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The repeated measures ANOVA is being used in the study of longitudinal
data. In its standard form, the method requires full data. In practice, this
is not always possible. In this paper, we consider an approach, in which the
missing data are neither ignored nor are imputed. The incomplete data result
in biased estimations of the time mean. This bias consists of the individual
and the group components which are constructed using sequences of the
regular stochastic matrices. The group adjustment is necessary in cases of
the different proportion of missing values in compared groups.
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1 Introduction

A major problem in the analysis of clinical trials using a repeated measures ANOVA
(Fitzmaurice G., Davidian M., Verbeke G., Molenberghs G., 2008) is missing data caused
by the patients’ dropping out of the study before completion. For example, a randomized
placebo-controlled trial was performed to test the efficacy of oral naltrexone (NL) with or
without fluoxetine (FR) for preventing relapse to heroin addiction (Krupitsky E., Zvartau
E., Verbitskaya E., Alexeyeva N. at al., 2012). Some patients received placebo (PL)
instead of the drugs. Therefore, four groups were compared: the full drug (NL+FR),
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the only naltrexone (NL+PL), the only fluoxetine (PL+FR) and the placebo-placebo
(PL+PL). The full data were available for only 10% of the year-round monitored patients.
Usually, cases with incomplete data are excluded from analysis or the missing values are
imputed in some way (Rubin D. B., 1976), (Hedden S.L., Woolson R.F., Carter R.E.
et al., 2009). Thus in (Myers W.R., 2000) five strategies of missing data handling are
discussed, whereby it is stated that the nonignorable missing-data model is not trivial.
This problem is however partly solved in (Alexeyeva N., 2013), (Ufliand A., Alexeyeva
N., 2014) based on the ergodicity of cross-mean sequences in cases of the same frequency
of missing data appearance across compared groups. The ergodic method for individual
corrections of the time mean is applied to data analysis in clinical cardiology (Alexeyeva
N.P., Tatarinova A.A., Bondarenko B.B. et al., 2011). The present paper is intended
to generalize the above-mentioned result to the case of non-uniformity of missing values
across the groups and to simplify the covariance matrix of errors.

2 The repeated measures analysis of variance and missing
data

Consider the classical model of repeated measures analysis (Afifi A., Azen S., 1972) of
variance (ANOVA)

xijt = µ+ αi + e1ij + βt + γit + eijt, (1)

where xijt is the data of the jth individual from the ith group at the time moment
t, µ is the general mean, αi is the group effect, βt is the time effect, γit is the group
and the time interaction effect, e1ij ∼ N(0, σ21) is the error, caused by the individuals

variety and eijt ∼ N(0, σ2) is the general model error. All errors are assumed to be
independent. Let the number of groups be equal to I, the number of individuals in the
group is equal to νi and the number of time points is equal T . Let Mit be the set of
individuals from group i, who have complete data at the time t; and let mit denote its

cardinality,
T∑
t=1

mit = mi·,
I∑
i=1

mit = m·t,
T∑
t=1

mt· = m··. Let Nij be the set of time points

of the individual number j from group i and we call nij its cardinality. In order to obtain
the unique solutions of the systems of linear equations by means of LSM (Least Square
Method) for parameters estimation (Scheffe H., 1999), the partial plan was considered:

I∑
i=1

αimi·
m··

= 0,
T∑
t=1

βtm·t
m··

= 0,
I∑
i=1

γitmit

m··
= 0,

T∑
t=1

γitmit

m··
= 0. (2)

In order to estimate parameters, the model (2) was divided into two parts: xijt =
zij + yijt, where Ezij = µ+ αi, Eyijt = βt + γit. When the data are complete, zij is just
the time mean xij.. In case of missing data, the time mean becomes

xij. =
1

nij

∑
t∈Nij

xijt,
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and the mathematical expectation Exij. is not equal to µ + αi. To solve this problem,
we propose to introduce two corrections: group and individual. Denote

e1··(t) =
1

m·t

I∑
i=1

∑
j∈Mit

e1ij , α(t) =
1

m·t

I∑
i=1

mitαi, β·(i) =
1

mi·

T∑
t=1

mitβt (3)

sums depending on points t = 1, . . . , T and groups i = 1, . . . , I. Then consider expres-
sions through the parameters of different types of averages:

• the time mean

xij· =
1

nij

∑
t∈Nij

(µ+αi+e1ij +βt+γit+eijt) = µ+αi+
1

nij

∑
t∈Nij

(βt+γit)+e1ij +eij· ,

where eij· =
1
nij

∑
t∈Nij

eijt ;

• the space mean x··t

x··t =
1

m·t

I∑
i=1

∑
j∈Mit

(µ+ αi + e1ij + βt + γit + eijt) =

= µ+
1

m·t

I∑
i=1

mitαi︸ ︷︷ ︸
α(t)

+βt +
1

m·t

I∑
i=1

mitγit︸ ︷︷ ︸
=0

+e··t +
1

m·t

I∑
i=1

∑
j∈Mit

e1ij︸ ︷︷ ︸
e1··(t)

;

• the space mean in ith group xi··

xi·· =
1

mi·

T∑
t=1

∑
j∈Mit

(µ+ αi + e1ij + βt + γit + eijt) =

= µ+ αi +
1

mi·

T∑
t=1

mitβt︸ ︷︷ ︸
β·(i)

+
1

mi·

T∑
t=1

mitγit︸ ︷︷ ︸
=0

+e1i· + ei··,

where e1i· =
1

mi·

T∑
t=1

∑
j∈Mit

e1ij =
1

mi·

νi∑
j=1

nije
1
ij , ei·· =

1

mi·

T∑
t=1

∑
j∈Mit

eijt ;

• the general mean

x··· =
1

m··

I∑
i=1

mi·xi·· =
1

m··

I∑
i=1

mi·(µ+ αi + β·(i) + e1i· + ei··) =

= µ+
1

m··

I∑
i=1

mi·αi︸ ︷︷ ︸
=0

+
1

m··

I∑
i=1

mi·β·(i)︸ ︷︷ ︸
=0

+e1·· + e··· .



Electronic Journal of Applied Statistical Analysis 149

2.1 Group correction

Consider the model parameters as vectors a = (α1, . . . , αI)
T , b = (β1, . . . , βI)

T , gi =
(γi1, . . . , γiT )T , i = 1, 2, . . . , I. Denote differences between the means

L = (x··1 − x···, . . . , x··T − x···)T , K = (x1·· − x···, . . . , xI·· − x···)T , (4)

where the differences between the means are given by

xi·· − x··· = αi + β·(i) + e1i· + ei·· − e1·· − e···, (5)

x··t − x··· = α(t) + βt + e1··(t) + e··t − e1·· − e··· ,

and the stochastic matrices M and N

M = M(I,T ) =


m11
m1·

. . . m1T
m1·

... . . .
...

mI1
mI·

. . . mIT
mI·

 , N = N(T,I) =


m11
m·1

. . . mI1
m·1

... . . .
...

m1T
m·T

. . . mIT
m·T

 . (6)

Denote P0 = MN the product of these two matrices M and N , and P∞0 its stationary
matrix

P∞0 = lim
n→∞

Pn0 . (7)

We assume that the matrix P0 is regular. One can see that rows of the matrix P∞0 look
like the left eigenvector λT of matrix P0, where

λ =

(
m1·
m··

, . . . ,
mI·
m··

)T
.

Define the vector of the group corrections as

G =

∞∑
i=0

P i0(ML− P0K) . (8)

Proposition 1. The mathematical expectations of the introduced vectors are given by

EL = b+Na, EK = a+Mb , EG = Mb .

Proof. Using the expressions (3),(4) and (5), we get

Ex··· = µ, Exi·t = µ+ αi + βt + γit,

Exi·· =
1

mi·

T∑
t=1

mitExi·t = µ+ αi +
1

mi·

T∑
t=1

mitβt,

E(xi·· − x···) = αi +
1

mi·

T∑
t=1

mitβt ,
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which results in EK = a+Mb. Analogically we get

x··t =
1

m·t

I∑
i=1

mitExi·t = µ+
1

m·t

I∑
i=1

mitαi + βt,

E(xi·t − x···) =
1

m·t

I∑
i=1

mitαi + βt,

which results in EL = b+Na . Substitute values EL and EK in EG,

EG =
∞∑
i=0

EP i0(ML− P0K) = MEL− P0EK + P0MEL− P 2
0EK + . . . =

= M(b+Na)− P0(a+Mb) + P0M(b+Na)− P 2
0 (a+Mb) + . . .− P∞0 Mb =

= Mb− P∞0 Mb = Mb, since according to (3)

