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In this paper, a new generalized distribution called the gamma log-logistic
Weibull (GLLoGW) distribution is proposed and studied. The GLLoGW
distribution include the gamma log-logistic, gamma log-logistic Rayleigh,
gamma log logistic exponential, log-logistic Weibull, log-logistic Rayleigh,
log-logistic exponential, log-logistic as well as other special cases as sub-
models. Some mathematical properties of the new distribution including
moments, conditional moments, mean and median deviations, Bonferroni
and Lorenz curves, distribution of the order statistics and Rényi entropy are
derived. Maximum likelihood estimation technique is used to estimate the
model parameters. A Monte Carlo simulation study to examine the bias and
mean square error of the maximum likelihood estimators is presented and an
application to real dataset to illustrate the usefulness of the model is given.

Keywords: Gamma distribution, Log-logistic Weibull distribution, Weibull
distribution, Maximum likelihood estimation.

1 Introduction

Motivated by the various applications of log-logistic and Weibull distributions in finance
and actuarial sciences, as well as in reliability and economics, we construct a new class of
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log-logistic Weibull-type distribution called the gamma log-logistic Weibull (GLLoGW)
distribution and apply the model to real lifetime data.

For any baseline cumulative distribution function (cdf) F (x), and x ∈ R, Zografos
and Balakrishnan (2009) defined the distribution (when θ = 1) with probability density
function (pdf) g(x) and cdf G(x) as follows

g(x) =
1

Γ(α)θα
[− log(F (x))]α−1(1− F (x))(1/θ)−1f(x), (1)

and

G(x) =
1

Γ(α)θα

∫ − log(F (x))

0
tα−1e−t/θdt =

γ(−θ−1 log(F (x)), α)

Γ(α)
, (2)

respectively, for α, θ > 0, where g(x) = dG(x)/dx, Γ(α) =
∫∞

0 tα−1e−tdt denotes the
gamma function, and γ(z, α) =

∫ z
0 t

α−1e−tdt denotes the incomplete gamma function.
The class of distributions for the special case of θ = 1, is referred to as the ZB-G
family of distributions. Also, (when θ = 1), Ristic and Balakrishnan (2012) proposed an
alternative gamma-generator defined by the cdf and pdf

G2(x) = 1− 1

Γ(α)θα

∫ − log(F (x))

0
tα−1e−t/θdt, α > 0, (3)

and

g2(x) =
1

Γ(α)θα
[− log(F (x))]α−1(F (x))(1/θ)−1f(x), (4)

respectively. Note that if θ = 1 and α = n + 1, in equation (1), we obtain the cdf and
pdf of the upper record values U given by

GU (u) =
1

n!

∫ − log(1−F (u))

0
yne−ydy, and gU (u) = f(u)[− log(1− F (u))]n/n!. (5)

Similarly, from equation (4), the pdf of the lower record values is given by

gL(t) = f(t)[− log(F (t))]n/n!. (6)

In this paper, we consider the generalized family of distributions given in equation (4)
via log-logistic Weibull distribution. In addition to the motivations provided by Ris-
tic and Balakrishnan (2012), its is also the case that generalization of the log-logistic
Weibull distribution via the gamma-generator also establishes the relationship between
the distributions in equations (1) and (4), and weighted distributions in general. See
Oluyede et al. (2014) for additional details.

Ristic and Balakrishnan (2012), provided motivations for the new family of distribu-
tions given in equation (3) when θ = 1, that is for n ∈ N, equation (3) above is the cdf
of the nth lower record value of a sequence of i.i.d. variables from a population with
density f(x). Ristic and Balakrishnan (2012) used the exponentiated exponential (EE)
distribution with cdf F (x) = (1 − e−βx)α, where α > 0 and β > 0, in equation (4) to
obtained and study the gamma-exponentiated exponential (GEE) model. See references
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therein for additional results on the GEE model. Pinho et al. (2012) presented the sta-
tistical properties of the gamma-exponentiated Weibull distribution. In this note, we
obtain a natural extension for log-logistic Weibull distribution, which we refer to as the
gamma log-logistic Weibull (GLLoGW) distribution.

This paper is organized as follows. In section 2, some basic results, the gamma-LLoGW
(GLLoGW) distribution, series expansion and its sub-models, hazard and reverse hazard
functions and the quantile function are presented. The moments and moment generating
function, mean and median deviations are given in section 3. Section 4 contains some
additional useful results on the distribution of order statistics and Rényi entropy. In
section 5.1, results on the estimation of the parameters of the GLLoGW distribution
via the method of maximum likelihood are presented. A Monte Carlo simulation study
is conducted to examine the bias and mean square error of the maximum likelihood
estimators in section 6. An application is given in section 7, followed by some concluding
remarks.

2 GLLoGW Distribution, Expansion of Density,
Sub-models, Hazard and Reverse Hazard Functions and
Quantile Function

In this section, the GLLoGW distribution, series expansion of its pdf, some sub-models,
quantile function, hazard and reverse hazard functions as well some graphs are presented.
Now, consider the log-logistic Weibull (LLoGW) distribution (Oluyede et al. (2016)) with
the cdf

FLLoGW (x) = 1− (1 + xc)−1 e−αx
β
, (7)

for c, α, β > 0 and x ≥ 0. The corresponding LLoGW pdf is given by

fLLoGW (x) = e−αx
β
(1 + xc)−1

{
αβxβ−1 +

cxc−1

(1 + xc)

}
= (1 + xc)−1 e−αx

β
[
(1 + xc)−1 cxc−1 + αβxβ−1

]
, (8)

c, α, β > 0, and x ≥ 0. By inserting LLoGW distribution in equation (3), the cdf
GGLLoGW (x) = G(x) of the GLLoGW distribution is obtained as follows:

GGLLoGW (x) = 1− 1

Γ(δ)θδ

∫ − log[1−(1+xc)−1e−αx
β

]

0
tδ−1e−t/θdt

= 1− γ(−θ−1 log[1− (1 + xc)−1e−αx
β
], δ)

Γ(δ)
, (9)
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Figure 1: Plots of GLLoGW Density Function

where x > 0, c, α, β, δ, θ > 0, and γ(x, δ) =
∫ x

0 t
δ−1e−tdt is the lower incomplete gamma

function. The corresponding GLLoGW pdf is given by

gGLLoGW (x) =
1

Γ(δ)θδ
(1 + xc)−1e−αx

β
[(1 + xc)−1cxc−1 + αβxβ−1]

×
(
− log[1− (1 + xc)−1e−αx

β
]

)δ−1

× [1− (1 + xc)−1e−αx
β
](1/θ)−1. (10)

The graph of pdf for some combinations of values of the model parameters are given
in Figure 1. The plots indicate that the GLLoGW pdf can be left or right skewed.

If a random variable X has the gamma log-logistic Weibull density, we write X ∼
GLLoGW (c, α, β, δ, θ). Herein, we set θ = 1, for convenience, and ease of computation.

Let y = [1 + xc]−1e−αx
β
, then using the series representation − log(1− y) =

∑∞
i=0

yi+1

i+1 ,
we have [

− log(1− y)

]δ−1

= yδ−1

[ ∞∑
m=0

(
δ − 1

m

)
ym
( ∞∑
s=0

ys

s+ 2

)m]
,

and applying the result on power series raised to a positive integer, with as = (s+ 2)−1,
that is, ( ∞∑

s=0

asy
s

)m
=
∞∑
s=0

bs,my
s, (11)
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where bs,m = (sa0)−1
∑s

l=1[m(l+1)−s]albs−l,m, and b0,m = am0 , (Gradshteyn and Ryzhik
(2000)), the GLLoGW pdf can be written as

gGLLoGW (x) =
1

Γ(δ)

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,my

m+s+δ((1 + xc)−1cxc−1 + αβxβ−1)

=
1

Γ(δ)

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,m[(1 + xc)−(m+s+δ)e−α(m+s+δ)xβ

× ([1 + xc]−1cxc−1 + αβxβ−1)

=
1

Γ(δ)

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,m

m+ s+ δ
(m+ s+ δ)

× [(1 + xc)−(m+s+δ)e−α(m+s+δ)xβ ]([1 + xc]−1cxc−1 + αβxβ−1)

=
∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,m

(m+ s+ δ)Γ(δ)

× fBW (x; c,m+ s+ δ, α(m+ s+ δ), β),

where fBW (x; c,m + s + δ, α(m + s + δ), β) is the Burr XII-Weibull (BW) pdf with
parameters c, m+ s+ δ, α(m+ s+ δ) and β. Let D = {(m, s) ∈ Z2

+}, then the weights
in the GLLoGW pdf are

wν =

(
δ − 1

m

)
bm,s

(m+ s+ δ)Γ(δ)
,

and
gGLLoGW (x) =

∑
ν∈D

wvfBW (x; c,m+ s+ δ, α(m+ s+ δ), β). (12)

It follows therefore that the GLLoGW density is a linear combination of the Burr XII-
Weibull pdfs. The statistical and mathematical properties can be readily obtained from
those of the Burr XII-Weibull distribution.

