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Energy plays a fundamental role in the process of economic growth of a na-
tion. Growth in the demand and consumption of energy is linked to economic
output of a country as measured by gross domestic product. In view of for-
mulating sustainable strategies in the energy service market, modelling and
forecasting future demand of electricity is an integral part of decision sup-
port system of energy production in developed and developing world. Recent
years have witnessed an increasing interest in providing prediction models of
electrical energy consumption with greater accuracy. Besides the use of lo-
gistic and Harvey logistic growth curve models, the stochastic forecasting
has been carried out using Box-Jenkins ARIMA, Holt-Winter, SARIMA and
time series ANN models etc. However, their performance is far from perfect
and it is especially true when the data contain complex nonlinear pattern
and volatility. In this article, we propose a hybrid model that splits a time
series into an approximate and a detailed component via discrete wavelet
transform and then SARIMA and ETS models are used to fit and forecast
the wavelet approximation and the detailed component respectively. Using
the real monthly electricity consumption data from eight north eastern states
of India during 2004-2015, we have developed the proposed model. Results
of our investigation successfully demonstrates the higher degree of prediction
accuracy of the proposed model than a data driven Box-Jenkins ARIMA
model in terms of various performance accuracy measurement statistics and
produces a substantial reduction in forecast errors.
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1 Introduction

Energy is one of the most essential ingredients for the economic growth and all round
developments of any nation. Electricity being a highly versatile form of energy boosts
the efficiency of performance in every sector of an economy. Growth in the demand and
consumption of energy is linked to economic output of a country as measured by gross
domestic product (GDP). During the recent years, the world has witnessed a significant
increase in electricity demand due to increase in population and many other factors. It
is vital for a country to be able to supply the electricity as per the demand in order
to keep up the pace of development. If the production of electricity is less than the
demand, the electricity dependent industries are affected and the growth declines; on
the other hand, higher productions of electricity leads to the power plants remain idle
and which is a waste in economic resources. Electricity demand forecasting is thus a
key task in the planning and operation of power systems and electricity markets. There
are numerous benefits of electricity forecasting in terms of optimum utilization of energy
resources, improve stability of the system, improve availability, improve operation both
from technical and economic considerations, improve quality of supply, improve grid
discipline, improve service to an electricity-deficit area from an electricity-surplus area,
coordinated planning for both maintenance and future growth of the system. Thus, an
accurate and precise electricity demand forecasting method is an integral part of decision
support system of energy production in developed and developing world.

Literature on forecasting electricity consumption has grown with numerous method-
ological and modelling choices, since, determining the future is very complex and tied
with infinite possibilities. In forecasting an economic variable, past observations are used
to predict the future values (Brockwell and Davis, 2006; Granger and Newbold, 2014;
Wheelwright et al., 1998). Although there are arguments in against and in favour of
using forecasts for policy analysis (Sims et al., 1986; Zahan and Kenett, 2013), many
researchers support it arguing that forecasting provides guidelines for policymakers to
take steps for the future based on past experiences. Although it is impossible to predict
a future scenario exactly as it would be, but too many things run smooth over time.
Therefore, researchers always strive to tackle this issue with minimum possible errors.

Over the years, a number of growth curve based models have been proposed to forecast
electricity in the literature. Mohamed and Bodger (2005) investigated the effectiveness of
two forms of Harvey models and a Logistic model for forecasting electricity consumption
in New Zealand. The Logistic model is a time series extrapolation model. The model
involves obtaining the saturation level of the electricity consumption using a Fibonacci
search technique (Mohamed and Bodger, 2003). The estimated saturation level is used
as a constant variable to fit the best logistic growth curve and forecasts are obtained by
extrapolating the fitted curve. A major finding was that the Logistic model very effec-
tively described the historical electricity consumption while producing lower forecasts in
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general. This is mainly due to the constraints imposed by the saturation level of the
logistic growth curve. This opened the opportunity to search for other models that may
give rise to higher forecasts.

A number of forecasting models for electricity consumption have been developed in
the multiple linear regression framework using economic, social, geographic and demo-
graphic factors (Egelioglu et al., 2001; Yan, 1998; Mohamed and Bodger, 2003). Such
models target to predict future growth or decline in the consumption pattern based on an
assumed linear relationship among the response and the potential covariates influencing
the response. Regression models may not be useful or result in very poor predictions
when the response variable is not second order stationary. To overcome such situations,
time series based methods like Box-Jenkins Auto-Regressive Integrated Moving Aver-
age (ARIMA), Holt-winter model, Seasonal ARIMA (SARIMA), Auto-Regressive Con-
ditional Heteroscedasticity (ARCH), Generalised ARCH (GARCH), Dynamic Choice
Artificial Neural Network (DCANN) etc. have also been used successfully by many
researchers.