Mb = {β·(i)}Ii=1 =

{
1

mi·

T∑
t=1

mitβt

}I
i=1

,

m··P
∞
0 Mb =

I∑
i=1

mi·β·(i) =
T∑
t=1

I∑
i=1

βt =
T∑
t=1

m·tβt = 0 .

Proposition 2. Let L and K be differences between the means (4), matrices M , N are
defined in (6),

Q0 = (I− P0 + P∞0 )−1, A = P∞0 +Q0 − I, B = Q0M , (9)

where P0 is defined in (7), I is the identity matrix. Then the vector of group corrections

G =
∞∑
i=0

P i0(ML− P0K) is given by G = −AK +BL , and A = Q0P0 = BN .

Proof. In the series G from (8) we add and subtract K and then regroup elements:

G = (ML− P0K) + P0(ML− P0K) + P 2
0 (ML− P0K) . . . =

= K − (K −ML)− P0(K −ML)− P 2
0 (K −ML)− . . .+ P∞0 K =

= (I− P∞0 )K − (I + P0 + P 2
0 + . . .)(K −ML) .

Remark that P∞0 (K −ML) = 0, because

1

m··

I∑
i=1

mi·(xi·· − x··· −
1

mi·

T∑
t=1

mitx··t + x···) = x··· −
1

m··

I∑
i=1

T∑
t=1

mitx··t = 0 .
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Using this fact and (9) in the following expression

∞∑
k=0

P k0 (K −ML) =
∞∑
k=0

(P0 − P∞0 )k(K −ML) = (I− P0 + P∞0 )−1(K −ML) ,

we get

G = (I− P∞0 )K +Q0(ML−K) = −AK +BL .

Expression Q0P0 = A is also valid, since

Q−10 A = (I− P0 + P∞0 )(P∞0 +Q0 − I) =

= P∞0 +Q0 − I− P0(P
∞
0 +Q0 − I) + P∞0 (P∞0 +Q0 − I)) =

= P∞0 +Q0 − I− P∞0 − P0Q0 + P∞0 + P0 + P∞0 Q0 − P∞0 =

= Q0 − I + P0 − P0Q0 + P∞0 Q0 = −I + P0 +Q(I− P0 + P∞0 ) = P0 .

Therefore, A = Q0P0 = Q0MN = BN .

Proposition 3. Let A = {aiι}Ii,ι=1 and B = {bit}Ii=1
T
t=1 be matrices from (9),

F0(i, k) =
T∑
t=1

bitbkt
m·t

−
I∑
ι=1

aiιakι
mι·

,

F1(ι, j, i) = − aiι
mι·

+
∑
t∈Nιj

bit
nιjm·t

,

F2(ι, t, i) = − aiι
mι·

+
bit
m·t

.

Then a random component of i-group corrections εi = Gi − EGi does not depend on
individual errors e1ij and is given by

εi =

I∑
k=1

T∑
t=1

mkt

(
bit
mt·
− aik
mk·

)
ek·t, (10)

and has the following properties:

Eεieιjt = σ2I[ι=i]

(
bit
m·t
− aiι
mι·

)
; Eεiεk = σ2F0(i, k),

Eeι·εi = σ2F1(ι, j, i), Eeι·tεi = σ2F2(ι, t, i) .
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Proof. Let us find a random component of vector G using an expression G = −AK +
BL = −AK+Q0ML from Proposition 2. Denote the random components of vectors ML
and AK by E = ML−EML and J = AK−EAK with elements Ei and Ji respectively,
i = 1, . . . , I, and c = e1··+ e···. According to (4) and (6) we can get ith element of vector
ML, wherefrom element Ei:

(ML)i =
T∑
t=1

mit

mi·
(x··t − x···) =

T∑
t=1

mit

mi·
(α(t) + βt + e1··(t) + e··t − e1·· − e···) ,

Ei =

T∑
t=1

mit

mi·
(e1··(t) + e··t)− c .

