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Many datasets present time-dependent variation and short-term clustering
within extreme values. The extremal index is a primary measure to evaluate
clustering of high values in a stationary sequence. Estimation procedures
are based on the choice of a threshold and/or a declustering parameter or
a block size. Here we revise several different methods and compare them
through simulation. In particular, we will see that a recent declustering
methodology may be useful for the popular runs estimator and for a new
estimator that works under the validation of a local dependence condition.
An application to real data is also presented.

keywords: declustering, extreme value theory, local dependence condi-
tions, stationary sequences.

1 Introduction

Many applications require the evaluation of the impact of clusters of observations inher-
ent to dependencies in a time series. Inference regarding clusters of exceedances over
a high threshold, is important to analyze the risk for hazardous events like financial
market crashes, large insurance claims, environmental catastrophes, among others.

The extremal index, θ, is a dependent measure that quantifies the clustering tendency
of high values. More precisely, a stationary sequence {Xn}n≥1, with marginal distribu-
tion FXn = F , has extremal index θ ∈ [0, 1] if, for each τ > 0, there is a sequence of

normalized levels {un ≡ u(τ)n }n≥1, i.e.,

n(1− F (un))→ τ,
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as n→∞, such that

P (Mn ≤ un)→ e−θτ

(Leadbetter et al., 1983), where Mi,j =
∨j
s=i+1Xs, with x ∨ y = max(x, y), M0,j = Mj

and Mi,j = −∞ for i ≥ j. We only address the non-degenerate condition θ 6= 0. The
case θ = 1 mimics an independent context, i.e., no clustering, and θ < 1 means limiting
conglomerates of exceedances. This topic is addressed under a parametric framework in
Ferreira (2016).

Inference within the extremal index may be divided in three main methodological
groups: estimation based on a declustering scheme requiring the choice of a thresh-
old and a declustering parameter (Nandagopalan, 1990, Hsing, 1993, Smith and Weiss-
man, 1994, Weissman and Novak, 1998, Robert et al., 2009, Laurini and Tawn, 2003,
Süveges and Davison, 2010, Fukutome et al., 2014, and references therein), estimation
free-declustering parameter (Ferro and Segers, 2003, Süveges, 2007) and free-threshold
maxima procedures only based on the choice of a block size (Gomes, 1993, Ancona-
Navarrete and Tawn, 2000, Northrop, 2015).

Under the dependence condition D(un) of Leadbetter (1974), we have

P (Mn ≤ un) ≈ Fnθ(un). (1)

Condition D(un) limits the long-range dependence by stating αn, ln → 0, as n→∞, for
some sequence ln = o(n), where

αn, l = sup{|P (Mi1,i1+p ≤ un,Mj1,j1+q ≤ un)− P (Mi1,i1+p ≤ un)P (Mj1,j1+q ≤ un) |,

for any integers 1 ≤ i1 < i1 + p+ l ≤ j1 < j1 + q ≤ n.

If there exists a linear normalization of the d.f. of the maximum that converges to a
non-degenerate d.f. G, i.e., Fn(anx + bn) → G(x), as n → ∞, with an ∈ R+, bn ∈ R,
n ≥ 1, then G is a Generalized Extreme Value (GEV) distribution. If we consider
{X∗n}n≥1 independent and with the same d.f. F , the associated result for M∗n =

∨n
i=1X

∗
i

leads to the limiting d.f. G∗(x) = G(x)1/θ, with respective location, scale and shape
parameters, (µθ, σθ, ξθ) and (µ, σ, ξ), such that

µθ = µ+ σ(θξ − 1)/ξ and σθ = σθξ.

The maxima methods of Gomes (1993) and Ancona-Navarrete and Tawn (2000) are
based on a parametric modeling of M and M∗n through GEV distributions G and G∗,
the latter requiring resampling. Northrop (2015) presents a semiparametric and more
efficient approach by comparing G directly to F .

