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In recent years, the finite mixtures of distributions have been proved to
be of considerable attention in terms of their practical applications. This
paper focuses on studying the problem of estimating the parameters of a 3-
component mixture of exponential, Rayleigh and Burr Type-XII distributions
using Type-I right censoring scheme in Bayesian framework. The expressions
for the Bayes estimators and their variances using the non-informative and
the informative priors are derived for censored sample as well as for complete
sample. The hyperparameters are elicited using prior predictive distribution.
The posterior predictive distribution with different priors is derived and the
equations necessary to find the lower and upper limits of the Bayesian predic-
tive intervals are constructed. A detailed simulation study is carried out to
investigate the performance (in terms of variances) of the Bayes estimators.
Finally, the model is illustrated using the real life data. Bayes estimators
using the informative prior have been observed performing superior.
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1 Introduction

The inspiration towards the use of the Bayesian mixture model is that it allows rotting
the complex structure of mixture models to the simple models when the number of com-
ponents is unknown. Li (1983) and Li et al. (1988) spotlight several features of mixture
models and explain two types of mixture models. If the component distributions of a
mixture belong to same family, their mixture is known as a Type-I mixture model. A
Type-II mixture model is defined if the component distributions of a mixture belong
to different families. In practical situations, we need to infer only about the mixing
proportions when a mixture population may have known component densities. Also,
in many real-life applications, there are known component densities with unknown pa-
rameters but mixing proportions are known and the vice versa. In this paper, Type-II
mixture models with unknown parameters of the known number of component densities
belonging to the different parametric family having unknown mixing proportions are
considered.

Mixture models have been paid great attention in in terms of their methodological
development and practical areas. The use of the finite mixture model becomes unavoid-
able when the data are given only from overall mixture distributions rather not given for
each component. Modeling these data as a mixture of some component distributions is
known as direct application of the mixture models. The direct applications of mixture
models can be seen mostly in engineering, medical sciences, biological sciences, agricul-
ture, economics, life testing, reliability and survival analysis etc. Due to rapid growth
of powerful computational techniques in recent few years, the number of applied fields
where the mixture models have been used is still extending. In many applications, avail-
able data can be considered as coming from a mixture of two or more distributions. For
example, samples of sand are often analyzed by measuring the frequency distribution of
grain sizes. The sand may be known to be a mixture of several minerals. It is of interest
to estimate the proportions of different minerals in the sand. It may also be desired to
estimate the grain size distributions for the different minerals. If the component densi-
ties of the different minerals are known to be belonging to different families, the mixture
distribution is called Type-II mixture distribution. In our study, we took the same situ-
ation where the number of minerals is three and distribution of each mineral is different
(e.g. exponential, Rayleigh and Burr Type- XII). This idea enables us to mix statistical
distributions to get a new mixture distribution. Using this idea, a finite mixture of some
suitable probability distribution is suggested to study a population that is supposed to
comprise a number of subpopulations mixed in unknown proportions. In this paper,
a population of certain objects is assumed to be composed of three subgroups mixed
together in two unknown mixing proportions. The random observations taken from this
population are supposed to be characterized by one of the three distinct unknown mem-
bers of distributions. So the 3-component mixture distribution is recommended to model
this population.

Several authors have extensively applied the 2- component mixture modeling in dif-
ferent practical problems using Bayesian analysis. For a detailed review of Bayesian
estimation techniques, discussion and applications of mixture modeling, one can refer to
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Liu et al. (2010), Saleem and Irfan (2010), AL-Hussaini and Hussein (2012), Ali et al.
(2012), Mohammadi and Salehi-Rad (2012), Abd and AL-Zaydi (2013), Ali et al. (2012),
Feroze and Aslam (2014), Mohamed et al. (2014), Zhang and Huang (2015), Tian et al.
(2014) and Feroze (2015). Plenty of work on mixture distributions from the Bayesian
point of view motivated us to establish the popularity of Bayesian inference using mix-
ture distribution and explore it further in case of Type-II mixture distributions arising
from different fields of interest such as survival and reliability engineering.

