39)

For small window lengths, the methods F-Test and F-TestSt showed the best perfor-
mance. For window length 200, ICSS and BSOP were best. For longer window lengths,
BSOP outperformed the other methods. In the mean, all statistics lost on height in
comparison to time series with one change point and the usage of forward and backward
computation as here (mean decreases for the four statistics sorted as in the first column
of table 6: −0.045, −0.056, −0.062 and −0.039).

In figure 13 and 14, the ROC-curves and PR-curves for time series with four change
points are shown. Figure 15 and 16 contain the AUC-values for ROC-curve and PR-curve
respectively.

Table 7 presents the best methods only for forward computations.

All statistics in table 7 are higher than the statistics in table 6. So, in the case of several
change points the sole use of forward computation is more advantageous regarding to the



220 Breitenberger et al.

Table 7: Change point detection methods that reached the maximum of a special statistic
for different window lengths (for time series with several change points and usage
of forward computation)

Window length 50 Window length 200 Window length 500

Max(F1 score) BSOP (0.70) BSOP (0.77) BSOP (0.78)

Max(Balanced accuracy) ICSS (0.85) BSOP (0.87) BSOP (0.87)

AUC-ROC F-Test (0.89) ICSS (0.88) BSOP (0.87)

AUC-PR BSOP (0.69) BSOP (0.73) BSOP (0.73)

optimal parameter settings. If we consider the mean deviation between the F1 scores
and AUC-PR values concerning forward computation against forward and backward
computation, the values increased about 0.032 and 0.061 respectively. Nevertheless, the
mean of balanced accuracy and AUC-ROC decreased by 0.010 and 0.014. So, regarding
to the mean deviations, the statistical values remained equal.

We now have again a look at the performance indicators for the case of forward
computation in table 8. Here, the methods ICSS, ICM, SIC, BSOP, BOCPD and F-Test
display higher indicators for upward changes, whereas the methods RuLSIF and F-TestSt
for downward changes. The methods HeurMeth and HeurMethSt are equally good for
both kinds of change. In the case of time series with four change points, more methods
are better for upward changes – as ICM, BSOP and HeurMeth changed their manner.
The methods RuLSIF and BOCPD show again high divergences between the statistics
of upward and downward changes.

With an additional application of a variance stabilization method, the methods HeurMeth
and F-Test could not be further enhanced. One possible reason for that outcome is that
some change points were found to early for our defined interval of being a correct change
point.

6 Case Study III

6.1 Data Generation

Let x = {x1, . . . , xn} be again a given time series of length n, where xt is a realization
of the random variable Xt. In this study, 1050 time series of length n = 600 and one
change point at position t0 = 301 have been generated, where

Xt ∼ N (0, σ21), 1 ≤ t ≤ t0 − 1, Xt ∼ N (0, σ22), t0 ≤ t ≤ n.

Let E = {1, 2, 3, . . . , 13, 14, 15} be a set of values. Then, the standard deviations satisfy
σ1 ∈ E and σ2 ∈ E \ {σ1}. With all possible combinations, we get |E|(|E| − 1) = 210
time series with different changes in variance. We apply this process five times such that
in the end we get 1050 time series. Additionally, we generate 1050 time series with no
change point. Therefore, Xt ∼ N (0, σ21), 1 ≤ t ≤ n and the set E remains equal. One
pass over E generates 15 time series, so we have to apply this process 70 times to get
1050 time series.
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Table 8: Performance indicators for forward computation and time series with several
change points (note the following abbreviations: I1 = Max(F1 score), I2 =
Max(Balanced accuracy), I3 = AUC-ROC, I4 = AUC-PR, V+/- = all variance
changes are considered, V+ = only variance increases are considered, V- = only
variance decreases are considered)