Note that gGLLoGW (x) is a weighted pdf, (see Oluyede (1999) and references therein
for additional details) with the weight function

w(x) = [− log(1− F (x))]α−1[1− F (x)]
1
θ
−1, (13)

that is,

gGLLoGW (x) =
[− log(1− F (x))]α−1[1− F (x)]

1
θ
−1

θαΓ(α)
f(x)

=
w(x)f(x)

EF (w(X))
,

where 0 < EF [[− log(1 − F (X))]α−1[1 − F (X)]
1
θ
−1] = θαΓ(α) < ∞, is the normalizing

constant. Similarly,

g2(x) =
[− log(F (x))]α−1[F (x)]

1
θ
−1

θαΓ(α)
f(x) =

w2(x)f(x)

EF (w2(X))
,
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where 0 < EF (w2(X)) = EF ([− log(F (X))]α−1[F (X)]
1
θ
−1) = θαΓ(α) <∞.

2.1 Some Sub-models of the GLLoGW Distribution

There are several useful sub-models that can be readily obtained from the GLLoGW
distribution. Some of the sub-models of the GLLoGW distribution are listed below:

• If β = 1, we obtain the gamma log-logistic exponential (GLLoGE) distribution.

• If β = 2, we have the gamma log-logistic Rayleigh (GLLoGR) distribution.

• When α→ 0+, we have the gamma log-logistic (GLLoG) distribution.

• If β = δ = θ = 1, then the GLLoGW cdf reduces to the two-parameter log-logistic
exponential (LLoGE) distribution given by

G(x) = 1− (1 + xc)−1 exp(−αx), (14)

for c, α > 0, and x ≥ 0. We denote this model by GLLoGW (c, α, 1, 1, 1).

• If β = 2, δ = θ = 1, then the GLLoGW cdf reduces to the two-parameter log-
logistic Rayleigh (LLoGR) distribution given by

G(x) = 1− (1 + xc)−1 exp(−αx2), (15)

for c, α > 0, and x ≥ 0. We denote this model by GLLoGW (c, α, 2, 1, 1).

• If θ = 1, then the GLLoGW cdf reduces to the four parameter distribution with
cdf given by

G(x) =
1

Γ(δ)
γ(− log(1− (1 + xc)−1 exp(−αxβ)), δ), (16)

for c, δ, α, β > 0, and x ≥ 0. This model is denoted by GLLoGW (c, α, β, δ, 1).

• If c = θ = 1, then the GLLoGW cdf reduces to the three parameter distribution
with cdf given by

G(x) =
1

Γ(δ)
γ(− log(1− (1 + x)−1 exp(−αxβ)), δ), (17)

for δ, α, β > 0, and x ≥ 0. This model is denoted by GLLoGW (1, α, β, δ, 1).

• If c = β = θ = 1, then the GLLoGW cdf reduces to the two parameter distribution
given by

G(x) =
1

Γ(δ)
γ(− log(1− (1 + x)−1 exp(−αx)), δ), (18)

for δ, α > 0, and x ≥ 0. We denote this model by GLLoGW (1, α, 1, δ, 1).
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• If c = θ = 1 and β = 2, then the GLLoGW cdf reduces to the two parameter
model

G(x) =
1

Γ(δ)
γ(− log(1− (1 + x)−1 exp(−αx2)), δ), (19)

for δ, α > 0, and x ≥ 0. We denote this model by GLLoGW (1, α, 2, δ, 1).

• If β = δ = θ = 1, we obtain the log-logistic exponential (LLoGE) distribution.

• If β = 2, and δ = θ = 1, we have the log-logistic Rayleigh (LLoGR) distribution.

• When α→ 0+, δ = 1 and θ = 1, we have the log-logistic (LLoG) distribution.

• If c = δ = θ = 1, then the GLLoGW cdf reduces to the two-parameter distribution
with cdf given by

G(x) = 1− (1 + x)−1 exp(−αxβ), (20)

for α, β > 0, and x ≥ 0. We denote this model by GLLoGW (1, α, β, 1, 1).

• If c = β = δ = 1 and θ = 1, then the GLLoGW cdf reduces to the one-parameter
distribution given by

G(x) = 1− (1 + x)−1 exp(−αx), (21)

for α > 0, and x ≥ 0. We denote this model by GLLoGW (1, α, 1, 1, 1).

• If c = δ = θ = 1, and β = 2, then the GLLoGW cdf reduces to the one-parameter
distribution given by

G(x) = 1− (1 + x)−1 exp(−αx2), (22)

for α > 0, and x ≥ 0. We denote this model by GLLoGW (1, α, 2, 1, 1).

2.2 Hazard and Reverse Hazard Functions

Let X be a continuous random variable with distribution function F, and probability
density function (pdf) f, then the hazard function, reverse hazard function and mean
residual life functions are given by hF (x) = f(x)/F (x), τF (x) = f(x)/F (x), and δF (x) =∫∞
x F (u)du/F (x), respectively. The functions hF (x), δF (x), and F (x) are equivalent

(Shaked and Shanthikumar (1994)). The hazard and reverse hazard functions of the
GLLoGW distribution are given by

hG(x) =
θ−δ(− log(1− [1 + xc]−1e−αx

β
))δ−1[(1 + xc)−1e−αx

β
]

γ(δ,−θ−1 log(1− (1 + xc)−1e−αxβ ))

× [(1 + xc)−1cxc−1 + αβxβ−1][1− (1 + xc)−1e−αx
β
](1/θ)−1, (23)

and

τG(x) =
θ−δ(− log(1− [1 + xc]−1e−αx

β
))δ−1[(1 + xc)−1e−αx

β
]

Γ(δ)− γ(δ,−θ−1 log(1− (1 + xc)−1e−αxβ ))

× [(1 + xc)−1cxc−1 + αβxβ−1][1− (1 + xc)−1e−αx
β
](1/θ)−1 (24)
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Figure 2: Plots of GLLoGW hazard function

for x ≥ 0, c, α, β, δ, θ > 0, respectively.

The graph of hazard function for selected parameters are given in Figure 2. The plots
show various shapes including monotonically decreasing, monotonically increasing, bath-
tub and upside down bathtub shapes for five combinations of values of the parameters.
This very attractive flexibility makes the GLLoGW hazard function useful and suitable
for monotonic and non-monotone empirical hazard behaviors which are more likely to
be encountered or observed in real life situations.

2.3 GLLoGW Quantile Function

The quantile function of GLLoGW distribution is obtained by solving the equation

GGLLoGW (x) = u, 0 < u < 1. (25)

That is,

γ(δ,−θ−1 log(1− (1 + xc)−1e−αx
β
) = (1− u)Γ(δ),

so that

1− (1 + xc)−1e−αx
β

= e−θγ
−1((1−u)Γ(δ),δ),

and

− log(1 + xc)− αxβ = log
(

1− e−θγ−1((1−u)Γ(δ),δ)
)
.
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The quantile function of the GLLoGW distribution is obtained by solving the nonlinear
equation

αxβ + log(1 + xc) + log

[
1− e−θγ−1((1−u)Γ(δ),δ)

]
= 0, (26)

by using numerical methods. Consequently, random numbers can be readily generated
from GLLoGW distribution based on equation (26). Some quantile for selected param-
eters are given in Table 1.

Table 1: Table of Quantiles for Selected Parameters

u (1,3,2,1,4) (5,5,1,1,5) (1,1,2,1,0.5) (2,1,0.8,1.5,2) (1,0.3,2,0.4,4)

0.1 0.00013 0.00000 0.32006 0.00038 0.01098

0.2 0.00158 0.00012 0.46170 0.00302 0.07972

0.3 0.00798 0.00047 0.57981 0.01036 0.23571

0.4 0.02444 0.00206 0.69001 0.02562 0.49030

0.5 0.05653 0.00633 0.80005 0.05325 0.83897

0.6 0.10883 0.01618 0.91625 0.09938 1.26860

0.7 0.18610 0.03681 1.04674 0.17324 1.77802

0.8 0.29790 0.07940 1.20696 0.29224 2.40096

0.9 0.47553 0.17853 1.44124 0.51027 3.27577

3 Moments, Moment Generating Function, Conditional
Moments, Mean and Median Deviations

In this section, we present the moments, moment generating function, mean and median
deviations for the GLLoGW distribution. Moments are very important and necessary
in any statistical analysis, especially in applications. Moments can be used to study the
most important features and characteristics of a distribution (e.g., tendency, dispersion,
skewness and kurtosis). These measures (moments, moment generating function, mean
and median deviations) can be readily obtained for the sub-models given in section 2.
For ease of computation, and without loss of generality, we set θ = 1.