Several types of data are used in daily life, including simple data, grouped data, cen-
sored data, progressively censored data and record values. The idea to use the censoring
scheme is that censoring is a property of datasets and not of parameters and is an un-
avoidable feature of the lifetime applications. Censoring is an important and valuable
aspect of the lifetime data. Due to time and cost problem, it is impossible to continue
the testing until the last observation in order to obtain a complete data set. An account
of censoring can be seen in Gijbels (2010) and Kalbfleisch and Prentice (2011). In this
study, an ordinary Type-I right censoring scheme is considered and the observations
greater than the fixed cut off censoring value (the number of dead objects) are taken as
censored ones.

Motivated by the applications of mixture models in a wide range of applied fields, in
current study, specifically, we plan to have Bayesian analysis of a 3-component mixture
of exponential, Rayleigh and Burr Type-XII distributions. Also, in this study, the direct
application of mixture model is considered under Type-II mixture modeling.

The rest of the article is organized as follows: The development of a 3-component
mixture distribution is given in Section 2. The likelihood function of a 3-component
mixture of exponential, Rayleigh and Burr Type-XII distributions are defined in Section
3. The joint posterior distributions assuming the non-informative and the informative
priors are derived in Section 4. In Section 5, the Bayes estimators and their variances are
derived. The posterior predictive distribution and the Bayesian predictive intervals are
described in Section 6. The elicitation of hyperparameters is discussed in Section 7. The
limiting expressions for complete data set are constructed in Section 8. The simulation
study and real life data example are explained in Sections 9 and 10, respectively. Finally,
the conclusion of this study is given in Section 11.

2 The 3-Component Mixture Model

A finite 3-component mixture distribution with unknown mixing proportions p1, p2 and
(1− p1 − p2) has its probability density function (pdf) as:

f (y) = p1f1 (y) + p2f2 (y) + (1− p1 − p2) f3 (y) , p1, p2 ≥ 0, p1 + p2 ≤ 1, (1)

So the finite 3-component mixture distribution (1) assuming exponential, Rayleigh and
Burr Type-XII distributions for 1st, 2nd and 3rd components with unknown parameters
λ1, λ2 and λ3, respectively, has the following form of pdf:

f (y) = p1λ1 exp (−λ1y) + p2
y

λ2
2

exp

(
− y2

2λ2
2

)
+ (1− p1 − p2)λ3 (y + 1)−(λ3+1) . (2)
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The corresponding a 3-component mixture cumulative distribution function (cdf) is:

F (y) = p1F1 (y1) + p2F2 (y) + (1− p1 − p2)F3 (y) ,

F (y) = 1− p1 exp (−λ1y)− p2 exp

(
− y2

2λ2
2

)
− (1− p1 − p2) (y + 1)−(λ3+1) .

3 The Likelihood Function

From a 3-component mixture of exponential, Rayleigh and Burr Type-XII distributions,
let n units are employed in a life testing experiment with fixed test termination time
t. Now, the experiment be performed and it is detected that r units out of n units
terminated until fixed test termination time t and the remaining n − r units are still
working. In many real-life problems, only the failed objects can easily be pointed out
as members of either subpopulation-1 or subpopulation-2 or subpopulation-3 which is
consistent with the definition of Type-I right censoring scheme. It is to be noted that
out of r failures, r1, r2 and r3 failures can be categorized as belong to subpopulation-
1, subpopulation-2 and subpopulation-3, respectively, depending upon the reason of
failure. So, the numbers of uncensored observations is r = r1 + r2 + r3. The remaining
n− r observations are the censored observations that provide no information about the
subpopulation to which they belong. Now, we define ylk, 0 < ylk ≤ t, be the failure time
of the k th unit belonging to the l th subpopulation, where l = 1, 2, 3 and k = 1, 2, · · · , rl.