Window length 50 Window length 200 Window length 500

I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

V+/- 0.68 0.85 0.89 0.68 0.66 0.86 0.88 0.68 0.59 0.84 0.87 0.57

V+ 0.71 0.87 0.91 0.74 0.69 0.88 0.89 0.72 0.62 0.84 0.88 0.62ICSS

V- 0.64 0.84 0.87 0.63 0.63 0.84 0.87 0.63 0.57 0.84 0.85 0.52

V+/- 0.13 0.60 0.59 0.06 0.12 0.57 0.57 0.06 0.14 0.62 0.62 0.07

V+ 0.19 0.69 0.69 0.09 0.15 0.61 0.60 0.07 0.22 0.70 0.72 0.12ICM

V- 0.07 0.50 0.48 0.04 0.09 0.54 0.54 0.05 0.09 0.53 0.51 0.04

V+/- 0.10 0.59 0.59 0.05 0.12 0.61 0.61 0.06 0.14 0.59 0.58 0.07

V+ 0.12 0.66 0.66 0.06 0.13 0.62 0.61 0.06 0.16 0.61 0.60 0.08SIC

V- 0.08 0.53 0.52 0.04 0.14 0.62 0.60 0.06 0.14 0.58 0.58 0.07

V+/- 0.70 0.83 0.87 0.69 0.77 0.87 0.87 0.73 0.78 0.87 0.87 0.73

V+ 0.72 0.84 0.89 0.70 0.82 0.89 0.88 0.78 0.84 0.90 0.89 0.80BSOP

V- 0.68 0.82 0.85 0.67 0.73 0.85 0.86 0.67 0.72 0.85 0.86 0.68

V+/- 0.32 0.66 0.64 0.24 0.26 0.77 0.84 0.21 0.37 0.67 0.69 0.30

V+ 0.05 0.50 0.39 0.03 0.25 0.76 0.82 0.14 0.33 0.67 0.70 0.27RuLSIF

V- 0.49 0.82 0.90 0.47 0.33 0.77 0.85 0.28 0.41 0.68 0.68 0.34

V+/- 0.09 0.53 0.49 0.08 0.09 0.53 0.49 0.08 0.09 0.53 0.49 0.08

V+ 0.17 0.56 0.53 0.14 0.17 0.56 0.53 0.14 0.17 0.56 0.53 0.14BOCPD

V- 0.00 0.50 0.46 0.04 0.00 0.50 0.46 0.04 0.00 0.50 0.46 0.04

V+/- 0.18 0.67 0.74 0.12 0.16 0.68 0.74 0.09 0.14 0.71 0.72 0.10

V+ 0.18 0.67 0.74 0.11 0.15 0.68 0.74 0.09 0.15 0.72 0.72 0.09HeurMeth

V- 0.19 0.67 0.74 0.13 0.16 0.68 0.74 0.10 0.14 0.71 0.71 0.11

V+/- 0.17 0.67 0.72 0.12 0.12 0.63 0.66 0.07 0.21 0.71 0.74 0.16

V+ 0.18 0.68 0.74 0.12 0.15 0.66 0.70 0.09 0.21 0.71 0.74 0.15HeurM.St

V- 0.17 0.66 0.70 0.12 0.11 0.62 0.62 0.06 0.23 0.72 0.74 0.19

V+/- 0.46 0.85 0.89 0.37 0.18 0.74 0.80 0.12 0.24 0.76 0.80 0.18

V+ 0.47 0.85 0.90 0.38 0.18 0.74 0.80 0.12 0.25 0.76 0.80 0.21F-Test

V- 0.46 0.85 0.88 0.36 0.18 0.74 0.79 0.12 0.23 0.76 0.80 0.16

V+/- 0.51 0.80 0.86 0.41 0.24 0.67 0.73 0.16 0.33 0.76 0.83 0.28

V+ 0.40 0.79 0.86 0.27 0.20 0.63 0.69 0.09 0.34 0.76 0.83 0.35F-TestSt

V- 0.63 0.82 0.86 0.61 0.32 0.71 0.77 0.29 0.31 0.76 0.82 0.24

6.2 Simulation Results

In this simulation study, we used for each method only the optimal parameters concern-
ing F1 score and balanced accuracy as found in figures 5 to 8. This allows us to consider
a larger amount of time series for simulation study. Our goal is to find the relative num-
ber of correctly found change points out of the piecewise stationary time series that have
one change point as well as the relative numbers of incorrectly found change points out
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of the stationary time series with no change point. For finding a correct change point,
we again use the interval {t0 − 5, t0 + 4} around the real change point time t0. If there
are several change points in this interval, we count only one true positive. For the false
positives, we also use intervals of length 10, so the stationary time series is split into 60
intervals. Table 9 gives a full overview of our evaluations. Here, we have restricted us
to sliding time windows of length 50 and 200.