Recently, a new estimation proposal was addressed in Ferreira and Ferreira (2015) that
works under the local dependence condition D(s)(un) of Chernick et al. (1991). More
precisely, D(s)(un) holds for {Xn}n≥1, if under D(un) and for some {bn}n≥1 such that,

bn →∞, bnαn,ln → 0, bnln/n→ 0,
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as n→∞, we have

nP (X1 > un,M1,s ≤ un < Ms,rn) −→
n→∞

0,

with {rn = [n/bn]}n≥1 ([x] denotes the integer part of x).

Under D(s)(un), the extremal index exists and is given by

θX = lim
n→∞

P (M1,s ≤ un|X1 > un). (2)

See Chernick et al. (1991).

The runs estimator (see Hsing, 1993, Nandagopalan, 1990, Weissman and Novak,
1998 and references therein) can be obtained from this relation by considering the run
parameter r equal to s. The simplest case of the runs estimator r = 2 corresponds to
the Nandagopalan (1990) proposal constructed under condition D(2)(un). It is based on
the ratio between the number of upcrossings (equal to the number of downcrossings)
and the number of exceedances and thus avoids the choice of a length r for runs of
non-exceedances. The approach in Ferreira and Ferreira (2015) takes advantage of the
simplest form of the Nadagopalan’s estimators by estimating θX through the extremal
index of an auxiliary sequence satisfying D(2)(un).

Consider the time intervals between consecutive exceedances denoted inter-exceedance
times, the ones separated by clusters of exceedances denoted inter-cluster times and the
intervals between exceedances within a cluster denoted intra-cluster times. Ferro and
Segers (2003) estimator is based on the theoretical result that the inter-exceedance times
tend to a mixture distribution with parameter θ: inter-cluster times converge to an
exponential distribution with probability θ and intra-cluster times approaches zero with
probability (1−θ). Süveges and Davison (2010) extends this result to truncated intervals
that exceed the run parameter in length, arriving at the same limiting mixture law. In
Süveges (2007) was only consider the case of a run length equal to one requiring the
validity of condition D(2)(un). The proposed method has the advantage of accounting
the zero-length intra-cluster times in the likelihood function, avoiding a bias towards
one. However, it requires the choice of an additional declustering parameter. This is
similar to the runs estimator that requires the identification of the run parameter or the
method in Ferreira and Ferreira (2015) where we need to validate D(s)(un) for some s.
An empirical procedure was presented in this latter reference but it may only be used
as a guidance which is subjective.

The problem of a correct selection of either the threshold and/or the declustering pa-
rameter (whether the size of a block or a run), is transversal to the different inferential
methods of the extremal index and has impact in their performance. Fukutome et al.
(2014) introduces an automatic methodology for joint selection of threshold and run
parameter based on the method of Süveges and Davison (2010). The choice of the run
is also the base of the declustering scheme of the runs estimator, as well as the order
s of condition D(s)(un) underlying the method of Ferreira and Ferreira (2015), already
mentioned above.
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In this paper we analyze through simulation the automatic selection procedure of
Fukutome et al. (2014) within the runs estimator and estimators of Ferreira and Ferreira
(2015). We also assess their performance by comparing to the estimators of Süveges and
Davison (2010) and also with the recent blocks estimators of Northrop (2015). These
are described in Section 2. The simulation study is presented in Section 3 and we end
with an application to real data.

2 Estimators of the extremal index

We are going to describe the estimators of the extremal index mentioned in the intro-
duction, that are going to be used in our analysis.

The classical runs estimator, originated in a characterization of O’Brien (1987), is
strongly related to the limit (2), holding under condition D(s)(un), corresponding to its
empirical counterpart:

θ̂R ≡ θ̂R(un, s) = (N(un))−1
n−(s−1)∑
i=1

1{Xi>un}1{Xi+1≤un} . . .1{Xi+s−1≤un},

where N(un) denote the number of exceedances of un and 1 is the indicator function. It
can also be stated as the reciprocal of the mean cluster size, where two different groups
of exceedances of the threshold un are consider as independent clusters if there are at
least s− 1 consecutive observations below un between them.