The likelihood function for a finite 3-component mixture distribution is:

L (λ1, λ2, λ3, p1, p2|y) ∝

{
r1∏
k=1

p1f1 (y1k)

}{
r2∏
k=1

p2f2 (y2k)

}

×

{
r3∏
k=1

(1− p1 − p2) f3 (y3k)

}
{1− F (t)}n−r.

After substitution and simplification, the likelihood function of a 3-component mixture
of exponential, Rayleigh and Burr Type-XII distributions is:

L (λ1, λ2, λ3, p1, p2|y) ∝

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
exp

{
−

(
(n− r − i) t+

r1∑
k=1

y1k

)
λ1

}

× exp

{
−

(
(i− j) t

2

2
+

1

2

r2∑
k=1

y2
2k

)
λ−2

2

}

× exp

{
−

(
j ln (t+ 1) +

r1∑
k=1

ln (y3k + 1)

)
λ3

}
× λr11 λ

−2r2
2 λr33 p

n−r−i+r1
1 pi−j+r22 (1− p1 − p2)j+r3

]
,

where y= (y11, y12, ..., y1r1 , y21, y22, ..., y2r2 , y31, y32, ..., y3r3) are the observed failure
times for the uncensored observations.
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4 The Joint Posterior Distribution

In this section, the joint posterior distributions of parameters λ1, λ2, λ3, p1 and p2 given
data, say y, are derived using the non-informative (Jeffreys’) and the informative priors.

4.1 The Joint Posterior Distribution using the Non-informative Prior

There exist situations where no prior information on the parameter of interest is avail-
able. In such situations, one has to use a non-informative prior (NIP) distribution. The
most commonly used the NIP is the Jeffreys’ prior (JP) when no formal prior infor-
mation is available. According to Jeffreys (1946), the JP for λ1, λ2 and λ3 is defined

as p (λm) ∝
√
|I (λm)|, where m = 1, 2, 3 and I (λm) = −E

{
∂2f(y;λm)

∂λ2
m

}
is Fisher’s

information. It is interesting to note that the JP for proportion parameters p1 and p2

cannot be assumed under the current settings. Therefore, the uniform distribution over
the interval (0, 1) is assumed as the NIP for both proportion parameters p1 and p2

[i.e., p1 ∼ (0, 1) and p2 ∼ (0, 1)]. Under the assumption of independence of all the
parameters, the joint prior distribution of parameters λ1, λ2, λ3, p1 and p2 is:

ξ1 (λ1, λ2, λ3, p1, p2) ∝ 1

λ1λ2λ3
, λ1, λ2, λ3 > 0, p1, p2 ≥ 0, p1 + p2 ≤ 1. (3)

The joint posterior distribution of parameters λ1, λ2, λ3, p1 and p2 given data y using
the JP is:

π1 (λ1, λ2, λ3, p1, p2|y)

=
L (λ1, λ2, λ3, p1, p2|y) ξ1 (λ1, λ2, λ3, p1, p2)∫

p2

∫
p1

∫
λ3

∫
λ2

∫
λ1

L (λ1, λ2, λ3, p1, p2|y) ξ1 (λ1, λ2, λ3, p1, p2) dλ1dλ2dλ3dp1dp2

π1 (λ1, λ2, λ3, p1, p2|y) =
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
exp (−D11λ1) exp

(
−D21λ

−2
2

)
× exp (−D31λ3) pA01−1

1 pB01−1
2 (1− p1 − p2)C01−1

Ω1λ
1−A11
1 λ2A21+1

2 λ1−A31
3

(4)

where A11 = r1, A21 = r2, A31 = r3, A01 = n − r − i + r1 + 1, B01 = i − j + r2 + 1,
C01 = j + r3 + 1,

D11 = (n− r − i) t+
r1∑
k=1

y1k, D21 = (i− j) t
2

2
+

1

2

r2∑
k=1

y2
2k, D31 = j ln (t+ 1)+

r3∑
k=1

ln (y3k + 1) ,

Ω1 =
1

2
Γ (A11) Γ (A21) Γ (A31)

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B (A01, B01, C01)D−A11

11 D−A21
21 D−A31

31 .