3.1 Moments and Moment Generating Function

Let α∗ = α(m+ s+ δ), and Y ∼ BurrXII −Weibull(c,m+ s+ δ, α∗, δ). Note that the
rth moment of the Burr XII-Weibull (BW) random variable Y is obtained as follows.
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The rth raw moment, µ′r of the BW distribution is given by:

µ′r = E(Y r) =

∫ ∞
0

yre−α(m+s+δ)yβ (1 + yc)−(m+s+δ)

×
(
α(m+ s+ δ)βyβ−1 +

(m+ s+ δ)cyc−1

1 + yc

)
dy

=

∫ ∞
0

c(m+ s+ δ)yr+c−1(1 + yc)−(m+s+δ)−1e−α(m+s+δ)yβdy

+

∫ ∞
0

α(m+ s+ δ)βyr+β−1(1 + yc)−(m+s+δ)e−α(m+s+δ)yβdy.

Let t = (1 + yc)−1, and apply the fact that e−α(m+s+δ)yβ =
∑∞

p=0
(−1)p[α(m+s+δ)]pypβ

p! to
get

E(Y r) =
∞∑
p=0

(−1)p(m+ s+ δ)[α(m+ s+ δ)]p

p!

∫ 1

0
t(m+s+δ)−( pβ+r

c
)−1(1− t)

pβ+r
c dt

+
∞∑
p=0

(−1)pβ[α(m+ s+ δ)]p+1

p!c

∫ 1

0
t(m+s+δ)−( pβ+β+r

c
)−1(1− t)

pβ+β+r
c
−1dt

=
∞∑
p=0

(−1)p[α(m+ s+ δ)]p

p!

×
[
(m+ s+ δ)B

(
(m+ s+ δ)− pβ + r

c
, 1 +

pβ + r

c

)
+

α(m+ s+ δ)β

c
B

(
(m+ s+ δ)− pβ + β + r

c
,
pβ + β + r

c

)]
, (27)

for c,m+ s+ δ, α(m+ s+ δ), β > 0, and c > pβ + β + r. Consequently, the rth moment
of the GLLoGW distribution is given by

E(Xr) =
∑
ν∈D

wνE(Y r), (28)

where E(Y r) is given by equation (27). That is, the rth moment of the GLLoGW
distribution is

E(Xr) =

∞∑
m,s,p=0

(
δ − 1

m

)
bs,m(−1)p[α(m+ s+ δ)]p

Γ(δ)p!

×
[
B

(
m+ s+ δ −

(
r + pβ

c

)
,
r + pβ + c

c

)
+

αβ

c
B

(
m+ s+ δ −

(
r + β + pβ

c

)
,
r + β + pβ

c

)]
.

The moment generating function (MGF) , for |t| < 1, is given by:

MX(t) =
∑
ν∈D

wνMY (t) =
∑
ν∈D

∞∑
i=0

wν
ti

i!
E(Y i).
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The coefficients of variation (CV), Skewness (CS) and Kurtosis (CK) can be readily
obtained. The variance (σ2), Standard deviation (SD=σ), coefficient of variation (CV),
coefficient of skewness (CS) and coefficient of kurtosis (CK) are given by

σ2 = µ′2 − µ2, CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2
− 1,

CS =
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
, and CK =

µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
,

respectively. Some moments for selected parameters values are given in Table 2 and
plots are given in Figure 3 to Figure ??. Plots of skewness and kurtosis for choices of
the model parameters reveal that skewness and kurtosis depend on the parameters c, β
and δ.

Table 2: Table of Moments for Selected Parameters

(1,3,2,1,4) (5,5,1,1,5) (1,1,2,1,0.5) (2,1,0.8,1.5,2) (0.2,3,2,0.5,2)

EX 0.15808 0.05698 0.84944 0.17384 0.44716

EX2 0.07266 0.01730 0.91231 0.10972 0.39233

EX3 0.04606 0.00860 1.15217 0.11884 0.41604

EX4 0.03530 0.00559 1.64786 0.19367 0.50396

EX5 0.03094 0.00436 2.60790 0.45245 0.67730

SD 0.21834 0.11857 0.43676 0.28195 0.43860

CV 1.38125 2.08097 0.51418 1.62188 0.98086

CS 1.87303 3.60512 0.63778 3.21757 0.81253

CK 6.68539 19.93772 3.32013 20.28294 2.98737

3.2 Conditional Moments

For lifetime models, it is of particular interest to find the conditional moments and the
mean residual lifetime function. The rth conditional moment of the GLLoGW distribu-
tion is given by

E(Xr|X > t) =
1

GGLLoGW (t)

∫ ∞
t

xrgGLLoGW (x)dx

=
1

GGLLoGW (t)

∞∑
m,s,p=0

(
δ − 1

m

)
bs,m(−1)p[α(m+ s+ δ)]p

Γ(δ)p!

×
[
B[1+tc]−1

(
m+ s+ δ −

(
r + pβ

c

)
,
r + pβ + c

c

)
+

αβ

c
B[1+tc]−1

(
m+ s+ δ −

(
r + β + pβ

c

)
,
r + β + pβ

c

)]
,
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Figure 3: Plots of Skewness and Kurtosis

for c,m+s+δ, α(m+s+δ), β > 0, and c > pβ+β+r, where By(a, b) =
∫ y

0 u
a−1(1−u)b−1du

is the incomplete beta function. The mean residual life function is given by E(X−t|X >
t) = E(X|X > t) − t = VG(t) − t, where VG(t) is referred to as the vitality function of
the distribution function G.

3.3 Mean Deviations

The amount of scatter in a population can be measured to some extent by the totality
of deviations from the mean and median. These are known as the mean deviation about
the mean and the mean deviation about the median. If X has the GLLoGW distribution,
we can derive the mean deviation about the mean µ by

δ1(X) =

∫ ∞
0
|x− µ|gGLLoGW (x)dx = 2µGGLLoGW (µ)− 2µ+ 2T (µ),

and the median deviation about the median M by

δ2(X) =

∫ ∞
0
|x−M |gGLLoGW (x)dx = 2T (M)− µ,
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Figure 4: Plots of Skewness and Kurtosis

where µ = E(X) is given in equation (28) with r = 1, M the median of GGLLoGW (x) in
equation (26) and T (a) =

∫∞
a x · gGLLoGW (x)dx. Note that

T (a) =
∞∑

m,s,p=0

(
δ − 1

m

)
bs,m(−1)p[α(m+ s+ δ)]p

Γ(δ)p!

×
[
B[1+ac]−1

(
m+ s+ δ −

(
r + pβ

c

)
,
r + pβ + c

c

)
+

αβ

c
B[1+ac]−1

(
m+ s+ δ −

(
r + β + pβ

c

)
,
r + β + pβ

c

)]
. (29)

3.4 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves are widely used tool for analyzing and visualizing income
inequality. Lorenz curve, L(p) can be regarded as the proportion of total income volume
accumulated by those units with income lower than or equal to the volume x, and
Bonferroni curve, B(p) is the scaled conditional mean curve, that is, ratio of group mean
income of the population. In this subsection, we present Bonferroni and Lorenz curves.
Bonferroni and Lorenz curves have applications not only in economics for the study
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Figure 5: Plots of Skewness and Kurtosis

income and poverty, but also in other fields such as reliability, demography, insurance
and medicine. Bonferroni and Lorenz curves for the GLLoGW distribution are given by

B(p) =
1

pµ

∫ q

0
xgGLLoGW (x)dx =

1

pµ
[µ− T (q)],

and

L(p) =
1

µ

∫ q

0
xgGLLoGW (x)dx =

1

µ
[µ− T (q)],

respectively, where T (q) =
∫∞
q xgGLLoGW (x)dx is given by equation (29) with “q”in place

of “a”, and q = G−1
GLLoGW

(p), 0 ≤ p ≤ 1.