The Nandagopalan (1990) estimator corresponds to the particular case s = 2 and thus
works under condition D(2)(un):

θ̂ = (N(un))−1
n−1∑
i=1

1{Xi+1≤un<Xi}.

Observe that now the number of clusters correspond to the number of downcrossings of
un.

The method introduced in Ferreira and Ferreira (2015) is intended to take advantage of
the simplicity of the estimator, in particular as regards the easy identification of clusters.
Under the validation of D(s)(un) for some positive s, it is considered an auxiliary process

of cycles, Zn =
∨n(s−1)
t=(n−1)(s−1)+1Xt, n ≥ 1, and then estimate θ based on {Zn}n≥1,

for which D(2)(un) holds. More precisely, θ can be obtained by the ratio between the
number of upcrossings of un within {Z1, . . . , Z[n/(s−1)]}, denoted UZn (un) and the number
of exceedances of un within {X1, . . . , Xn} (Ferreira and Ferreira, 2015; Proposition 2.3),
that is,

θ̂C =
UZn (un)

NX
n (un)

. (3)

Moreover, if {Xn}n≥1 is max-stable, we have

θ = θZ
− logFZ(1)

s− 1
,
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where

θZ =
1

1− E (FZ(Z1) ∨ FZ(Z2))
− 2,

(see Ferreira and Ferreira, 2015; Proposition 3.2) and a new estimator is obtained by
considering the respective empirical counterparts, namely, the empirical d.f. of FZ and
the sample mean corresponding to E (FZ(Z1) ∨ FZ(Z2)). For more details, see Ferreira
and Ferreira (2012). This variant of the cycles estimator given in (3) underneath max-
stability will be denoted θ̂Cms .

The maxima procedure in Northrop (2015) is based on a semiparametric and more
efficient methodology than the ones in Gomes (1993) and Ancona-Navarrete and Tawn
(2000). Consider blocks of size b, the disjoint block maximums {Y d

i = M(i−1)b,ib, i =
1, . . . , nd = bn/bc}, the sliding block maximums {Y s

i = Mi−1,i+b−1, i = 1, . . . , ns =
n − b + 1}, V d

i = −b logF (Y d
i ), i = 1, . . . , nd and V s

i = −b logF (Y s
i ), i = 1, . . . , ns.

Under (1) and if F is known, then V d
i has an exponential distribution with mean 1/θ

and thus the respective maximum likelihood estimator is given by the sample mean.
Obviously, the same holds for V s

i . Whenever F is unknown, empirical counterparts V̂ d
i

and V̂ s
i are taken leading to the disjoint and sliding estimators, respectively,

θ̂Db =
nd∑nd
i=1 V̂

d
i

and θ̂Sb =
ns∑ns
i=1 V̂

s
i

.

For more details, see Northrop (2015).
Ferro and Segers (2003) have proved that the limit of an inter-exceedance time, nor-

malized by 1 − F (un), approaches in distribution an exponential-point mass mixture
which is zero with probability 1− θ, and the nonzero part, occurring with probability θ,
has an exponential distribution with rate θ. Süveges and Davison (2010) modified this
result by considering inter-exceedance times truncated by some fixed K > 0, which they
called the corresponding K-gaps, deriving the same limiting mixture exponential law.
They considered a likelihood-based estimator of θ. More precisely, assuming that N
observations from {Xn}n≥1 exceed the threshold un, the indices {ji : Xji > un} indicate

the locations of the exceedances, the ith K-gap denoted by s
(K)
i = max(ji+1− ji−K, 0),