The marginal posterior distribution of each parameter is obtained by integrating out the
remaining four parameters.
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4.2 The Joint Posterior Distribution using the Informative Prior

When definite information is available, it is quantified as an informative prior (IP).
Using an informative prior along with the sample information is usually thought of
as updating the current information which, in result, helps reducing the variances of
the Bayes estimators.Now, we assume the gamma, square root inverted gamma (SRIG)
and gamma distributions as IP for component parameters λ1, λ2 and λ3, respectively,
[i.e.,λ1 ∼ Gamma (a1, b1), λ2 ∼ SRIG (a2, b2) and λ3 ∼ Gamma (a3, b3)] and a bi-
variate beta distribution as IP for proportion parameters p1 and p2 [i.e., p1, p2 ∼
Bivariate Beta (a, b, c)]. So, assuming the independence of parameters, the joint prior
distribution of parameters λ1, λ2, λ3, p1 and p2 is:

ξ2 (λ1, λ2, λ3, p1, p2) ∝ λa1−1
1 exp (−b1λ1)λ

−(2a2+1)
2 exp

(
−b2λ−2

2

)
λa3−1

3

× exp (−b3λ3) pa−1
1 pb−1

2 (1− p1 − p2)c−1

}
(5)

In this case, the joint posterior distribution of parameters λ1, λ2, λ3, p1 and p2 given
data y using the IP is:

π2 (λ1, λ2, λ3, p1, p2|y) =

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
exp (−D12λ1) exp

(
−D22λ

−2
2

)
× exp(−D32λ3)p

A02−1
1 p

B02−1
2 (1−p1−p2)C02−1

Ω2λ
1−A12
1 λ

2A22+1
2 λ

1−A32
3

 (6)

where A12 = r1+a1, A22 = r2+a2, A32 = r3+a3, A02 = n−r−i+r1+a, B02 = i−j+r2+b,
C02 = j + r3 + c, D12 = (n− r − i) t +

∑r1
k=1 y1k + b1, D22 = (i− j) t22 + 1

2

∑r2
k=1 y

2
2k +

b2, D32 = j ln (t+ 1) +
∑r3

k=1 ln (y3k + 1) + b3,

Ω2 =
1

2
Γ (A12) Γ (A22) Γ (A32)

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B (A02, B02, C02)D−A12

12 D−A22
22 D−A32

32 .

For each parameter, the marginal posterior distribution is obtained by integrating out
the remaining four parameters.

5 Bayes Estimators and Variances

The expectation of each parameter with their respective marginal posterior distribution
gives the Bayes estimator of the parameter. So, the expressions for the Bayes estimators
of the parameters λ1, λ2, λ3, p1 and p2 using the NIP (JP) and the IP are obtained as:

λ̂1|y =

Γ(A1v+1)Γ(A2v)Γ(A3v)
2Ωv

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B(A0v ,C0v)B(B0v ,A0v+C0v)

D
(A1v+1)
1v D

A2v
2v D

A3v
3v

 (7)

λ̂2|y =

Γ(A1v)Γ(A2v− 1
2)Γ(A3v)

2Ωv

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B(A0v ,C0v)B(B0v ,A0v+C0v)

D
A1v
1v D

(A2v−
1
2)

2v D
A3v
3v

 (8)
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λ̂3|y =

Γ(A1v)Γ(A2v)Γ(A3v+1)
2Ωv

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B(A0v ,C0v)B(B0v ,A0v+C0v)

D
A1v
1v D

A2v
2v D

(A3v+1)
3v

 (9)

p̂1|y =

Γ(A1v)Γ(A2v)Γ(A3v)
2Ωv

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B(B0v ,C0v)B(A0v+1,B0v+C0v)