Changing the order of summation, we get

Ei + c =

T∑
t=1

mit

mi·

 1

m·t

I∑
k=1

∑
j∈Mkt

(e1kj + ekjt)

 =

I∑
k=1

νk∑
j=1

(e1kj + ekjt)
∑
t∈Nkj

mit

m·tmi·
.

Since the matrix Q0 = {qiι}Ii,ι=1 is stochastic, then the ith random-component of vector
Q0ML is given by

(Q0ML)i =
I∑
ι=1

qiιEι + c =
I∑
ι=1

qiι

I∑
k=1

νk∑
j=1

(e1kj + ekjt)
∑
t∈Nkj

mιt

m·tmi·
=

=

I∑
k=1

T∑
t=1

(e1k· + ek·t)mkt

I∑
ι=1

qiιmιt

mι·mt·
.

Also select the random component J = AK − EAK. The (AK)ι is given by

(AK)ι =

I∑
i=1

aιi(x·· − x···) =

I∑
i=1

aιi(αi + β·(i) + e1i· + ei·· − e1·· − e···),

hence, using c = e1·· + e···, we get

Jι =
I∑

k=1

aιk(e
1
k· + ek··)− c ,

Jι + c =
I∑

k=1

aιk
mk·

T∑
t=1

∑
j∈Mkt

(e1kj + ekjt) =

I∑
k=1

aιk
mk·

T∑
t=1

mkt(e
1
k· + ek·t) .

Thus ει is given by

ει =
I∑
i=1

qιiEi − Jι =
I∑

k=1

T∑
t=1

mkt

(
1

m·t

I∑
i=1

qιimit

mi·
− aιk
mk·

)
(e1k· + ek·t) .
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Remark that bit =
∑I

ι=1 qiιmιt/mι· is an element of matrix B = Q0M . Then one can
get rid of the components, depending on the e1ij . Since BN = A, then

I∑
k=1

T∑
t=1

mkt

(
bιt
m·t
− aιk
mk·

)
e1k· =

I∑
k=1

e1k·

(
T∑
t=1

bιtmkt

m·t
− aιk

)
= 0 .

Covariance can be calculated directly, for example,

Eειeijτ =

I∑
k=1

T∑
t=1

mkt

(
bιt
m·t
− aιk
mk·

)
Eek·teijτ = σ2

(
bιτ
m·τ
− aιi
mi·

)
.

Proposition 4. In the case of the same proportion of complete data in groups

mi·
m··

=
mit

m·t
(11)

the group correctionis not needed because G = 0, Q0 = I, A = P∞0 , ει = 0.

Proof. Firstly prove that at correct expression (11) ML = 0, NK = 0. In fact

(ML)i =
T∑
t=1

mit

mi·
(x··t − x···)

(11)
=

T∑
t=1

m·t
m··

(x··t − x···) = 0 .

(NK)i =
I∑
i=1

mit

m·t
(xi·· − x···)

(11)
=

I∑
i=1

mi·
m··

(xi·· − x···) = 0 .

Hence G =
∑∞

k=0 P
k
0 (ML −MNK) = 0. Further in cases if (11) correct we have N =

P∞0 , P0 = MN = N = P∞0 . Therefore Q0 = (I−P0+P∞0 )−1 = I , A = P0+Q0−I = P∞,
B = M and

ει =
I∑

k=1

T∑
t=1

mkt

(
bιt
m·t
− aιk
mk·

)
ek·t =

I∑
k=1

T∑
t=1

mkt

(
1

m··
− 1

m··

)
ek·t = 0 .

2.2 Individual corrections

Consider the incidence matrix of missing data J i with νi rows and T columns in ith
group. Denote: the diagonal matrix Λνi of dimension νi with elements 1

nij
; the diagonal

matrix ΛiT of dimension T with elements 1
mit

; the matrix Ri = ΛνiJ
i and the stochastic

matrix Pi = RiΛiT (J i)T with left eigenvector

π(i) =

(
ni1
mi·

, . . . ,
niνi
mi·

)
.
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The stochastic matrix Pi is regular when at least at one point t there are complete data.
Denote Ui = {xi·t}Tt=1, Vi = {xij·}νij=1 and describe the recurrent sequence

Ai(k) = PiAi(k − 1), (12)

with the initial vector Ai(0) = RiUi − PiVi. Obviously, Ai(k) = P ki Ai(0). Define the
vector of individual corrections in ith group as

Hi =
∞∑
k=1

Ai(k) .