4 Order Statistics and Rényi Entropy

Order statistics play an important role in probability and statistics, particularly in relia-
bility and lifetime data analysis. The concept of entropy plays a vital role in information
theory. The entropy of a random variable is defined in terms of its probability distribu-
tion and can be shown to be a good measure of randomness or uncertainty.
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Figure 6: Plots of Skewness and Kurtosis

In this section, we present the distribution of the ith order statistics and Rényi entropy
for the GLLoGW distribution. We set θ = 1, for ease of computation in this section.

4.1 Order Statistics

In this subsection, the pdf of the ith order statistic and the corresponding moments
are presented. Let X1, X2, ...., Xn be independent and identically distributed GLLoGW
random variables. The pdf of of the ith order statistic for a random sample of size n for
any gamma−G family with density (4) can be expressed as an infinite weighted sum of
gamma−G densities. That is, using the binomial expansion

(1−GGLLoGW (x))i−1 =

i−1∑
j=0

(
i− 1

j

)
(−1)j [GGLLoGW (x)]j ,
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Figure 7: Plots of Skewness and Kurtosis

the pdf of the ith order statistic from the GLLoGW pdf gGLLoGW (x) can be written as

gi:n(x) =
n!gGLLoGW (x)

(i− 1)!(n− i)!
[GGLLoGW (x)]i−1[1−GGLLoGW (x)]n−i

=
n!gGLLoGW (x)

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)
[GGLLoGW (x)]n−i+j

=
n!gGLLoGW (x)

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)

×
[
γ(− log(1− (1 + xc)−1e−αx

β
), δ)

Γ(δ)

]n−i+j
.

Now, let 0 < y = (1 + xc)−1e−αx
β
< 1, x > 0, c, α, β > 0. Using the fact that γ(x, δ) =∑∞

m=0
(−1)mxm+δ

(m+δ)m! , and setting cm = (−1)m/((m+ δ)m!), we can write the pdf of the ith
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Figure 8: Plots of Skewness and Kurtosis

order statistic from the GLLoGW distribution as follows:

gi:n(x) =
n!gGLLoGW (x)

(i− 1)!(n− i)!

i−1∑
j=0

(
i− 1

j

)
(−1)j

[Γ(δ)]n−i+j

× [− log(1− (1 + xc)−1e−αx
β
)]δ(n−i+j)

×
[ ∞∑
m=0

(−1)m(log(1− (1 + xc)−1e−αx
β
))m

(m+ δ)m!

]n−i+j
=

n!gGLLoGW (x)

(i− 1)!(n− i)!

i−1∑
j=0

(
i− 1

j

)
(−1)j

[Γ(δ)]n−i+j

× [− log(1− (1 + xc)−1e−αx
β
)]δ(n−i+j)

×
∞∑
m=0

dm,n−i+j(− log(1− (1 + xc)−1e−αx
β
))m,
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where d0 = c
(n−i+j)
0 , dm,n−i+j = (mc0)−1

∑m
l=1[(n− i+ j)l−m+ l]cldm−l,n−i+j . We note

that

gi:n(x) =
n!gGLLoGW (x)

(i− 1)!(n− i)!

i−1∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1

[Γ(δ)]n−i+j

× [− log(1− (1 + xc)−1e−αx
β
)]δ(n−i+j)+m

=
n![− log(1− (1 + xc)−1e−αx

β
)]δ−1

(i− 1)!(n− i)!Γ(δ)

× (1 + xc)−1e−αx
β
((1 + xc)−1cxc−1 + αβxβ−1)

×
i−1∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,n−i+j

[Γ(δ)]n−i+j

× [− log(1− (1 + xc)−1e−αx
β
)]δ(n−i+j)+m

=
n!

(i− 1)!(n− i)!

i−1∑
j=0

∞∑
m=0

(
i− 1

j

)
(−1)jdm,n−i+j

[Γ(δ)]n−i+j

× Γ(δ(n− i+ j) +m+ δ)

Γ(δ(n− i+ j) +m+ δ)

[− log(1− (1 + xc)−1e−αx
β
)]δ(n−i+j)+m+δ−1

Γ(δ)

× (1 + xc)−1e−αx
β
((1 + xc)−1cxc−1 + αβxβ−1)

=
n!

(i− 1)!(n− i)!

i−1∑
j=0

∞∑
m=0

(
i− 1

j

)

× (−1)jdm,n−i+jΓ(δ(n− i+ j) +m+ δ)

[Γ(δ)]n−i+j+1
fGLLoGW (x),
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Figure 10: Plots of Skewness and Kurtosis

where

fGLLoGW (x) =
[− log(1− (1 + xc)−1e−αx

β
)]δ(n−i+j)+m+δ−1

Γ(δ(n− i+ j) +m+ δ)

× (1 + xc)−1e−αx
β
((1 + xc)−1cxc−1 + αβxβ−1) (30)

is the GLLoGW pdf with parameters c, α, β > 0, and shape parameter δ∗ = δ(n − i +
j) + m + δ > 0. It follows therefore that the jth moment of the ith order statistic from
the GLLoGW density is given by

E(Xj
i:n) =

∑
ν∈D

i−1∑
j=0

∞∑
m,k,n=0

wν`i,j,mE(Xj),

where E(Xj) is the jth moment of the GLLoGW distribution given by equation (28)
with the parameters c, α, β and δ(n− i+ j) +m+ δ > 0,

`i,j,m =
n!

(i− 1)!(n− i)!
(−1)jdm,n−i+jΓ(δ(n− i+ j) +m+ δ)

[Γ(δ)]n−i+j+1
.
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Figure 11: Plots of Skewness and Kurtosis

We note that these moments are often used in several areas including reliability, survival
analysis, biometry, engineering, insurance and quality control for the prediction of future
failures times from a set of past or previous failures.

4.2 Rényi Entropy

Rényi entropy (Rényi (1960)) is an extension of Shannon entropy. Rényi entropy is
defined to be

IR(v) =
1

1− v
log

(∫ ∞
0

[gGLLoGW (x; c, α, β, δ)]vdx

)
, v 6= 1, v > 0. (31)

Rényi entropy tends to Shannon entropy as v → 1. Note that

∫ ∞
0

gv
GLLoGW

(x)dx =

(
1

Γ(δ)

)v ∫ ∞
0

(1 + xc)−ve−vαx
β
((1 + xc)−1cxc−1 + αβxβ−1)v

× [− log(1− (1 + xc)−1e−αx
β
)]v(δ−1)dx.
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Figure 12: Plots of Skewness and Kurtosis

Let 0 < y = (1 + xc)−1e−αx
β
< 1. Note that

((1 + xc)−1cxc−1 + αβxβ−1)v =

v∑
j=0

(
v

j

)
(αβ)v−jcjxcj−j+(β−1)(v−j)(1 + xc)−j ,

and

[− log(1−(1+xc)−1e−αx
β
)]vδ−v =

∞∑
m,s=0

(
vδ − v
m

)
bs,m(1+xc)−(m+s+vδ−v)e−α(m+s+vδ−v)xβ ,

so that

∫ ∞
0

gv
GLLoGW

(x)dx =

∞∑
m,s,l=0

v∑
j=0

(
vδ − v
m

)(
v

j

)
cj(αβ)v−j(−1)lbs,m[α(m+ s+ vδ)]l

l!

×
(

1

Γ(δ)

)v ∫ ∞
0

xcj+lβ+vβ−jβ−v(1 + xc)−(m+s+vδ+j)dx.
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Figure 13: Plots of Skewness and Kurtosis

Note that we have applied the Taylor series expansion to e−α(m+s+vδ)xβ < 1, v > 0,
given below

e−α(m+s+vδ)xβ =

∞∑
l=0

(−1)l[α(m+ s+ vδ)]lxlβ

l!
.

Now, with y = (1 + xc)−1e−αx
β
, we have

∫ ∞
0

gv
GLLoGW

(x)dx =

∞∑
m,s,l=0

v∑
j=0

(
vδ − v
m

)(
v

j

)
cj(αβ)v−j(−1)lbs,m[α(m+ s+ vδ)]l

l!

(
1

Γ(δ)

)v
× B

(
m+ s+ vδ +

jβ + v − lβ − vβ − 1

c
,
cj + lβ + vβ − jβ − v + 1

c

)
,

for v > 0, v 6= 1.
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Figure 14: Plots of Skewness and Kurtosis

Consequently, Rényi entropy for the GLLoGW distribution is given by

IR(v) =
1

1− v
log

[ ∞∑
m,s,l=0

v∑
j=0

(
vδ − v
m

)(
v

j

)

× cj(αβ)v−j(−1)lbs,m[α(m+ s+ vδ)]l

l!