ARIMA model projects a time series univariate variable based on three parameters i.e.
order of the moving average, order of differencing and order of autoregressive scheme.
Erdogdu (2007), Ediger and Akar (2007) used ARIMA models to forecast electricity
demand and primary energy demand by fuel in Turkey respectively. Taylor (2003)
predicted the electricity demand for UK using the Holt-Winter model and concluded that
the Holt-Winter model outperform as compared to well-fitted ARIMA models. The Holt-
Winter forecasting model not only entertains the exponentially smoothed component but
also the trend component while projecting a time series variable. Wang et al. (2012)
proposed SARIMA to forecast electricity demand in China, while Garcia et al. (2005)
used a GARCH forecasting model to predict day-ahead electricity prices. A novel model,
known as, DCANN used by Wang et al. (2016) for an electricity price forecasting system.

The concept of combining methods was first introduced by Bates and Granger (1969),
who proved that the combined methods were more efficient and easier than the indi-
vidual ones as the hybrid models combine strengths of few individual models to render
better prediction accuracy. Tan et al. (2010) developed a combined method by us-
ing three individual methods namely Wavelet Transform (WT), ARIMA and GARCH
to forecast the electricity price. Liu and Shi (2013) applied various Auto-Regressive
Moving Average (ARMA) models with GARCH processes, along with their modified
forms, ARMA-GARCH-in-mean, to address the issue of forecasting hour-ahead electric-
ity prices. Yan and Chowdhury (2013) presented a hybrid mid-term electricity market
clearing price (MCP) forecasting model combining both least squares support vector
machine (LSSVM) and ARMA with external input (ARMAX) modules. In (dos San-
tos Coelho and Santos, 2011), a Radial Basis Function-Neural Network-GARCH (RBF-
NN-GARCH) model was proposed where the traditional RBF-NN model is extended by
using GARCH specifications for modeling the variability of price signals.

It is argued that electricity consumption is affected by several periodical as well as time
varying complex non-linear components other than simple trend that can be illustrated
by using certain mathematical transformations. To improve the forecasting precision,
the optimal forecasting model should make a wise use of these different data components.
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Thus, we can decompose a given time series into component time series exhibiting typical
time series features. Based on the features of these components so derived, we apply
the appropriate forecasting scheme to each of these component time series and then we
convert the forecasting of the time series at component levels back to the original time
series level using the inverse transformation. One way of conducting this decomposition
is via the WT. A wavelet is a mathematical function used to divide a given function or
continuous-time signal into multi scale components.

In recent years, there is a tremendous surge in the use of WT based methods for their
encouraging results in many domains of science, engineering, signal processing, and sta-
tistical problems including the short term electricity price forecasting (Zhang and Tan,
2013; Catalão et al., 2011; Shrivastava and Panigrahi, 2014; Afanasyev and Fedorova,
2016). However, the use of WT based models in electricity consumption has not yet
been seen in literature so far. This article suggests a new potentially efficient hybrid
technique based on discrete wavelet transform (DWT) invented by Haar (1910), which
transforms a time series into two components; one is the approximation of the original
series and the other is the detailed component. In order to improve the forecasting
precision, the forecast models should be tailored for forecasting the components sepa-
rately. After a prior decomposition of the series through 1-level DWT, this proposed
approach adopts SARIMA and exponential smoothing state space (ETS) models to fit
and forecast the wavelet approximation and the detailed component respectively. Thus,
the proposed hybrid model tactically utilizes the unique strengths of those individual
univariate methods mentioned above claiming to have a higher forecasting accuracy.
The superiority in terms of forecast accuracy of the method is demonstrated with the
real monthly electricity consumption data of North-Eastern Region (NER) of India with
effect from April-2004 to December-2015 containing 141 observations and its forecast-
ing accuracy is compared with that of SARIMA and ETS models. Our investigation
successfully indicates that the proposed method is one of the most suitable electricity
consumption forecasting techniques with the higher degree of prediction accuracy than
the existing benchmark methods available in the literature.

The rest of the article is organised in the following manner. The proposed approach
is discussed in detail in section 2. Section 3 describes the data used in this study and
results of this investigation. The article ends with the section 4 as concluding remarks.

2 Proposed hybrid model

2.1 Discrete wavelet transform

The DWT is a linear transformation that operates on a data vector whose length is
an integer power of two, transforming it into a numerically different vector of the same
length. It is a tool that separates data into different frequency components, and then
studies each component with resolution matched to its scale. The Haar transform (Haar,
1910) is performed in several stages or levels. The first level or 1-level is the mapping
H1 defined by

f
H1−→ (a1|d1)
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from a discrete signal f to its first trend a1 and first fluctuation d1 referred to as approx-
imate and detailed components throughout this article. Generally we express a discrete
signal in the form f = (f1, f2, . . . , fN ), where N is a positive even integer which is re-
ferred to as the length of f . The values of f are the N real numbers f1, f2, . . . , fN . These
values are typically measured values of an analog signal g, measured at the time values
t = t1, t2, . . . , tN . That is, the values of f are

f1 = g(t1), f2 = g(t2), . . . , fN = g(tN )

For computation of the approximate and detailed components the reader is referred
to the texts of Walker James (1999) and Gençay et al. (2001). In this article, however,
we performed these computations using the package ‘waveslim’ (Whitcher, 2015) of sta-
tistical software ‘R-3.3.0’ (R Development Core Team, 2008). This function performs
a level J decomposition of the input vector using the non-decimated discrete wavelet
transform.