D
A1v
1v D

A2v
2v D

A3v
3v

 (10)

p̂2|y =

Γ(A1v)Γ(A2v)Γ(A3v)
2Ωv

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B(A0v ,C0v)B(B0v+1,A0v+C0v)

D
A1v
1v D

A2v
2v D

A3v
3v

 (11)

When presenting the Bayes estimators, it is usually necessary to specify the accuracy
of the Bayes estimators. The customary Bayesian measure of the accuracy of a Bayes
estimator is the variance of the Bayes estimator under squared error loss function. So,
the variances of the Bayes estimators of the parameters λ1, λ2, λ3, p1 and p2 using the
NIP (JP) and the IP are derived as:

V ar
(
λ̂1|y

)
= Γ(A1v+2)Γ(A2v)Γ(A3v)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v , A0v+C0v)

D
(A1v+2)
1v D

A2v
2v D

A3v
3v

−

{
Γ(A1v+1)Γ(A2v)Γ(A3v)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v , A0v+C0v)

D
(A1v+1)
1v D

A2v
2v D

A3v
3v

}2

(12)

V ar
(
λ̂2|y

)
= Γ(A1v)Γ(A2v−1)Γ(A3v)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v , A0v+C0v)

D
A1v
1v D

(A2v−1)
2v D

A3v
3v

−

{
Γ(A1v)Γ(A2v− 1

2)Γ(A3v)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v , A0v+C0v)

D
A1v
1v D

(A2v−
1
2)

2v D
A3v
3v

}2

(13)

V ar
(
λ̂3|y

)
= Γ(A1v)Γ(A2v)Γ(A3v+2)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v , A0v+C0v)

D
A1v
1v D

A2v
2v D

(A3v+2)
3v

−

{
Γ(A1v)Γ(A2v)Γ(A3v+1)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v , A0v+C0v)

D
A1v
1v D

A2v
2v D

(A3v+1)
3v

}2

(14)

V ar (p̂1|y) = Γ(A1v)Γ(A2v)Γ(A3v)
2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(B0v , C0v)B(A0v+2, B0v+C0v)

D
A1v
1v D

A2v
2v D

A3v
3v

−

{
Γ(A1v)Γ(A2v)Γ(A3v)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(B0v , C0v)B(A0v+1, B0v+C0v)

D
A1v
1v D

A2v
2v D

A3v
3v

}2

(15)
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V ar (p̂2|y) = Γ(A1v)Γ(A2v)Γ(A3v)
2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v+2, A0v+C0v)

D
A1v
1v D

A2v
2v D

A3v
3v

−

{
Γ(A1v)Γ(A2v)Γ(A3v)

2Ωv

∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
B(A0v , C0v)B(B0v+1, A0v+C0v)

D
A1v
1v D

A2v
2v D

A3v
3v

}2

.

.

(16)

6 Elicitation of Hyperparameters

Elicitation is a method used to formulate a person’s belief and knowledge about one or
more uncertain quantities into a (joint) probability density function for those quantities.
In Bayesian perspective, elicitation can be regarded as a technique to quantification
of prior knowledge about the random parameter(s) so that this can then be combined
with the likelihood to obtain posterior distribution for further statistical analysis. Au-
thors who have discussed this problem include Kadane et al. (1980), Gavasakar (1988),
Al-Awadhi and Garthwaite (2001), Aslam (2003), Hahn (2006) and Saleem and Aslam
(2009). In this study, we adopted prior predictive method based on predictive probabil-
ities given by Aslam (2003).

For eliciting the hyperparameters, the prior predictive distribution for a random vari-
able X using the IP is:

p (x) =

∫
p2

∫
p1

∫
λ3

∫
λ2

∫
λ1

f (x|λ1, λ2, λ3, p1, p2) ξ2 (λ1, λ2, λ3, p1, p2) dλ1dλ2dλ3dp1dp2.