(
1

Γ(δ)

)v
× B

(
m+ s+ vδ +

jβ + v − lβ − vβ − 1

c
,
cj + lβ + vβ − jβ − v + 1

c

)]
,

for v > 0, v 6= 1.

5 Estimation and Inference

In this section, we discuss several methods of estimation of the model parameters in-
cluding maximum likelihood, ordinary least squares, weighted least squares, minimum
distance and maximum product of spacings. The method of maximum likelihood is
presented in detail.



Electronic Journal of Applied Statistical Analysis 229

5.1 Maximum Likelihood Estimation

In this subsection, we present the maximum likelihood estimates of the GLLoGW model
parameters. Let X ∼ GLLoGW (c, α, β, δ, θ) and ∆ = (c, α, β, δ, θ)T be the parameter
vector. The log-likelihood ` = `(∆) based on a random sample of size n, say x1, x2, ..., xn
from the GLLoGW distribution is given by

`(∆) = −n ln Γ(δ) + (δ − 1)
n∑
i=1

ln
[
− ln

(
1− (1 + xci )

−1e−αx
β
i

)]
− nδ ln(θ)−

n∑
i=1

ln(1 + xci )− α
n∑
i=1

xβi

+
n∑
i=1

ln[(1 + xci )
−1cxc−1

i + αβxβ−1
i ]

+

(
1

θ
− 1

) n∑
i=1

ln
(

1− (1 + xci )
−1e−αx

β
i

)
. (32)

The first derivative of the log-likelihood function with respect to each component of the
parameter vector ∆ = (c, α, β, δ, θ)T are given by

∂`

∂c
= −(δ − 1)

n∑
i=1

xci (1 + xci )
−2e−αx

β
i (ln(xi))

ln(1− (1 + xci )
−1e−αx

β
i )
−

n∑
i=1

xci ln(xi)

1 + xci

+

n∑
i=1

xc−1
i (1 + xci )

−1[1 + c ln(xi)− cxci (1 + xci )
−1 ln(xi)]

(1 + xci )
−1cxc−1

i + αβxβ−1
i

+

(
1

θ
− 1

) n∑
i=1

(1 + xci )
−2e−αx

β
i xci ln(xi)

1− (1 + xci )
−1e−αx

β
i

,

∂`

∂α
= (δ − 1)

n∑
i=1

xβi (1 + xci )
−1e−αx

β
i

ln(1− (1 + xci )
−1e−αx

β
i )

+

n∑
i=1

βxβ−1
i

(1 + xci )
−1cxc−1

i + αβxβ−1
i

−
n∑
i=1

xβi +

(
1

θ
− 1

) n∑
i=1

(1 + xci )
−1e−αx

β
i xβi

1− (1 + xci )
−1e−αx

β
i

,

∂`

∂β
= −(δ − 1)

n∑
i=1

αxβi (1 + xci )
−1 ln(xi)

ln(1− (1 + xci )
−1e−αx

β
i )

+

n∑
i=1

αxβ−1
i [1 + β ln(xi)]

(1 + xci )
−1cxc−1

i + αβxβ−1
i

− α
n∑
i=1

xβi +

(
1

θ
− 1

) n∑
i=1

(1 + xci )
−1e−αx

β
i αxβi ln(xi)

1− (1 + xci )
−1e−αx

β
i

,

∂`

∂δ
= −nΓ(δ)

Γ(δ)
+

n∑
i=1

ln
[
− ln

(
1− (1 + xci )

−1e−αx
β
i

)]
− n ln(θ),
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and
∂`

∂θ
= −nδ

θ
+

1

θ2

n∑
i=1

ln
(

1− (1 + xci )
−1e−αx

β
i

)
.

The total log-likelihood function based on a random sample of n observations: x1, x2, ...., xn
drawn from the GLLoGW distribution is given by ` = `(∆) =

∑n
i=1 `i(∆), where `i(∆),

i = 1, 2, ....., n is the log-likelihood of a single observation x of the random variable
X. The equations obtained by setting the above partial derivatives to zero are not in
closed form and the values of the parameters c, α, β, δ, and θ must be found by using
iterative methods. The maximum likelihood estimates of the parameters, denoted by
∆̂ is obtained by solving the nonlinear equation (∂`∂c ,

∂`
∂α ,

∂`
∂β ,

∂`
∂δ ,

∂`
∂θ )T = 0, using a nu-

merical method such as Newton-Raphson procedure. The Fisher information matrix is
given by I(∆) = [Iθi,θj ]5X5 = E(− ∂2`

∂θi∂θj
), i, j = 1, 2, 3, 4, 5 can be numerically obtained

by MATLAB, SAS or R software. The total Fisher information matrix nI(∆) can be
approximated by

Jn(∆̂) ≈
[
− ∂2`

∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, 2, 3, 4, 5. (33)

For a given set of observations, the matrix given in equation (33) is obtained after
the convergence of the Newton-Raphson procedure. The expectations in the Fisher
Information Matrix (FIM) can be obtained numerically. Let ∆̂ = (ĉ, α̂, β̂, δ̂, θ̂) be the
maximum likelihood estimate of ∆ = (c, α, β, δ, θ). Under the usual regularity conditions
and that the parameters are in the interior of the parameter space, but not on the

boundary, we have:
√
n(∆̂−∆)

d−→ N5(0, I−1(∆)), where I(∆) is the expected Fisher
information matrix. The asymptotic behavior is still valid if I(∆) is replaced by the
observed information matrix evaluated at ∆̂, that is J(∆̂). The multivariate normal
distribution N5(0, J(∆̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to
construct confidence intervals and confidence regions for the individual model parameters
and for the survival and hazard rate functions. That is, the approximate 100(1 − η)%
two-sided confidence intervals for c, α, β, δ and θ are given by:

ĉ± Z η
2

√
I−1
cc (∆̂), α̂± Z η

2

√
I−1
αα(∆̂), β̂ ± Z η

2

√
I−1
ββ (∆̂), δ̂ ± Z η

2

√
I−1
δδ (∆̂),

and θ̂±Z η
2

√
I−1
θθ (∆̂), respectively, where I−1

cc (∆̂), I−1
αα(∆̂), I−1

ββ (∆̂), I−1
δδ (∆̂), and I−1

θθ (∆̂),

are the diagonal elements of I−1
n (∆̂) = (nI(∆̂))−1, and Z η

2
is the upper η

2
th percentile

of a standard normal distribution.

We maximized the likelihood function using NLmixed in SAS as well as the function
nlm in R (Team (2011)). These functions were applied and executed for wide range of
initial values. This process often results or lead to more than one maximum, however,
in these cases, we take the MLEs corresponding to the largest value of the maxima. In
a few cases, no maximum was identified for the selected initial values. In these cases, a
new initial value was tried in order to obtain a maximum.
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The issues of existence and uniqueness of the MLEs are theoretical interest and has
been studied by several authors for different distributions including Seregin (2010), San-
tos Silva and Tenreyro (2010), Zhou (2009), and Xia et al. (2009). At this point we are
not able to address the theoretical aspects (existence, uniqueness) of the MLE of the
parameters of the GLLoGW distribution.

The maximum likelihood estimates (MLEs) of the GLLoGW parameters c, α, β, δ,
and θ are computed by maximizing the objective function via the subroutine NLmixed
in SAS and the function nlm in R. The estimated values of the parameters (standard
error in parenthesis), -2log-likelihood statistic, Akaike Information Criterion, AIC =
2p − 2 ln(L), Bayesian Information Criterion, BIC = p ln(n) − 2 ln(L), and Consistent

Akaike Information Criterion, AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(∆̂) is the value

of the likelihood function evaluated at the parameter estimates, n is the number of
observations, and p is the number of estimated parameters are presented. In order to
compare the models, we use the criteria stated above. Note that for the value of the
log-likelihood function at its maximum (` = ln(L)), larger value is good and preferred,
and for AIC, AICC and BIC, smaller values are preferred. The GLLoGW distribution is
fitted to the data sets and these fits are compared to the fits of the GLLoGE, GLLoGR,
gamma-Dagum (Oluyede et al. (2014)), exponentiated Kumaraswamy Dagum (EKD)
(Huang and Oluyede (2014)), beta modified Weibull (BMW) (Silva et al. (2010)) and
beta Weibull-Poisson (BWP) (Percontini et al. (2013)) distributions.