2.2 SARIMA model

In 1970, Box and Jenkins (Box and Jenkins, 1970), made ARIMA (Box et al., 1994)
models popular by proposing a model building methodology comprising several stages:
specification, estimation, diagnostic checking and forecasting. ARIMA is a widely used
time series modelling technique. It uses historical time series patterns and therefore, does
not require the dependent variable; instead, time series information is used to generate
the series itself. Therefore, we explain the core of the ARIMA model here. The general
ARIMA(p, d, q) model is formulated as follows. Let the variable yt denote the data
value at any given time t,

φp(B)∆dyt = δ + θq(B)εt; t = 1, 2 . . . n

where, φp(B) = 1 − φ1B − φ2B2 − · · · − φpBp is the Auto-Regressive (AR) operator,
θq(B) = 1− θ1B− θ2B2−· · ·− θqBq is the Moving Average (MA) operator, Byt+1 = yt,
∆ is the difference operator, δ is some drift, B is the time lag operator or backward shift
operator, p is the order of AR operator, q is the order of MA operator and d is the order
of the differencing operator and εt is a random error term which is Gaussian distributed
with zero mean and constant variance σ2 (i.e. a white noise process).

ARIMA model also may include nonstationary seasonal terms into the model. Sea-
sonality in a time series is a regular seasonal pattern of changes that repeats over time
span‘s’, where‘s’ defines the number of time periods until the pattern repeats again. A
seasonal ARIMA model is formed by including additional seasonal terms in the ARIMA
model denoted as ARIMA(p, d, q)(P,D,Q)s; where s is the season length, P is the order
of seasonal AR operator, Q is the order of seasonal MA operator and D is the order of
the seasonal differencing operator. Seasonal ARIMA(p, d, q)(P,D,Q)s is defined as,

φp(B)ΦP (Bs)∆d∆D
s yt = δ + θq(B)ΘQ(Bs)εt; t = 1, 2 . . . n

where, ΦP (Bs) = 1 − ΦsB
s − Φ2sB

2s − · · · − ΦPsB
Ps is the AR operator, ΘQ(Bs) =

1−ΘsB
s −Θ2sB

2s − · · · −ΘQsB
Qs is the MA operator.
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The first step in modeling time index data is to convert the non-stationary time series
to stationary one. This is important for the fact that a lot of statistical and economet-
ric methods are based on this assumption and can only be applied to stationary time
series. Non-stationary time series are erratic and unpredictable while stationary process
is mean-reverting, i.e., it fluctuates around a constant mean with constant variance.
SARIMA model is a linear model that represent both stationary and non-stationary
data. In this technique, the given time series data are first checked for stationarity.
Stationarity is typically expressed by requiring the AR and MA polynomials to have
their roots outside the unit circle (Meitz and Saikkonen, 2013). After the seasonal and
non-seasonal differencing, the data becomes stationary and the resultant data can be
modeled as an ARMA time series as follows. The data value yt at any given time t,
is considered as a function of the previous p data values, sayyt−1, yt−2 . . . yt−p and the
errors at times t, t-1 . . . t-q, say εt, εt−1 . . . εt−q.

yt = δ + φ1yt−1 + φ2yt−2 . . . φpyt−p + εt − θ1εt−1 − θ2εt−2 . . . θqεt−q; t = 1, 2 . . . n

where, φ1, φ2 . . . φp are the AR coefficients and θ1, θ2 . . . θq are the MA coefficients.
Thus, the time series model described above is denoted as ARMA (p, q). Now,

identifying the orders p, q is done using correlation analysis (Box and Jenkins, 1990),
using the nature of the autocorrelation function and the partial autocorrelation function.
The model coefficients are estimated using the Box-Jenkins method (Box and Jenkins,
1990).

2.3 ETS model

Forecasting methods based on exponential smoothing (ES) techniques proposed in the
late 1950s (Brown, 1959; Holt, 1957, Winters, 1960) generate reliable forecasts for a wide
spectrum of time series in industry and economics. Although these methods have been
employed for many decades, recent methodological developments have embedded these
models in modern dynamic nonlinear model framework. Hyndman et al. (2002, 2008)
outline the ETS (Error-Trend-Seasonal or ExponenTial Smoothing) framework which
defines an extended class of ES methods and offers a theoretical foundation for analysis
of these models using state-space based likelihood calculations, with support for model
selection and calculation of forecast errors.