Proposition 5. 1. Let β·(i) be defined in (3) and {β·(i)}νi1 as the vector of dimension
νi with identical elements β·(i), where νi is equal the number of individuals in ith group.
Then EHi = Ri(b+ gi)− {β·(i)}νi1 is the vector with elements

EHij =
1

nij

∑
τ∈Nij

(βτ + γiτ )− 1

mi·

T∑
t=1

mitβt , j = 1, 2, . . . , νi . (13)

2. Denote P∞i = lim
n→∞

Pni , Qi = (I− Pi + P∞i )−1, Ci = P∞i +Qi, Di = QiRi. Then

Hi = (I− Ci)Vi +DiUi = EHi + Ei , where Ei = {Eij}νij=1 is the vector with elements

Eij = eij· −
νi∑
l=1

cijleil· +
T∑
τ=1

dijτei·τ . (14)

Proof. Consider jth element of initial vector

Aij(0) =
1

nij

∑
τ∈Nij

1

miτ

∑
l∈Miτ

(xilτ − xil·) .

According to model (1) we have the expressions

xijt − xij· = βt + γit + eijt − (β·(i, j) + γi·(j) + eij·), where

β·(i) =
1

mi·

T∑
t=1

mitβt, β·(i, j) =
1

nij

∑
t∈Nij

βt, and γi·(j) =
1

nij

∑
t∈Nij

γit.

For short in i-group denote Ai = A,Hi = H,J i = J, Pi = P, Vi = V,Ui = U, νi = ν,Ri =
R,ΛiT = ΛT . Then

A(0) = RL− PK and H =

∞∑
k=0

P k(RL− PK) , (15)

where L = {βt + γit + ei·t}Tt=1, K = {β·(i, j) + γi·(j) + eij·}νj=1 with mathematical
expectations EL = b+ g, EK = R(b+ g). Hence

EH = R(b+ g)− PR(b+ g) + PR(b+ g)− P 2R(b+ g) + . . . = R(b+ g)− P∞R(b+ g) .
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Considering the expression P∞Rb + P∞Rg, we get firstly P∞Rg = 0, because for
each from ν = νi elements of the vector P∞Rg, according to (2), we have in ith group

1

mi·

ν∑
j=1

nij
1

nij

∑
t∈Nij

γit =
1

mi·

∑
t∈Nij

mitγit = 0 .

Other expression P∞Rb is equal 0 in the case of complete data or when it is correct (11),

1

mi·

ν∑
j=1

nij
1

nij

∑
t∈Nij

βt =
1

mi·

∑
t∈Nij

mitβt =
1

m··

∑
t∈Nij

m·tβt = 0 .

Therefore (13) is correct. To obtain the random component of individual corrections, it
is necessary to perform the following lineal transformations

H = RL− PK + P (RL− PK) + P 2(RL− PK) + . . . =

= K − (K −RL)− P (K −RL)− P 2(K −RL)− P 3K + . . . =

= K − (I + P + P 2 + . . .)(K −RL)− P∞K =

= (I− P∞)K − (I− P + P∞)−1(K −RL) =

= (I− P∞ −Q)K +QRL = K − CK +DL, where

Q = (I− P + P∞)−1, C = P∞ +Q , D = QR .

So random components of individual corrections look like

Eij = eij· −
νi∑
l=1

cijleil· +

T∑
τ=1

dijτei·τ .

If U, V is considered instead of L,K in (15) then one can get similarly H = (I−C)V +DU
which is used for calculating.

2.3 United corrections

The following statement can be directly obtained from Proposition 5.