Table 9: True versus false positives (relative values in percent) based on 1050 time series
with one versus no change point (note the following abbreviations: OP(. . . ) =
Optimal parameters used as found in Case Study I for forward and backward
computation regarding to the statistic . . . , TP = true positives, FP = false
positives, F = only forward computation, B = only backward computation,
F&B = forward and backward computation together)

Window length 50 Window length 200

OP(F1 score) OP(Bal. Accu.) OP(F1 score) OP(Bal. Accu.)

TP FP TP FP TP FP TP FP

F 29.143 0.024 58.381 0.006 47.619 0.014 57.810 0.005

B 29.143 0.002 58.667 6.487 47.619 0.006 57.524 2.303ICSS

F&B 29.143 0.003 59.238 12.041 47.619 0.011 58.762 4.003

F 25.905 13.251 36.952 24.489 22.190 9.197 28.667 13.216

B 26.571 13.256 36.476 23.992 23.619 9.537 31.619 13.529ICM

F&B 44.571 24.303 59.048 41.373 40.190 17.984 50.762 25.384

F 58.381 51.508 58.381 51.508 36.190 24.644 36.190 24.644

B 55.714 54.702 55.714 54.702 37.905 26.756 37.905 26.756SIC

F&B 78.381 74.802 78.381 74.802 57.238 42.446 57.238 42.446

F 42.190 0.154 45.333 0.567 58.571 0.079 59.619 0.254

B 42.095 0.154 45.333 0.576 58.667 0.084 59.714 0.263BSOP

F&B 42.190 0.308 45.429 1.133 58.762 0.138 59.810 0.441

F 18.286 0.229 39.810 10.397 22.952 0.000 55.238 0.038

B 19.905 0.244 53.619 10.165 29.714 0.000 58.381 0.032RuLSIF

F&B 33.429 0.425 69.905 24.341 35.714 0.000 78.381 2.106

F 8.952 0.013 10.381 0.001 8.952 0.013 10.381 0.001

B 9.333 0.011 11.143 0.003 9.333 0.011 11.143 0.003BOCPD

F&B 18.286 0.024 21.524 0.005 18.286 0.024 21.524 0.005

F 16.762 2.678 72.952 35.884 10.667 0.029 69.238 13.843

B 17.429 2.683 74.476 35.994 10.667 0.029 69.238 13.808HeurMeth

F&B 18.857 3.546 76.000 39.665 10.667 0.029 69.238 13.843

F 48.667 0.110 82.571 24.171 45.238 0.000 74.952 0.125

B 48.667 0.111 82.571 24.267 45.238 0.000 74.952 0.133F-Test

F&B 48.667 0.110 82.571 24.171 45.238 0.000 74.952 0.125

To get a better overview about the numbers in table 9, we also plot the F1 scores
for the parameter settings obtained from Case Study I through the use of forward and
backward computations. So, the values of the columns with heading OP(F1 score) lead
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to the figures 3 and 4. These plots show similar results as in Case Study I and II.

ICSS ICM SIC BSOP RuLSIF BOCPD HeurMeth F-Test
0.0
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F1 score
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Backward
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Figure 3: F1 scores for different change point detection methods and window-length=50

ICSS ICM SIC BSOP RuLSIF BOCPD HeurMeth F-Test
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1 score

Forward

Backward

Forw. & Backw.