Each exponential smoothing state space model consists of a measurement equation
that describes the observed data and some transition equations that describe how the
unobserved components or states (level, trend, seasonal) change over time. Hence these
are referred to as ‘state space models’. For each method there exist two models: one
with additive errors and one with multiplicative errors. We label each state space model
as ETS(*,*,*) for (Error, Trend, Seasonal). The possibilities for each component are:
Error = {A,M}, Trend = {N,A,Ad,M,Md} and Seasonal = {N,A,M} where “N”
stands for none, “A” stands for additive, “M” stands for multiplicative, “Ad” stands for
additive damped and “Md” stands for multiplicative damped. Therefore, in total there
exist 30 such state space models: 15 with additive errors and 15 with multiplicative
errors. The models considered in this paper are ETS(A,N,A) model which includes an
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additive seasonal component with additive errors and ETS(A,A,A) model which includes
an additive trend and additive seasonal component both with additive errors.

Let the sequence {yt; t = 1, 2 . . . n} denote the observed data and xt = (lt, bt, st, st−1 . . . st−(m−1)
denote the unobserved state, where lt denotes the level, bt denotes the trend and st de-
notes the seasonal component, at time t. Then the models in subsection 2.3.1 and
subsection 2.3.2 can be written in the form as equation (1) and equation (2).

yt = h(xt−1) + k(xt−1)εt (1)

xt = f(xt−1) + g(xt−1)εt (2)

where εt is a Gaussian white noise process with mean zero and variance σ2.

2.3.1 ETS(A,N,A) model

ETS(A,N,A) model can be expressed as the sum of two components: viz, level and
seasonal component. Mathematically, the model having the observation equation is
defined as,

yt = lt−1 + st−m + εt ; εt = yt − lt−1 − st−m ∼ NID(0, σ2)

with m being the period of seasonality.
Level smoothing equation

lt = α(yt − st−m) + (1− α)lt−1; 0 ≤ α ≤ 1.

Seasonal smoothing equation

st = γ(yt − lt−1) + (1− γ)st−m; 0 ≤ γ ≤ 1.

The state space form of the ETS(A,N,A) model as well as its components are defined
below.

Observation equation
yt = lt−1 + st−m + et

since et = εt, the residual, for additive error model.
Level equation

lt = α(yt − st−m) + (1− α)lt−1

= lt−1 + α(yt − lt−1 − st−m)

= lt−1 + αet.

Seasonal equation

st = γ(yt − lt−1) + (1− γ)st−m

= st−m + γ(yt − lt−1 − st−m)

= st−m + γet.

State equations lt = lt−1 + αet and st = st−m + γet.
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2.3.2 ETS(A,A,A) model

ETS(A,A,A) model can be expressed as the sum of three components: viz, level, trend
and seasonal component. Mathematically, the model having the observation equation is
defined as,

yt = lt−1 + bt−1 + st−m + εt ; εt = yt − lt−1 − bt−1 − st−m ∼ NID(0, σ2).

Level smoothing equation

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1); 0 ≤ α ≤ 1.

Trend equation

bt = β(lt − lt−1) + (1− β)bt−1; 0 ≤ β ≤ 1.

Seasonal smoothing equation

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m; 0 ≤ γ ≤ 1.

The state space form of the ETS(A,A,A) model as well as its components are defined
below.

Observation equation

yt = lt−1 + bt−1 + st−m + et.

Level equation

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

= lt−1 + bt−1 + α(yt − lt−1 − bt−1 − st−m
= lt−1 + bt−1 + αet.

Trend equation

bt = β(lt − lt−1) + (1− β)bt−1

= bt−1 + β(yt − lt−1 − bt−1)
= bt−1 + αβet.

Seasonal equation

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m

= st−m + γ(yt − lt−1 − bt−1 − st−m)

= st−m + γet.

State equations lt = lt−1 + bt−1 + αet, bt = bt−1 + αβet and st = st−m + γet.
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2.4 Evaluation methods of model adequacy and performance accuracy
measures

The evaluation methods of model adequacy provide critical guidance to the appropriate
choice of models. The model validation is usually done by finding the Akaike’s ‘An Infor-
mation Criterion’ (AIC) (Akaike, 1974), Akaike’s corrected ‘An Information Criterion’
(AICc) (Cavanaugh, 1997) or Schwarz’s ‘Bayesian Information criterion’ (BIC) (Schwarz
et al., 1978). The Akaike information criterion (AIC) is a measure of the relative quality
of statistical models for a given set of data. Given a collection of models for the data,
AIC estimates the quality of each model, relative to each of the other models. Hence,
AIC provides a means for model selection. Suppose that we have a statistical model of
some data. Let L be the maximum value of the likelihood function for the model; let k
be the number of estimated parameters in the model. Then the AIC value of the model
is AIC = 2k - 2ln(L) (Akaike, 1974; Burnham and Anderson, 2002) and AICc is AIC

with a correction for finite sample sizes. The formula for AICc is, AICc = AIC +2k(k+1)
n−k−1

(Burnham and Anderson, 2002; Cavanaugh, 1997); where n denotes the sample size and
k denotes the number of parameters. In this article, AICc values has been used for model
selection. Given a set of candidate models for the data, the preferred model is the one
with the minimum AICc value.