We can use the likelihood ratio (LR) test to compare the fit of the GLLoGW distri-
bution with its sub-models for a given data set. For example, to test θ = 1, the LR
statistic is ω = 2[ln(L(ĉ, α̂, β̂, δ̂, θ̂))− ln(L(c̃, α̃, β̃, δ̃, 1))], where ĉ, α̂, β̂, δ̂ and θ̂, are the
unrestricted estimates, and c̃, α̃, β̃, and δ̃, are the restricted estimates. The LR test
rejects the null hypothesis if ω > χ2

ε
, where χ2

ε
denote the upper 100ε% point of the χ2

distribution with 1 degree of freedom.

5.2 Ordinary Least Squares

In this subsection, we discuss the method of ordinary least squares. Let y1:n < y2:n <
... < yn:n denote the order statistics based on a random sample of size n from the
distribution with cdf G(y), then

E[G(yi:n)] =
i

n+ 1
and V ar[G(yi:n)] =

i(n− i+ 1)

(n+ 1)2(n+ 2)
. (34)

The ordinary least-square (OLS) estimates of the GLLoGW parameters ∆ = (c, α, β, δ, θ)T ,
say, (ĉOLS , α̂OLS , β̂OLS , δ̂OLS , θ̂OLS )T are obtained by minimizing the function

Q(∆|y) =

n∑
i=1

(
G(yi:n|∆)− i

n+ 1

)2

. (35)

The OLS estimates of the parameters, denoted by ∆̂OLS is obtained by solving the
nonlinear equations(

∂Q(∆|y)

∂c
,
∂Q(∆|y)

∂δ
,
∂Q(∆|y)

∂α
,
∂Q(∆|y)

∂β
,
∂Q(∆|y)

∂θ

)T
= 0,
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using numerical methods.

5.3 Weighted Least Squares

The weighted least square (WLS) estimates of the GLLoGW parameters ∆ = (c, α, β, δ, θ)T ,
say, (ĉWLS , α̂WLS , β̂WLS , δ̂WLS , θ̂WLS )T are obtained by minimizing the function

W (∆|y) =
n∑
i=1

1

V ar[G(yi:n)]

(
G(yi:n|∆)− i

n+ 1

)2

=
n∑
i=1

wi

(
G(yi:n|∆)− i

n+ 1

)2

, (36)

where wi = (n+1)2(n+2)
i(n−i+1) . The WLS estimates of the parameters, denoted by ∆̂WLS is

obtained by solving the nonlinear equations(
∂W (∆|y)

∂c
,
∂W (∆|y)

∂δ
,
∂W (∆|y)

∂α
,
∂W (∆|y)

∂β
,
∂W (∆|y)

∂θ

)T
= 0,

using a numerical method.

5.4 Minimum Distance Methods

The estimates of the GLLoGW parameters can be obtained via the minimization of
the well known Anderson-Darling and Cramér-von Mises goodness-of-fit statistics. This
class of goodness-of-fit statistics is based on the difference between the estimates of the
GLLoGW cdf and the corresponding empirical distribution function.

5.4.1 Anderson-Darling Method

The Anderson-Darling (AD) estimates of the GLLoGW model parameters ∆AD, say
∆̂AD are obtained by minimizing the function

AD(∆|y) = −n− 1

n

n∑
i=1

(2i− 1) log (G(yi:n|∆)[1−G(yn+1−i:n|∆)]) . (37)

with respect to parameters. The AD estimates of the parameters, denoted by ∆̂AD is
obtained by solving the nonlinear equations(

∂AD(∆|y)

∂c
,
∂AD(∆|y)

∂δ
,
∂AD(∆|y)

∂α
,
∂AD(∆|y)

∂β
,
∂AD(∆|y)

∂θ

)T
= 0,

using a numerical method.
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5.4.2 Cramér-von Mises Method

The Cramér-von Mises (CVM) estimates of the GLLoGW parameters ∆CVM , say ∆̂CVM

are obtained by minimizing the function

CVM(∆|y) =
1

12n
+

n∑
i=1

(
G(yi:n|∆)− 2i− 1

2n

)2

, (38)

with respect to the parameters ∆ = (c, α, β, δ, θ)T .

5.5 Maximum Product of Spacings Method

The (n+1) uniform spacings of the first order of the sample are given by D1 = G(y1:n|∆),
Dn+1 = 1−G(yn:n|∆) and Di = G(yi:n|∆)−G(y(i−1):n|∆), i = 1, 2, ..., n. The maximum
product of spacings (MPS) method consist of finding the values of ∆ which maximizes
the geometric mean of the spacings given by

GM(∆|y) =

(
n∏
i=1

Di

) 1
(n+1)

, (39)

or equivalently

log (GM(∆|y)) =
1

n+ 1

n+1∑
i=1

log(Di), (40)

by taking 0 = G(y0:n|∆) < G(y1:n|∆) < ... < G(yn:n|∆) < G(yn+1:n|∆) = 1. The MPS
estimates of the parameters, denoted by ∆̂MPS is obtained by solving the nonlinear
equations(

∂GM(∆|y)

∂c
,
∂GM(∆|y)

∂δ
,
∂GM(∆|y)

∂α
,
∂GM(∆|y)

∂β
,
GM(∆|y)

∂θ

)T
= 0,

using a numerical method. See Chen and Amin (1983) for additional details.

6 Simulation Study

In this section, we examine the performance of the GLLoGW distribution by conducting
various simulations for different sizes (n=25, 50, 100, 200, 400, 800) via the R package.
We simulate 1000 samples for the true parameters values given in the Table 3. The table
lists the mean MLEs of the five model parameters along with the respective root mean
squared errors (RMSEs). The bias and RMSE for the estimated parameter θ̂, say, are
given by:

Bias(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
,
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respectively.

Table 3: Monte Carlo Simulation Results
(0.5,0.5,0.5,1.0,0.5) (0.5,0.5,1.5,0.5,0.5) (1.5,0.5,0.5,0.5,0.5) (1.5,0.5,1.5,0.5,1.0)

Parameter Sample Size Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias

c 25 0.50349 0.51090 0.00349 0.92682 1.05883 0.42682 1.78882 1.39574 0.28882 1.40911 1.39782 -0.09089

50 0.52445 0.48357 0.02445 0.78218 0.85076 0.28218 1.70189 1.07199 0.20189 1.46830 1.34564 -0.03170

100 0.54416 0.44591 0.04416 0.73391 0.78469 0.23391 1.87113 1.00403 0.37113 1.45139 1.10828 -0.04861

200 0.51418 0.33501 0.01418 0.55625 0.46202 0.05625 1.82026 0.79130 0.32026 1.46159 0.96153 -0.03841

400 0.51691 0.26688 0.01691 0.50126 0.29768 0.00126 1.83186 0.59378 0.33186 1.42311 0.77963 -0.07689

800 0.55989 0.23020 0.05989 0.48629 0.22182 -0.01371 1.59715 0.20322 0.09715 1.44362 0.68520 -0.05638

α 25 0.56005 0.79062 0.06005 0.30875 0.50502 -0.19125 0.34020 0.74532 -0.15980 0.19361 0.56112 -0.30639

50 0.45829 0.73237 -0.04171 0.36056 0.46231 -0.13944 0.36912 0.71901 -0.13088 0.20699 0.55552 -0.29301

100 0.42565 0.66603 -0.07435 0.39052 0.41766 -0.10948 0.39880 0.70204 -0.10120 0.21957 0.54936 -0.28043

200 0.29558 0.51160 -0.20442 0.42225 0.33127 -0.07775 0.35497 0.48715 -0.14503 0.23529 0.48556 -0.26471

400 0.24028 0.49085 -0.25972 0.44076 0.27483 -0.05924 0.34636 0.39525 -0.15364 0.30822 0.44752 -0.19178

800 0.14952 0.42474 -0.35048 0.47165 0.22976 -0.02835 0.28681 0.34900 -0.21319 0.32108 0.39046 -0.17892

β 25 1.06880 1.06842 0.56880 2.38343 1.45351 0.88343 1.34617 1.29404 0.84617 2.98822 2.13240 1.48822

50 1.00065 0.92213 0.50065 1.99872 1.02567 0.49872 1.22533 1.07191 0.72533 2.62163 1.76029 1.12163

100 0.93050 0.76593 0.43050 1.76285 0.70397 0.26285 1.10686 0.90064 0.60686 2.35043 1.36861 0.85043

200 0.87566 0.62675 0.37566 1.52383 0.38036 0.02383 1.07418 0.78407 0.57418 2.07283 1.02657 0.57283

400 0.86731 0.53572 0.36731 1.45947 0.24041 -0.04053 0.91203 0.54163 0.41203 1.81593 0.70815 0.31593