Figure 4: F1 scores for different change point detection methods and window-length=200

Again the methods ICSS, BSOP and F-Test demonstrate their superiority over the other
methods. Furthermore, for the methods RuLSIF and BOCPD the use of forward and
backward computation is more advantageous, whereas for the other methods passage in
one direction is sufficient.

7 Conclusion

In this study, online as well as typically retrospective methods are compared with the
help of sliding time windows in an online manner for data streams.

The method BSOP1 showed the best performance regarding to the statistics F1 score
and AUC of PR-curve, followed by the methods ICSS and F-Test. The methods ICM,
SIC and HeurMeth were not that good in our simulation. Regarding to the statistics
balanced accuracy and AUC of ROC-curve, the methods ICSS, BSOP, RuLSIF and F-
Test displayed a good performance whereas the methods ICM, SIC and BOCPD were
not that convincing. The inferior performance of ICM and SIC method was somehow
predetermined, as they are usually used for dependent observations.

The sole application of forward computation (concerning the sliding time windows)
is for the most methods as recommendable as the use of forward and backward compu-
tation together, as there was no decrease in performance. All methods behaved similar
concerning their performance for the different sliding time window lengths. Two methods
(RuLSIF and BOCPD) showed differences in performance for upward versus downward

1More information about the different change point detection methods can be found in section 3.
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changes in variance. The additional application of a variance stabilization method to
the methods HeurMeth and F-Test did not show major improvements.

Applications to real datasets can be found in our previous publications (Breitenberger
et al., 2015, 2017). There, we used the heuristic method HeurMeth with additional
constraints. The reason for using this method lies in the fast execution time and in the
fact, that this method finds many change points that can be further restricted. Our
further research might compare exhaustively the methods for the correlated data sets.
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Appendix

(a) F1 score

of ICSS

(b) Bal. accu-

racy of ICSS

(c) F1 score of ICM (d) Bal. accuracy of ICM

Figure 5: F1 scores and balanced accuracies for ICSS and ICM method (for time se-
ries with one change point and usage of forward and backward computation
together)
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(a) F1 score of SIC (b) Bal. accuracy of SIC (c) F1 score of

BSOP

(d) Bal. accu-

racy of BSOP

(e) F1 score of

RuLSIF

(f) Bal. accu-

racy of RuLSIF

Figure 6: F1 scores and balanced accuracies for SIC, BSOP and RuLSIF method (method
RuLSIF with k = 10 and α = 0.2 fixed; for time series with one change point
and usage of forward and backward computation together)

(a) F1 score of BOCPD (b) Bal. accuracy of BOCPD

Figure 7: F1 scores and balanced accuracies for BOCPD method with λ = 500 and κ = 1;
plots for κ = 0.0001 are not shown here (for time series with one change point
and usage of forward and backward computation together)
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(a) F1

score of

HeurMeth

(b) Bal.

accuracy of

HeurMeth

(c) F1 score of

F-Test

(d) Bal. accu-

racy of F-Test

Figure 8: F1 scores and balanced accuracies for HeurMeth and F-Test method (for time
series with one change point and usage of forward and backward computation
together)
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Figure 9: ROC-curves for different methods and different window lengths (for time se-
ries with one change point and usage of forward and backward computation
together)
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Figure 10: PR-curves for different methods and different window lengths (for time se-
ries with one change point and usage of forward and backward computation
together)
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Figure 11: AUC-values of ROC-curve for different methods and different window lengths
(for time series with one change point and usage of forward and backward
computation together)
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Figure 12: AUC-values of PR-curve for different methods and different window lengths
(for time series with one change point and usage of forward and backward
computation together)
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Figure 13: ROC-curves for different methods and different window lengths (for time
series with several change points and usage of forward and backward compu-
tation together)
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Figure 14: PR-curves for different methods and different window lengths (for time series
with several change points and usage of forward and backward computation
together)
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Figure 15: AUC-values of ROC-curve for different methods and different window lengths
(for time series with several change points and usage of forward and backward
computation together)
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Figure 16: AUC-values of PR-curve for different methods and different window lengths
(for time series with several change points and usage of forward and backward
computation together)