Figure 1: Proposed wavelet based hybrid SARIMA-ETS model
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The steps of the algorithm for the proposed approach are represented as a flow chart
in fig. 1. The proposed algorithm of wavelet based SARIMA-ETS model can give better
accuracy as compared to using SARIMA or ETS model directly to the observed time
series data without performing any modification of the original data. This fact has been
verified using a real monthly electricity consumption data set.

All three methods: SARIMA, ETS and the proposed wavelet based hybrid SARIMA-
ETS models are considered in this paper. A good forecasting method needs to take into
consideration the degree of accuracy. So, performance accuracy measurement statis-
tics (Hyndman and Koehler, 2006) used for comparison of prediction accuracy will be
discussed in the present article. Several performance measures are considered as per-
formance measure for accuracy comparison over the forecast horizon. The smaller the
measure, the better the model.

Let, yt denote the observation at time t, ft denote the forecast of yt and m is the num-
ber of observations in the forecast horizon. Then define the forecast error as et = yt−ft;
t = 1, 2 . . . m and the percentage error as pt = 100et/yt; t = 1, 2 . . . m. The six measures
used in the same prediction horizon. The measures are,

Scale-dependent measures:

Mean squared error (MSE) = mean(e2t )

Mean Absolute error (MAE) = mean|et|

Measures based on percentage errors:

Mean absolute percentage error (MAPE) = mean|pt|
Root mean square percentage error (RMSPE) =

√
mean(pt)

2

Symmetric mean absolute percentage error (sMAPE) = mean2|yt−ft|
|yt+ft|

An alternative way of scaling is to divide each measure by the measure obtained from
the benchmark method used in the article. For instance, a relative MSE is given by,
RelMSE = MSE/MSEb; where MSEb denote the MSE from the benchmark method.
Similar measures can be defined using MAE, MAPE etc.

3 Data and Results

3.1 Data Description

Time series data on monthly electricity consumption of NER of India in megawatt (MW)
unit during April-2004 through December-2015 has been used in this study. The data
has been taken from the Annual Reports of North-Eastern Regional Power Committee
(NERPC, 2015). Statistical reports published by NERPC have been providing monthly
electricity data on a regular basis. These include data on electricity peak demand,
electricity consumption, energy requirement, energy availability etc. for NER as a whole
and also separately for each of the seven north-eastern states of India, namely, Arunachal
Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura.
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3.2 Analysis and Results

The present analysis has been carried out using observed monthly electricity consumption
containing 141 observations in MW provided in fig. 2. In order to do out-of-sample one-
step forecast, two forecast horizons are considered in this article viz. forecast horizons
of 31 and 48 observations. So the observed data is split into two parts, out of 141
observations first 110, 93 points are taken as training sets and the rest 31, 48 observations
are taken as experimental sets or forecast horizons respectively.

Figure 2: Observed monthly electricity consumption

Sample autocorrelation function (ACF) and sample partial autocorrelation function
(PACF) were used to assess the time series behaviour viz. stationarity, seasonality of
training sets of electricity consumption. Persistent patterns of slowly declining ACF for
both training sets of electricity consumption were evident and thus indicating lack of
stationarity but those do not indicate the existence of seasonality. One can formally
test the significance of the seasonal component as follows. According to Rob Hyndman,
there is a related log-likelihood test based on the difference between the selected model
and the equivalent model with an additional seasonal term added. Twice the difference
between the two log-likelihoods will have a chi-squared distribution according to Wilks’
theorem. The degrees of freedom will be the difference in the number of parameters being
estimated in the two models. If the hypothesis test is significant, we can conclude that
the data are very unlikely to have been generated from the simpler (non-seasonal) model.
The test results with p-value 1.873888e-09 and 1.795604e-06 show the additional seasonal
component is significant. Also, AICc values support the significance of seasonality.

Then we have used the ‘forecast’ (Hyndman et al., 2014) package of statistical soft-
ware ‘R’ for the purpose of fitting and forecasting different plausible models. Various
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univariate time series models were fitted viz. ARIMA model, linear model with time
series components, ETS model, Holt-Winters time series model, structural Time Series
model, cubic spline and theta method. Based on forecast accuracy, two higher accuracy
performed models, ARIMA and ETS models are considered. So, an ETS model with
additive trend and additive seasonal component ETS(A,A,A) model along with additive
errors has been applied to the training set of electricity consumption with 110 obser-
vations and a model with additive seasonal component ETS(A,N,A) model including
additive errors has been applied to the training set of electricity consumption with 93
observations. Based on the AICc values, the ARIMA(1, 1, 0)(2, 0, 0)12 model was fit-
ted to both training sets of electricity consumption, indicating a first order non-seasonal
difference, and non-seasonal AR(1) and seasonal AR(2) components. The model descrip-
tions are given in the table 1 and table 2 which provide the estimates of the coefficients
along with standard errors and AICc values for fitted models.