for i = 1, . . . , N − 1, the log-likelihood is given by

`K(θ; s
(K)
i ) = (N − 1−NC) log(1− θ) + 2NC log(θ)− θ

N−1∑
i=1

(N/n)s
(K)
i ,

with NC =
∑N−1

i=1 1{s(K)
i 6=0}. Observe that the likelihood requires independence of the

gaps which are actually dependent. However, the method is valid under condition
D(s)(un) with s = K + 1. For more details, see Süveges (2007) (Section 3.1). Inap-
propriate choices of the threshold un or the run parameter K compromises the model
adjustment. Thus, Süveges and Davison (2010) developed misspecification tests based
on the information matrix test (IMT) presented in White (1982) to the log-likelihood
above. These tests ultimately provide joint graphical choice of threshold and run pa-
rameter. Fukutome et al. (2014) introduced an automation of the Süveges and Davison
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(2010) method, which tests all pairs of thresholds and run parameters for misspecifi-
cation of the model, selecting the pair that generates the largest number of observa-
tions after declustering, within a subset of small misspecification (IMT < 0.05). More
precisely, let `i(θ), ji(θ), and ei(θ) respectively denote, for each observation i, the log-
likelihood, the score function and the expected information, and di(θ) = ji(θ) − ei(θ).
Set the sample means of di(θ) and ei(θ), respectively, D(θ) = (N − 1)−1

∑N−1
i=1 di(θ)

and I(θ) = (N − 1)−1
∑N−1

i=1 ei(θ). Then, the test statistic is IMT (θ̂) = nD(θ̂)2/V (θ̂),

where the variance of D(θ) is V (θ) = (N − 1)−1
∑N−1

i=1

(
di(θ)−D′(θ)I(θ)−1`′i(θ)

)
. The

procedure of Fukutome et al. (2014) consists in ascertain the (u,K) pairs for which
IMT< 0.05 and select the one yielding the largest NC . Prior trials revealed that only
pairs associated to more than 80 exceedances must be considered, otherwise there is not
enough data to assure a good performance of the test. This automatic choice method
of threshold-run parameter will be referred as IMT method and the ML estimator of θ
will be denoted θ̂ML.

3 Simulation Study

In this section we analyze the IMT method applied to the classical runs estimator θ̂R, and
the cycles estimator θ̂C and the max-stable cycles estimator θ̂Cms of Ferreira and Ferreira
(2015). We also include estimators θ̂Rq and θ̂Fq based on thresholds corresponding to
quantiles q = 0.95, 0.975, 0.99, with the estimated IMT run parameter (at each replica).
For comparison, we also consider estimator θ̂ML, as well as, the very recent disjoint θ̂Db
and sliding θ̂Sb estimators of Northrop (2015), requiring the choice of a block size b. We
consider b = 5, 10, 20, 40.

Our simulation study is based on 1000 replicas of samples with size n = 1000, gener-
ated from the following models: a max-autoregressive process (MAR), Xi = φXi−1 ∨ εi,
with 0 < φ < 1, {εi}i≥1 an i.i.d. sequence of r.v.’s with d.f. Fε(x) = exp(−(1 − φ)/x),
x > 0 and θ = 1 − φ (we consider φ = 1/2 and thus θ = 1/2); a moving maxima
(MM), Xi =

∨
j=0,...,m αjεi−j , with

∑m
j=0 αj = 1, αj ≥ 0, {εi}i≥1 an i.i.d. sequence

of unit Féchet distributed r.v.’s and θ = ∨j=0,...,mαj (we consider m = 3, with α0 =
1/3, α1 = 1/6, α2 = 1/2, leading to θ = 1/2); an autoregressive Cauchy (ARCauchy),
Xi = βXi−1 + εi, |β| < 1 and θ = 1− β2 (we take β = −3/5 and thus θ = 0.64); an au-
toregressive uniform (ARUnif), Xi = −(1/m)Xi−1 + εi, with {εi}i≥1 an i.i.d. sequence,
P (ε1 = j/m) = 1/m for j = 1, . . . ,m and θ = 1 − 1/m2 (we consider m = 2 lead-
ing to θ = 3/4); a bivariate extreme value Markov (MCBEV), P (Xi ≤ x,Xi+1 ≤
y) = exp(−(x1/γ + y1/γ)γ) (we take γ = 0.5 and thus θ = 0.328; see Smith, 1992); a
GARCH(1,1), Xi = σiεi, with σ2i = α + λX2

i−1 + βσ2i−1, α, λ, β > 0, with {εi}i≥1 an
i.i.d. sequence of standard Gaussian r.v.’s (we consider α = 10−6, λ = 1/4 and β = 7/10
yelding θ = 0.447; see Laurini and Tawn, 2012).