800 0.85775 0.45953 0.35775 1.44554 0.18939 -0.05446 0.93860 0.52222 0.43860 1.69349 0.50992 0.19349

δ 25 3.05901 3.11895 2.05901 1.37248 1.75419 0.87248 0.99606 1.23210 0.49606 2.76975 3.79555 2.26975

50 2.85361 2.95947 1.85361 1.23828 1.43481 0.73828 0.93836 1.06923 0.43836 2.40413 2.89916 1.90413

100 2.48184 2.45608 1.48184 1.13163 1.20276 0.63163 0.72740 0.78416 0.22740 2.12614 2.50945 1.62614

200 2.34926 2.15511 1.34926 1.09980 1.06594 0.59980 0.54779 0.52618 0.04779 1.69375 1.93107 1.19375

400 2.11730 1.84130 1.11730 0.98631 0.88001 0.48631 0.44366 0.31246 -0.05634 1.35132 1.47893 0.85132

800 1.82457 1.40759 0.82457 0.86807 0.73852 0.36807 0.45602 0.14973 -0.04398 1.08573 1.08238 0.58573

θ 25 0.61381 1.17146 0.11381 0.73200 1.09051 0.23200 1.12433 1.48809 0.62433 0.94222 1.59218 -0.05778

50 0.61968 1.00959 0.11968 0.68143 0.88259 0.18143 1.05462 1.27864 0.55462 0.99730 1.57407 -0.00270

100 0.63558 0.83042 0.13558 0.65848 0.86922 0.15848 1.10153 1.12593 0.60153 0.94431 1.20821 -0.05569

200 0.55018 0.57044 0.05018 0.51652 0.55278 0.01652 1.05392 0.89702 0.55392 0.95035 0.96200 -0.04965

400 0.53647 0.44394 0.03647 0.46985 0.35564 -0.03015 1.04568 0.73329 0.54568 0.89945 0.72044 -0.10055

800 0.58488 0.37554 0.08488 0.47908 0.29190 -0.02092 0.85576 0.40709 0.35576 0.93725 0.62316 -0.06275

From the results, we can readily verify that as the sample size n increases, the mean
estimates of the parameters tend to be closer to the true parameter values, since RMSEs
decay toward zero.

7 Application

In this section, we present an example to illustrate the flexibility and usefulness of the
GLLoGW distribution and its sub-models for data modeling. We also compare the
GLLoGW distribution with the gamma-Dagum (GD) (Oluyede et al. (2014)), expo-
nentiated Kumaraswamy Dagum (EKD) (Huang and Oluyede (2014)), beta modified
Weibull (BMW) (Silva et al. (2010)) and beta Weibull-Poisson (BWP)(Percontini et al.
(2013)) distributions.

The pdf of EKD distribution is given by

gEKD(x) = αλδφθx−δ−1(1 + λx−δ)−α−1[1− (1 + λx−δ)−α]φ−1

× {1− [1− (1 + λx−δ)−α]φ}θ−1, (41)
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for α, λ, δ, φ, θ > 0, and x > 0. The BMW and BWP pdfs are given by

gBMW (x) =
αxγ−1(γ + λx) exp(λx)

B(a, b)
e−bαx

γ exp(λx)(1− e−αxγ exp(λx))a−1, x > 0,

and

gBWP (x) =
αβλxα−1eλe

−βxα−λ−βxα(eλ − 1)2−a−b(eλ − eλe−βx
α

)a−1(eλe
−βxα − 1)b−1

B(a, b)(1− e−λ)
(42)

for a, b, α, β, λ > 0, and x > 0, respectively. The GD pdf is given by

gGD(x) =
λβδx−δ−1

Γ(α)θα
(1 + λx−δ)−β−1

(
− log[1− (1 + λx−δ)−β]

)α−1

× [1− (1 + λx−δ)−β](1/θ)−1. (43)

Plots of the fitted densities, the histogram of the data and the probability plots
(Chambers et al. (1983)) are given in Figure 16. For the probability plot, we plotted

GGLLoGW (x(j); ĉ, α̂, β̂, δ̂, θ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the ordered

values of the observed data. The measures of closeness are given by the sum of squares

SS =
n∑
j=1

[
GGLLoGW (x(j))−

(
j − 0.375

n+ 0.25

)]2

.

The goodness-of-fit statistics W ∗ and A∗, Chen and Balakrishnan (1995) are also
presented in the tables. These statistics can be used to verify which distribution fits
better to the data. In general, the smaller the values of W ∗ and A∗, the better the fit.

7.1 Strengths of Glass Fibers Data

The data set (n = 63) is on the strengths of 1.5 cm glass fibers measured at the National
Physical Laboratory, England, and is obtained from Smith and Naylor (1987). Estimates
of the parameters of GLLoGW distribution and its related sub-models (standard error in
parentheses), AIC, BIC, W∗, A∗ and SS are give in Table 4. Plots of the fitted densities
and the histogram, observed probability vs predicted probability are given in Figure 16.
The estimated variance-covariance matrix for the GLLoGW distribution is given by:

0.2089 −0.0070 0.3476 −0.3580 0.0215

−0.0070 0.0013 −0.0283 −0.0126 0.0002

0.3476 −0.0283 1.2877 −0.9017 0.0597

−0.3580 −0.0126 −0.9017 2.3355 −0.1239

0.0215 0.0002 0.0597 −0.1239 0.0070

 ,

and the 95% confidence intervals for the model parameters are given by c ∈ (0.8317 ±
1.96× 0.4571), α ∈ (0.0498± 1.96× 0.0361), β ∈ (5.5639± 1.96× 1.1348), δ ∈ (1.9867±
1.96× 1.5282) and θ ∈ (0.1519± 1.96× 0.0836), respectively.



236 Foya et al.

Table 4: Estimates of Models for Strengths of Glass Fibers Data
Estimates Statistics

Model c α β δ θ −2 log L AIC AICC BIC W ∗ A∗ KS P-value SS

GLLoGW 0.8317 0.0498 5.5639 1.9867 0.1519 25.36 35.36 36.41 46.07 0.0981 0.5793 0.0979 0.5815 0.0879

(0.4571) (0.0361) (1.1348) (1.5282) (0.0836)

GLLoGE or Sub1 0.0002 13.4591 1 0.0432 14.8535 194.22 202.22 203.27 210.79 0.5330 2.9269 0.4273 0.0000 4.1096

(0.0007) (2.5222) - (0.0089) (0.1773)

GLLoGR or Sub2 0.0447 0.2702 2 11.2749 0.0283 32.58 40.58 41.63 49.15 0.2753 1.5165 0.1664 0.0610 0.2717

(0.2658) (0.0510) - (0.0010) (0.0028)

GLLoG or Sub3 1.1524 0 0 17.6581 0.0288 58.01 64.01 65.06 70.44 0.7319 3.9987 0.2359 0.0018 0.7288

(0.0947) - - (0.0028) (0.0011)

GLLoGW (1, α, β, δ, 1) or Sub5 1 0.0000 0.5229 0.9528 1 229.03 235.03 236.09 241.46 0.7120 3.8920 0.3916 0.0000 3.8275

- (0.0000) (0.0323) (0.0948) -

GLLoGW (1, α, 1, δ, 1) or Sub6 1 3.8108 1 0.1586 1 174.75 178.75 179.80 183.03 0.5995 3.2852 0.4101 0.0000 3.6782

- (2.4279) - (0.0913) -

GLLoGW (1, α, 2, δ, 1) or Sub7 1 5.9406 2 0.0689 1 100.00 104.00 105.05 108.28 0.4796 2.6302 0.3345 0.0000 2.3030

- (1.6606) - (0.0205) -

GLLoGW (c, 0, 0, 1, 1) or Sub10 3.4506 0 0 1 1 136.94 138.94 140.00 141.09 0.8045 4.4035 0.5346 0.0000 6.5223

(0.3414) - - - -

GLLoGW (1, α, β, 1, 1) or Sub11 1 0.0106 8.2434 1 1 91.16 95.16 96.21 99.45 0.2279 1.4489 0.4379 0.0000 4.7748

- (0.0064) (0.9305) - -

GLLoGW (1, α, 1, 1, 1) or Sub12 1 0.2620 1 1 1 215.57 217.57 218.63 219.72 0.6417 3.5137 0.5345 0.0000 6.4159

- (0.0833) - - -

GLLoGW (1, α, 2, 1, 1) or Sub13 1 0.2811 2 1 1 170.81 172.81 173.86 174.95 0.4528 2.4832 0.5674 0.0000 7.5302