In order to check out any scope of improvement in the prediction accuracy by minimiz-
ing the forecast error, we have taken the help of DWT. In this article, a discrete 1-level
Haar wavelet transformation is performed to monthly electricity consumption time series
data and the two components, wavelet approximation v1 and wavelet detailed component
w1 are retrieved. Plots in fig. 3 depict the decomposed components.

Figure 3: The 1-level Haar wavelet decomposition of monthly electricity consumption

To get the out-of-sample one-step forecasts we need to fit appropriate models to the
components approximation v1 and detailed component w1. Training sets are required
to fit appropriate models to both wavelet components and after the wavelet transform
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both components are split into two parts for both forecast horizons as described for
electricity consumption. Sample ACF and sample PACF were used to assess the time
series behaviour of both components. Also in case of training sets of wavelet approx-
imation v1, persistent patterns of slowly declining ACF indicates lack of stationarity.
To test the hidden seasonality, the chi-squared test has been applied to training sets
of wavelet approximation v1 and the test results support the significance of seasonality
with p-value 5.290213e-13 and 1.178861e-08 for both training sets and AICc values also
show the significance of additional seasonality. An ETS model with additive trend and
additive seasonal component ETS(A,A,A) model along with additive errors has been
applied to the training set of wavelet approximation v1 with 110 observations and a
model with additive seasonal component ETS(A,N,A) model including additive errors
has been applied to the training set of wavelet approximation v1 with 93 observations.
Also, based on the AICc values the model ARIMA(1, 1, 2)(1, 0, 0)12 with drift was the
best fit model for the training set of wavelet approximation v1 with 110 observations,
indicating a first order non-seasonal difference and non-seasonal ARMA(1,2) and sea-
sonal AR(1) components and a model ARIMA(0, 1, 2)(2, 0, 0)12 was the best fit model
for the training set of wavelet approximation v1 with 93 observations, indicating a first
order non-seasonal difference and non-seasonal MA(2) and seasonal AR(2) components.

The ACF of training sets of detailed component w1 indicates the existence of station-
arity. The chi-squared test results support the significance of seasonality with p-value
1.99885e-06 and 0.0001371544 for both training sets and AICc values also show the
significance of additional seasonality. An ETS model with additive seasonal component
ETS(A,N,A) model including additive errors has been applied to both training sets of de-
tailed component w1. Also, based on the AICc values the modelARIMA(1, 0, 0)(2, 0, 0)12
with zero mean was the best fit model for both training sets of detailed component w1,
indicating a non-seasonal AR(1) and seasonal AR(2) components.

We summarize the results of the fitted univariate time series models for training sets
of wavelet components used for prediction of electricity demand met in table 1 and table
2, to substantiate our findings. The summary provides the estimates of the coefficients
along with standard errors and AICc values for fitted models.

Out-of-sample one-step prediction for the forecast horizon containing 31 observations
with effect from June-2013 to December-2015 of training set of wavelet components are
provided in the top panel of fig. 4 and out-of-sample one-step prediction for the forecast
horizon containing 48 observations with effect from January-2012 to December-2015 of
training set of wavelet components are provided in the top panel of fig. 5. The predic-
tion performance results for both models and for both forecast horizons are tabulated
in table 3. According to the performance results from table 3 and from the top panels
of fig. 4 and fig. 5 shown above, it can be verified that SARIMA model gives better
performance as compared to ETS model in case of training set of wavelet approximation
v1 and ETS model gives better performance as compared to SARIMA in case of training
set of wavelet component w1 in terms of performance accuracy measurement statistics
mentioned above. Hence, combining SARIMA model forecasts for wavelet approxima-
tion v1 and ETS model forecasts for wavelet detailed component w1, the electricity
consumption forecasts are computed.
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Table 1: Estimated model coefficients along with standard errors and AICc values for
fitted models (training set of 110 observations)

Model Description (training set of 110 observations)

Series Model Estimated parameter
(Standard error)

AICc

Training set of
electricity

consumption

ETS(A,A,A)

α = 0.5641

1354.453
β = 0.0064

γ = 1e-04

σ2 = 1434.6065

ARIMA(1, 1, 0)(2, 0, 0)12

ar1 = -0.3017 (0.0943)***

1152.7
sar1 = 0.3395 (0.0941)***

sar2 = 0.2415 (0.1080)**

σ2 = 2042

Training set of
approximation v1

ETS(A,A,A)