Condition D(2)(un) is valid for MAR (Hall, 1996) and condition D(3)(un) holds for
models MM (Ferreira and Ferreira, 2015), ARCauchy and ARUnif (Chernick et al.,
1991). Conditions D(4)(un) and D(5)(un) were (empirically) validated for, respectively,
models MCBEV and GARCH(1,1) in Ferreira and Ferreira (2015).
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The obtained estimates of the absolute bias (abias) and the root mean squared error
(rmse) are reported in Tables 1-2. The best results are in bold. The mark “+” indicates
the least values. The worst performance is marked with italics.

The smallest bias lies generally in the cycles and runs estimators. Based on the rmse,
the best performances are associated to the ML estimator θ̂ML of Süveges and Davison
(2010), followed by the runs estimator under IMT method (θ̂R). The IMT estimated
threshold seems a nice choice when compared to the threshold quantiles 0.95, 0.975
and 0.99. The max-stable cycles estimator θ̂Cms presents the smallest rmse for models
satisfying max-stability, but it has a bad behavior otherwise, making it very sensitive
to this property. Estimators θ̂Db and θ̂Sb tend to work better for block sizes within 20
and 40. Our findings are thus consistent with the rule b ≈

√
n, usually suggested in the

literature. The GARCH model is more favorable to the maxima procedure of Northrop
(2015) and the ML estimation of Süveges and Davison (2010).

As a by product, we can test the IMT method in the validation of condition D(s)(un).
The mean estimated s values for models MM, ARUnif, ARCauchy, MAR, MCBEV and
GARCH were, respectively, 3, 3, 3, 2, 3 and 6. The first four cases coincide with the
known theoretical values. In the MCBEV and GARCH models, we do not know the true
values of s but the estimates are close to the ones derived through the empirical method
applied in Ferreira and Ferreira (2015). We believe that IMT is a promising method in
finding the proper order s of condition D(s)(un).

3.1 Application to real data

The data corresponds to the daily minimum temperatures (in degrees Fahrenheit) col-
lected at Wooster, Ohio, over the period 1983-1988. We consider the negated series of
winter months (thus large values means extreme cold) where the series appears station-
ary. The observations are plotted in Figure 1, where it is apparent a tendency of high
values to occur close to one another. These data were analyzed in Coles (2001) under a
parametric framework, where the choice of threshold u = −10 and runs 2 and 4 led to
θ estimates of, respectively, 0.42 and 0.27. A longer series was also analyzed in Smith
et al. (1997) and in Ferro and Segers (2003). See also references therein. Here, the
application of the IMT method estimate the quantile as -2 and the run as 4. Based on
these, we obtain the values, θ̂R = 0.344, θ̂C = 0.313, θ̂Cms = 0.275 and θ̂ML = 0.397. In
applying, respectively, the disjoint and sliding blocks estimators, we derive θ̂D = 0.290
and θ̂S = 0.294, with b = 25.

Acknowledgement

The author wishes to thank the reviewer for his helpful comments that have improved
this work. The author was financed by Portuguese Funds through FCT - Fundação para a
Ciência e a Tecnologia within the Projects UID/MAT/00013/2013, UID/MAT/00006/2013
and by the research center CEMAT (Instituto Superior Técnico, Universidade de Lisboa)
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Table 1: Results of the root mean squared error: the values in bold correspond to the
better performances with the best one ticked with the signal +; the largest
values are marked with italics.