- (0.0526) - - -

GD λ β δ α θ

3.9073 1.3029 1.2928 10.1331 0.0235 50.06 60.06 61.11 70.78 0.6025 3.3054 0.2232 0.0038 0.5981

(1.8210) (0.6723) (0.5411) (0.1002) (0.0231)

BetaMW a b α γ λ

1.3236 0.8588 0.0159 1.3255 2.3344 28.52 38.52 39.57 49.23 0.1734 0.9705 0.1373 0.1859 0.1676

(1.6534) (1.3511) (0.0215) (6.1595) (2.1702)

EKD α λ δ φ θ

2.4980 94.2472 7.0993 7.1672 0.2876 28.09 38.09 39.15 48.81 0.1927 1.0609 0.1543 0.0996 0.2098

(1.3516) (106.792) (2.5412) (8.7799) (0.1918)

BetaWP a b α β λ

1.7697 4.2396 3.8950 0.0064 10.1766 34.83 44.83 45.88 55.55 0.3363 1.8427 0.1833 0.0290 0.3457

(1.8377) (0.7316) (2.4905) (0.0124) (0.6390)

The LR test statistic for testing H0: GLLoGE against Ha: GLLoGW and H0:
GLLoG against Ha: GLLoGW are 168.866 (p-value < 0.0001) and 32.6528 (p-value
< 0.0001). We conclude that there are significant differences between the GLLoGE and
the GLLoGW distributions, as well as between the LLoG and the GLLoGW distribu-
tions, respectively based on the LR tests. The GLLoGW distribution is significantly
better than any of the sub-models considered above. The values of the statistics: AIC,
AICC, and BIC are smallest for the GLLoGW distribution. Also, the goodness-of-fit
statistics W ∗ and A∗ are the smallest and definitely points to the GLLoGW distribution
as the “best”fit for the glass fibers data when compared to the corresponding values
for the sub-models. The goodness-of-fit statistics W ∗ and A∗ are also better for the
GLLoGW distribution when compared to the values for the non-nested GD, BMW,
EKD and BWP distributions. The values of SS from the probability plot is also smallest
(SS = 0.0879) for the GLLoGW distribution. Thus, there is indeed convincing evidence
that the GLLoGW distribution is the “best”fit for the glass fibers data.

8 Concluding Remarks

A new generalized distribution called the gamma log-logistic Weibull (GLLoGW) distri-
bution is presented. The GLLoGW distribution has several new and known distributions
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Figure 15: Fitted Densities for Strengths of Glass Fibers Data

as special cases or sub-models. The density of this new class of distributions can be ex-
pressed as a linear combination of Burr XII-Weibull density functions. The GLLoGW
distribution possesses hazard function with flexible behavior. We also obtain closed
form expressions for the moments, mean and median deviations, distribution of order
statistics and entropy. Maximum likelihood estimation technique is used to estimate
the model parameters. The performance of the GLLoGW distribution was examined by
conducting various simulations for different sizes. Finally, the GLLoGW distribution is
fitted to a real dataset to illustrate the applicability and usefulness of the distribution.
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Figure 16: Probability Plots for Strengths of Glass Fibers Data

Acknowledgement

The authors are very grateful to the editor and referees for some useful comments on an
earlier version of this manuscript which led to this improved version.



Electronic Journal of Applied Statistical Analysis 239

References

Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P. (1983). Graphical Methods of
Data Analysis. Chapman and Hall.

Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit
test. Journal of Quality Technology, 27:154–161.

Chen, R. and Amin, N. A. K. (1983). Estimating parameters in a continuous distribution
with a shifted origin. Journal of Royal Statistical Society B, 45(3):394–403.

Gradshteyn, I. and Ryzhik, I. M. (2000). Table of Integrals, Series and Products. Aca-
demic Press, San Diego.

Huang, S. and Oluyede, B. (2014). Exponentiated kumaraswamy-dagum distribution
with applications to income and lifetime data. Journal of Statistical Distributions and
Applications, 1(8).

Oluyede, B., Foya, S., Warahena-Liyanage, G., and Huang, S. (2016). The log-logistic
weibull distribution with applications to lifetime data. Austrian Journal of Statistics,
45:43–69.

Oluyede, B., Huang, S., and Pararai, M. (2014). A new class of generalized dagum
distribution with applications to income and lifetime data. Journal of Statistical and
Econometric Methods, 3(2):125–151.

Oluyede, B. O. (1999). On inequalities and selection of experiments for length biased
distributrions. Probability in the Engineering and Informational Sciences, 13(2):129–
149.

Percontini, A., Blas, B., and Cordeiro, G. (2013). The beta weibull poisson distribution.
Chilean Journal of Statistics, 4(2):3–26.

Pinho, L., Cordeiro, G., and Nobre, J. S. (2012). The gamma exponentiated weibull
distribution. Journal of Statistical Theory and Applications, 11(4):379–395.
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Appendix

R Algorithms

9 R Code

### d e f i n e GLLoGW cdf
GLLoGW cdf=func t i on ( c , alpha , beta , de l ta , theta , x ){
u=i f e l s e ( x==Inf ,0 ,−( theta )ˆ(−1)∗ l og (1−(1+xˆc )ˆ(−1)
∗( exp(−alpha ∗xˆ beta ) ) ) )
y=1−pgamma(u , d e l t a )
re turn ( y )

}

### d e f i n e GLLoGW pdf
GLLoGW pdf=func t i on ( c , alpha , beta , de l ta , theta , x ){

u1=(1+xˆc )ˆ(−1)
u2=exp(−alpha ∗xˆ beta )
y=1/(gamma( d e l t a )∗ theta ˆ d e l t a )∗ ( u1∗u2 )
∗( u1∗c∗x ˆ( c−1)+alpha ∗beta ∗x ˆ( beta −1))
∗((− l og (1−u1∗u2 ) ) ˆ ( de l ta −1))∗((1−u1∗u2 )ˆ(1/ theta −1))
y [ ! i s . f i n i t e ( y)]=0
return ( y )

}

### d e f i n e GLLoGW hazard func t i on
GLLoGW hazard=func t i on ( c , alpha , beta , de l ta , theta , x ){

f=GLLoGW pdf( c , alpha , beta , de l ta , theta , x )
F=GLLoGW cdf( c , alpha , beta , de l ta , theta , x )
y=f /(1−F)
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return ( y )
}

### d e f i n e GLLoGW q u a n t i l e func t i on
GLLoGW quantile=func t i on ( c , alpha , beta , de l ta , theta , u){

f=func t i on ( x ){
GLLoGW cdf( c , alpha , beta , de l ta , theta , x)−u

}
x=min ( un i root . a l l ( f , lower =0,upper =100 , t o l =0.0001))
re turn ( x )

}

### d e f i n e GLLoGW moments func t i on
GLLoGW moments=func t i on ( c , alpha , beta , de l ta , theta , k ){

f=func t i on ( x ){
( xˆk )∗ (GLLoGW pdf( c , alpha , beta , de l ta , theta , x ) )

}
y=i n t e g r a t e ( f , lower =0,upper=Inf , s u b d i v i s i o n s = 10000000)
re turn ( y$value$ )

}

### GLLoGW f i t
mysample GLLoGW<−mle2 ( GLLoGW neglogl ,
s t a r t=l i s t ( c =0.1 , alpha =0.1 , beta =0.1 , d e l t a =0.1 , theta =0.1) ,
method=”L−BFGS−B” , data=l i s t ( x=mysample ) ,
lower=c ( c=0, alpha =0, beta =0, d e l t a =0, theta =0) ,
upper=c ( c=Inf , alpha=Inf , beta=Inf ,
d e l t a=Inf , theta=I n f ) , use . g inv=TRUE)
mysample GLLoGW goodness=goodness . f i t ( pdf=func t i on ( par , x )
{GLLoGW pdf( c=par [ 1 ] , alpha=par [ 2 ] , beta=par [ 3 ] ,
d e l t a=par [ 4 ] , theta=par [ 5 ] , x )} ,
cd f=func t i on ( par , x ){GLLoGW cdf( c=par [ 1 ] , alpha=par [ 2 ] ,
beta=par [ 3 ] , d e l t a=par [ 4 ] , theta=par [ 5 ] , x )} ,
data=mysample , method=”L−BFGS−B” ,
mle=c o e f (mysample GLLoGW)
[ c ( ’ c ’ , ’ alpha ’ , ’ beta ’ , ’ de l ta ’ , ’ theta ’ ) ] )