α = 0.9999

1227.43
β = 1e-04

γ = 1e-04

σ2 = 503.5356

ARIMA(1, 1, 2)(1, 0, 0)12
with drift

drift = 7.3379 (1.2976)***

999.27

ar1 = 0.7107 (0.1265)***

ma1 = -0.0078 (0.0959)

ma2 = -0.8990 (0.0802)***

sar1 = 0.3992 (0.0929)***

σ2 = 522.9

Training set of
detailed

component w1

ETS(A,N,A)

α = 2e-04

1206.92γ = 1e-04

σ2 = 438.5380

ARIMA(1, 0, 0)(2, 0, 0)12
with zero mean

ar1 = -0.3017 (0.0943)***

1001.59
sar1 = 0.3395 (0.0941)***

sar2 = 0.2415 (0.1080)**

σ2 = 510.5

Notes: ‘***’ and ‘**’ denote significance at 1% and 5% level
Numbers in parenthesis are standard errors
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Table 2: Estimated model coefficients along with standard errors and AICc values for
fitted models (training set of 93 observations)

Model Description (training set of 93 observations)

Series Model Estimated parameter
(Standard error)

AICc

Training set of
electricity

consumption

ETS(A,N,A)

α = 0.6559

1137.653γ = 1e-04

σ2 = 1542.6435

ARIMA(1, 1, 0)(2, 0, 0)12

ar1 = -0.3195 (0.1010)***

970.47sar1 = 0.3443 (0.1036)***

sar2 = 0.2499 (0.1160)**

σ2 = 1939

Training set of
approximation v1

ETS(A,N,A)

α = 0.9998

1030.817γ = 1e-04

σ2 = 555.0783

ARIMA(0, 1, 2)(2, 0, 0)12

ma1 = 0.6525 (0.1090)***

839.89

ma2 = -0.2726 (0.1160)**

sar1 = 0.3300 (0.1043)***

sar2 = 0.2725 (0.1154)**

σ2 = 497.3

Training set of
detailed

component w1

ETS(A,N,A)

α = 1e-04

1011.423γ = 1e-04

σ2 = 449.5757

ARIMA(1, 0, 0)(2, 0, 0)12
with zero mean

ar1 = -0.3195 (0.1010)***

842.93
sar1 = 0.3443 (0.1036)***

sar2 = 0.2499 (0.1160)**

σ2 = 484.7

Notes: ‘***’ and ‘**’ denote significance at 1% and 5% level
Numbers in parenthesis are standard errors
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Figure 4: Out-of-sample one-step (31 points) prediction of training sets: v1 (approxima-
tion), w1 (detail) and performance comparison
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Figure 5: Out-of-sample one-step (48 points) prediction of training sets: v1 (approxima-
tion), w1 (detail) and performance comparison
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Table 3: Commonly used forecast accuracy measures of performance comparison for
wavelet approximation v1 and wavelet component w1

Measures

Training set of wavelet
approximation v1

Training set of wavelet
detailed component w1

ETS model
SARIMA
model

ETS model
SARIMA
model

31 points ahead

MSE 1486.5943 865.7071 540.0115 905.2282

MAE 29.9884 23.8494 19.46439 25.56207

48 points ahead

MSE 1161.8866 825.0087 560.9996 848.3006

MAE 27.01548 23.50267 19.8228 23.72435

Figure 6: Predicted electricity consumption along with 95% prediction interval
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Table 4: Commonly used forecast accuracy measures of performance comparison for elec-
tricity electricity consumption

Measures

Training set of electricity
consumption

Relative mea-
sures

Prediction
based on
ETS
model

Prediction
based on
SARIMA
model

Prediction
based on
proposed
hybrid
model

ETS
versus
proposed
hybrid
model

SARIMA
versus
proposed
hybrid
model

31 points ahead

MSE 3178.473 3330.789 2459.37 0.7737582 0.7383745

MAE 44.60641 47.53665 41.87297 0.938721 0.8808565

MAPE 2.103706 2.247989 1.989848 0.9458773 0.8851678

RMSPE 2.661961 2.690982 2.322423 0.8724482 0.863039

sMAPE 0.0209568 0.0226069 0.0199977 0.9542349 0.8845821

48 points ahead

MSE 3047.566 3378.467 2526.745 0.8291028 0.747897

MAE 44.84478 46.92834 42.21026 0.9412525 0.8994621

MAPE 2.292139 2.362189 2.132662 0.9304244 0.902833

RMSPE 2.815711 2.905688 2.515313 0.8933139 0.8656517

sMAPE 0.023074 0.0237392 0.0213707 0.926181 0.9002289
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Table 5: Estimated model coefficients along with standard error and AICc values for
electricity consumption prediction

Model Description

Series Model Estimated parameter
(Standard error)

AICc

Wavelet
approximation v1

ARIMA(1, 1, 2)(0, 0, 2)12
with drift

drift = 9.0255 (1.9228)***

1299.92

ar1 = 0.5640 (0.1127)***

ma1 = 0.1470 (0.0742)**

ma2 = -0.8530 (0.0725)***

sma1 = 0.1619 (0.0902)*

sma2 = 0.2491 (0.0889)***

σ2 = 580.4

Wavelet detailed
component w1

ETS(A,N,A)

α = 1e-04

1596.69γ = 0.0015

σ2 = 512.4926

Table 6: Predicted electricity consumption based on proposed hybrid model along with
95% prediction interval

Forecast
horizon

Prediction based on
proposed hybrid model
along with 95% P.I.