rmse MM ARUnif ARCauchy MAR MCBEV GARCH

θ̂C0.95 0.069 0.063 0.095 0.079 0.084 0.158

θ̂C0.975 0.066 0.089 0.100 0.095 0.126 0.170

θ̂C0.99 0.096 0.138 0.148 0.153 0.205 0.228

θ̂C 0.089 0.063 0.118 0.084 0.071 0.167

θ̂Cms 0.032+ 0.791 0.608 0.032+ 0.063+ 0.352

θ̂R0.95 0.055 0.063 0.084 0.071 0.089 0.155

θ̂R0.975 0.063 0.089 0.095 0.095 0.134 0.187

θ̂R0.99 0.095 0.138 0.152 0.155 0.212 0.257

θ̂R 0.095 0.045+ 0.014+ 0.089 0.071 0.184

θ̂ML 0.056 0.096 0.060 0.049 0.083 0.089

θ̂Db=5 0.134 0.122 0.032 0.134 0.305 0.187

θ̂Db=10 0.077 0.192 0.089 0.077 0.239 0.122

θ̂Db=20 0.063 0.226 0.122 0.063 0.210 0.100

θ̂Db=40 0.077 0.247 0.145 0.077 0.202 0.105

θ̂Sb=5 0.134 0.118 0.032 0.134 0.305 0.187

θ̂Sb=10 0.071 0.190 0.084 0.071 0.237 0.118

θ̂Sb=20 0.055 0.224 0.118 0.055 0.205 0.089

θ̂Sb=40 0.055 0.247 0.141 0.055 0.190 0.084+
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Table 2: Results of the absolute bias: the values in bold correspond to the better per-
formances with the best one ticked with the signal +; the largest values are
marked with italics.

abias MM ARUnif ARCauchy MAR MCBEV GARCH

θ̂C0.95 0.045 0.002 0.061 0.031 0.017 0.031

θ̂C0.975 0.013 0.008 0.025 0.003+ 0.049 0.037

θ̂C0.99 0.017 0.018 0.020 0.049 0.114 0.121

θ̂C 0.073 0.023 0.100 0.064 0.002+ 0.023+

θ̂Cms 0.002+ 0.763 0.600 0.005 0.044 0.323

θ̂R0.95 0.034 0.004 0.047 0.023 0.031 0.028

θ̂R0.975 0.005 0.011 0.016 0.009 0.062 0.092

θ̂R0.99 0.022 0.021 0.025 0.053 0.126 0.174

θ̂R 0.081 0.001+ 0.099 0.070 0.003 0.063

θ̂ML 0.012 0.064 0.043 0.006 0.057 0.045

θ̂Db=5 0.132 0.118 0.008+ 0.132 0.304 0.185

θ̂Db=10 0.063 0.187 0.077 0.063 0.235 0.116

θ̂Db=20 0.030 0.220 0.110 0.030 0.202 0.083

θ̂Db=40 0.016 0.234 0.124 0.016 0.188 0.069

θ̂Sb=5 0.132 0.118 0.008+ 0.132 0.304 0.185

θ̂Sb=10 0.063 0.187 0.077 0.063 0.235 0.116

θ̂Sb=20 0.029 0.221 0.111 0.029 0.201 0.082

θ̂Sb=40 0.010 0.240 0.130 0.010 0.182 0.063
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Figure 1: Negated daily minimum temperatures of winter months November-February
in Wooster, Ohio (sample size n = 602).

References

Ancona-Navarrete, M.A. and Tawn, J.A. (2000). A comparison of methods for estimating
the extremal index. Extremes 3, 5–38.

Chernick M.R., Hsing T., and McCormick W.P. (1991). Calculating the extremal index
for a class of stationary sequences. Advances in Applied Probability, 23, 835–850.

Coles S.G. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-
Verlag London.

Ferreira, M. (2016). The Lawrence-Lewis Pareto process: an extremal approach. Elec-
tronic Journal of Applied Statistical Analysis, 9(1), 76–89.

Ferreira, H. and Ferreira, M. (2012). On extremal dependence of block vectors. Kyber-
netika, 48(5), 988–1006.

Ferreira, H. and Ferreira, M. (2015). Estimating the extremal index through local de-
pendence. Accepted for publication in Annales de lInstitut Henri Poincar.

Ferro C.A.T. and Segers J. (2003). Inference for clusters of extreme values. Journal of
the Royal Statistical Society: Series B, 65, 545–556.
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