Proposition 6. Let ∆ij = eij·−Eij−εi be the combined error, where εi Eij are random
components of Gi and Hij from (10) and (14) respectively, matrices Ci = {cijl}

νi
j,l=1,

Di = {dijt}
νi,T
j,t=1 are defined in Proposition 5. Then

∆ij =

νi∑
l=1

cijleil· −
T∑
t=1

dijtei·t − εi .
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Proposition 7. Let Jijt denote the indicator of jth individual from ith group in time-
moment t, I[A] denote the indicator of set A, then

1. Eeij·ei1j1· =
σ2I[i=i1]I[j=j1]

nij
; 2. Eeij·ek·t =

I[i=k]σ
2

nijmit
Jijt .

3. Eeij·e··· = Eei·te··· = Eei··e··· = Ee··te··· =
σ2

m··
. 4. Eeij·ek·· =

I[i=k]σ
2

mi·
.

5. Eeij·e··t =
I[i=k]σ

2

nijm·t
Jijt . 6. Eei·tek·· =

σ2I[i=k]

mi·
. 7. Eei··e··t =

mitσ
2

mi·m·t
.

Proposition 8. Denote Ci = C, Di = D, Qi = Q. Let F1(i, ·, k) = {F1(i, ·, k)}νij=1,
F2(i, ·, k) = {F2(i, ·, k)}νij=1 be from Proposition 7. Then

1) P∞i F1(i, ·, k) = 0 . 2) DF2(i, ·, k) = CF1(i, ·, k).

Proof. 1) All rows of the stochastic matrix P∞i are the same, so consider only one row

νi∑
j=1

nij
mi·

− aki
mi·

+
∑
t∈Nij

bkt
nijm·t

 =
1

mi·

(
−aki +

T∑
t=1

bktmit

m·t

)
= 0,

because, according Proposition 2,

A = BN =

{
T∑
t=1

bktmit

m·t

}I
k,i=1

.

2) On this basis one can see that

1

σ2
CF1(i, ·, k) = (P∞i +Q)F1(i, ·, k) = Q

− akimi·
+
∑
t∈Nij

bkt
nijm·t


νi

j=1

=

= − aki
mi·

+QiΛνiJ
i

{
bkt
m·t

}T
t=1

.

On the other hand

1

σ2
DiF2(i, ·, k) = QiΛνiJ

i

{
− aki
mi·

+
bkt
m·t

}T
t=1

= − aki
mi·

+QiΛνiJ
i

{
bkt
m·t

}T
t=1

.

The individual correction is needed in cases when the missing data change the indi-
vidual means over time. For example, a trend is increasing but the data of individuals
have less missing data at the beginning of trial than at the end. In this case, a time
mean is less than it should be. The group correction is needed in cases when the data
of one group have less missing data than that of the other.
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Theorem 1. Let Hij and Gi be the individual and the group corrections respectively,
zij = xij·−(Hij+Gi) and yijt = xijt−zij, the combined error ∆ij is defined in Proposition
6,

Mij,klτ =
1

σ2
E∆ijeklτ , D̃ij,kl =

1

σ2
E∆ij∆kl .

Then two unbiased models look like zij = µ+αi + e1ij + ∆ij , yijt = βt + γit + eijt−∆ij,
besides

Mij,klτ = I[i=k]

(
cijl
nil
−
dijτ
miτ

)
+

(
aik
mk·
− biτ
m·τ

)
,

D̃ij,kl = F0(i, k) + I[i=k]

 νi∑
ι=1

cijιc
k
lι

niι
−

νi∑
ι=1

∑
τ∈Niι

(
cijιd

k
lτ

niιmkτ
+

dijτc
k
lι

nkιmiτ

)
+

T∑
t=1

dijtd
k
lt

mit

 ,

E(eijt −∆ij)(eklτ −∆kl) = σ2(I[i=k,j=l,t=τ ] −Mij,klτ −Mkl,ijt + D̃ij,kl) ,

E(e1ij + ∆ij)(e
1
kl + ∆kl) = σ21I[i=k,j=l] + σ2D̃ij,kl .