Forecast
horizon

Prediction based on
proposed hybrid model
along with 95% P.I.

Jan-16 2326 (2234, 2417) Jan-17 2455 (2251, 2659)

Feb-16 2327 (2189, 2465) Feb-17 2458 (2247, 2669)

Mar-16 2331 (2176, 2486) Mar-17 2455 (2240, 2671)

Apr-16 2339 (2174, 2504) Apr-17 2447 (2227, 2667)

May-16 2388 (2216, 2559) May-17 2505 (2280, 2729)

Jun-16 2377 (2200, 2554) Jun-17 2513 (2285, 2741)

Jul-16 2390 (2209, 2571) Jul-17 2535 (2303, 2767)

Aug-16 2380 (2195, 2565) Aug-17 2523 (2288, 2759)

Sep-16 2411 (2222, 2600) Sep-17 2537 (2297, 2776)

Oct-16 2428 (2236, 2621) Oct-17 2547 (2304, 2790)

Nov-16 2417 (2221, 2613) Nov-17 2539 (2293, 2785)

Dec-16 2432 (2232, 2631) Dec-17 2551 (2302, 2801)
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Bottom two panels of fig. 4 and fig. 5 depicts out-of-sample one-step prediction for
the forecast horizon containing 31 and 48 observations with effect from June-2013 to
December-2015 and with effect from January-2012 to December-2015 of training sets
of electricity consumption using SARIMA model, ETS model and the proposed hybrid
model. The prediction performance results for all three models and for both forecast
horizons are tabulated in table 4. According to the performance results from table 4
and from fig. 4 and fig. 5, it can be verified that proposed hybrid model gives better
performance as compared to SARIMA model and ETS model in terms of performance
accuracy measurement statistics mentioned above.

With the forecast horizon of 31 points, the proposed hybrid model exhibits 23% and
13% more accurate forecasts in terms of MSE and RMSPE respectively than that of
ETS model. On the other hand, the amount of increase in the accuracy of the proposed
model are 26% and 14% in terms of MSE and RMSPE respectively in comparison to
the SARIMA model. Further, with the forecast horizon of 48 points, the present model
exhibits 17% and 11% more accurate forecasts in terms of MSE and RMSPE respectively
than that of ETS model. While the amount of increase in the accuracy of the proposed
model are 25% and 13% in terms of MSE and RMSPE respectively as compared to
the SARIMA model. Hence it is evident that the robustness of the proposed model
is adequately demonstrated in both the cases of medium and moderately long term
forecasts.

Beyond the training set, two year forecasts with effect from January-2016 to December-
2017 containing 24 points of wavelet approximation v1 using SARIMA model and wavelet
detailed component w1 using ETS model are computed and provided in first two plot of
fig. 6 along with the 95% prediction intervals. Model ARIMA(1, 1, 2)(0, 0, 2)12 with drift
was the best fit model for wavelet approximation v1, indicating a first order non-seasonal
difference and non-seasonal ARMA(1,2) and seasonal MA(2) components. Wavelet de-
tailed component w1 was fitted using an ETS model with additive seasonal component
ETS(A,N,A) model along with additive errors. Model coefficients of fitted modes in
both components are described in table 5 along with standard errors and AICc values.
Combining the component wise forecasts, the electricity consumption forecasts with ef-
fect from January-2016 to December-2017 are computed and provided in the last plot of
fig. 6 and also tabulated in table 6.

4 Concluding remarks

In this article, we have proposed a wavelet based hybrid model to forecast electricity con-
sumption data from NER India. The purpose of this paper is to evaluate the superiority
of wavelet based hybrid forecasting methods. Wavelets are used mainly in the context
of data pre-processing. The actual forecast is done using one of the existing forecasting
techniques, of which we have used two important family of modeling frameworks, viz.,
SARIMA and ETS. We also gave a brief introduction to the DWT used herein and then
described how it is used in combination with SARIMA and ETS modeling.

The results of forecast accuracy for two different forecast horizons used in this study
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demonstrate that wavelet based forecasting method outperforms the individual conven-
tional models like SARIMA or ETS as long as the data contain both linear and non-linear
structures. It is also found that the model is reasonably robust in forecasting both for
medium and moderately long term forecasts. A limitation of the present study is that
we have not considered a method that suggests the choice of an optimal value of level n
in DWT. However, that does not constrain us from using a wavelet based hybrid time
series forecast model of the present kind.
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