Proof. On the base of Proposition 7 the necessary covariance can be constructed:

Eeijteklτ = I[i=k,j=l,t=τ ]σ
2,

Mij,klτ = E∆ijeklτ = Eeklτ

(
νi∑
ι=1

cijιeiι· −
T∑
t=1

dijtei·t − εi

)
=

= σ2I[i=k]

(
cjl
nil
− djτ
miτ

)
+ σ2

(
aik
mk·
− biτ
m·τ

)
Calculate the covariance σ2D̃ijkl = E∆ij∆kl =

= E

(
νi∑
ι=1

cijιeiι· −
T∑
t=1

dijtei·t − εi

) νk∑
j1=1

cklj1ekj1· −
T∑
τ=1

dklτek·τ − εk

 =

=

νi∑
ι=1

cijι

νk∑
j1=1

cklj1Eeiι·ekj1· −
νi∑
ι=1

cijι

T∑
τ=1

dklτEeiι·ek·τ −
νi∑
ι=1

cijιEeiι·εk−

−
T∑
t=1

dijt

νk∑
j1=1

cklj1Eei·tekj1· +
T∑
t=1

dijt

T∑
τ=1

dklτEei·tek·τ +

T∑
t=1

dijtEei·tεk−

−
νk∑
j1=1

cklj1Eεiekj1· +

T∑
τ=1

dklτEεiek·τ + Eεiεk =

= σ2

I[i=k]
eiι· νi∑

j1=1

clj1ekj1·

νi∑
ι=1

cijιc
k
lι

niι
−

νi∑
ι=1

∑
τ∈Niι

cijιd
k
lτ

niιmkτ

− νi∑
ι=1

cijιF1(i, ι, k)−
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−
I[i=k]

mit

 νk∑
j1=1

∑
t∈Nij1

dijtc
k
lj1

nkj1
−

T∑
t=1

dijtd
k
lt

+
T∑
t=1

dijtF2(i, t, k)−

−
νk∑
j1=1

cklj1F1(k, j1, i) +
T∑
τ=1

dklτF2(k, τ, i) + F0(i, k)

 .

The expectations of different combinations are calculated directly. For example,

νi∑
ι=1

cijι

T∑
τ=1

dklτEeiι·ek·τ =

νi∑
ι=1

cijι

T∑
τ=1

dklτ
I[i=k]σ

2

niιmkτ
Jiιτ = σ2I[i=k]

νi∑
ι=1

∑
τ∈Niι

cijιd
k
lτ

niιmkτ
.

On the basis of Proposition 8 one can make sure that

−
νi∑
ι=1

cijιF1(i, ι, k) +

T∑
t=1

dijtF2(i, t, k)−
νk∑
j1=1

cklj1F1(k, j1, i) +

T∑
τ=1

dklτF2(k, τ, i) = 0 .

2.4 Biometrical example

So in the case of uniformity of missing values across the groups we have identical results
with the group correction or without it. In the case of non-uniformity of missing values,
the group correction can change the result, but maybe not. Variation of results may
indicate specificity dropout.

For example in the clinical trials (Krupitsky E., Zvartau E., Verbitskaya E., Alexeyeva
N. at al., 2012) described in the introduction, only from 6% to 32% patients in different
groups remained until the very end of a trial. The patients from a placebo group dropped
out more often than in any other group. At the same time, patients from a full drug
group dropped out more rarely than in any other group.

One variable, which means the Beck Depression Inventory (BDI) was significantly
higher in the full drug group than in any other group and it makes no difference whether
it is calculated with the group correction or without it. It means that BDI would have
remained the same, even if more patients dropped out. I.e. dependence does not exist
between variable BDI and dropout.

Another variable Global Assessment of Functioning Scale (GAF-score) was signifi-
cantly lower in the placebo group than in any other group without the group correction
whereas once the group correction is done, the relevant difference in GAF disappears. It
means that GAF would have increased if more patients from the placebo group remained.
In fact, all the groups have the same GAF, but dependence exists between variable GAF
and dropout. Patients in the placebo group with higher GAF in the absence of real
medication dropped out more. For patients in the placebo group with lower GAF, was
more effective the psychological care.

Thus comparison of results with and without the group correction can indicate the
causes of dropout.



Electronic Journal of Applied Statistical Analysis 159

3 Summary

We calculate the group and individual corrections for the time mean which allow to
balancing two biased model with off-diagonal covariance matrices errors. This makes it
possible to verify the importance of the influence of various factors on the longitudinal
data in the case of incomplete data.
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