(17)
On substituting (2) and (5) in (17) and then simplifying, we get:

p (x) =
1

(a+ b+ c)

(
aa1b

a1
1

(b1 + x)a1+1 + x
ba2b

a2
2(

b2 + x2
/

2
)a2+1 +

1

(x+ 1)

ca3b
a3
3

{b3 + ln (x+ 1)}a3+1

)
.

(18)
Using the prior predictive distribution given in (18), we consider nine intervals 0 ≤ x ≤
0.5, 0.5 ≤ x ≤ 1, 1 ≤ x ≤ 1.5, 1.5 ≤ x ≤ 2, 2 ≤ x ≤ 2.5, 2.5 ≤ x ≤ 3, 3 ≤ x ≤ 3.5, 3.5 ≤
x ≤ 4 and 4 ≤ x ≤ 4.5 with respective probabilities 0.30, 0.20, 0.15, 0.10, 0.06, 0.04, 0.03,
0.02 and 0.01. It is worth mentioning that these probabilities might have been obtained
from the expert(s) as their opinion about the likelihood of these intervals. Moreover,
different intervals could also be considered. Using (18), following nine equations in (19)-
(27) are solved simultaneously in Mathematica package for eliciting the hyperparameters
a1, b1, a2, b2, a3, b3, a, b and c.

1

(a+ b+ c)

∫ 0.5

0

(
aa1b

a1
1

(b1 + x)a1+1 + x
ba2b

a2
2(

b2 + x2
/

2
)a2+1 +

1

(x+ 1)

ca3b
a3
3

{b3 + ln (x+ 1)}a3+1

)
dx = 0.30

(19)

1
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∫ 1
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(
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2(
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/

2
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{b3 + ln (x+ 1)}a3+1

)
dx = 0.20

(20)



Electronic Journal of Applied Statistical Analysis 279

1
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(21)
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(27)
The elicited values of the hyperparameters a1, b1, a2, b2, a3, b3, a, b and c are obtained
as 2.7944, 2.4352, 0.67532, 0.61495, 1.9490, 1.6535, 1.0939, 1.3719 and 1.0347, respec-
tively.

7 The Posterior Predictive Distribution and Bayesian
Predictive Interval

In this section, we present the derivation of posterior predictive distribution using the
JP and the IP.

7.1 The Posterior Predictive Distribution

The posterior predictive distribution contains the information about the future obser-
vation Z = Yn+1 of a random variable given the data y, already observed. Arnold and
Press (1983), Al-Hussaini et al. (2001), Al-Hussaini and Ahmad (2003), and Bolstad
(2004) have given a detailed discussion on prediction and predictive distribution under
the Bayesian paradigm.
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The posterior predictive distribution of a future observation Z = Yn+1 given data y
using the JP and the IP is:

f (z |y) =

∫
p2

∫
p1

∫
λ3

∫
λ2

∫
λ1

f (z|λ1, λ2, λ3, p1, p2)πv (λ1, λ2, λ3, p1, p2|y) dλ1dλ2dλ3dp1dp2,

(28)
where f (z|λ1, λ2, λ3, p1, p2) = p1f1 (z|λ1) + p2f2 (z|λ2) + (1− p1 − p2) f3 (z|λ3),

f (z|λ1, λ2, λ3, p1, p2) = p1λ1 exp (−λ1z)+p2
z
λ2

2
exp

(
− z2

2λ2
2

)
+(1− p1 − p2)λ3 (z + 1)−(λ3+1),
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i∑
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n− r
i

)(
i

j

)
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−2
2

)
× exp (−D3vλ3) pA0v−1

1 pB0v−1
2 (1− p1 − p2)C0v−1

Ωvλ
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1 λ2A2v+1

2 λ1−A3v
3

So, after simplification, the posterior predictive distribution (28) for a future observation
Z = Yn+1 given data y is:
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(29)

7.2 The Bayesian Predictive Interval

In order to construct a Bayesian predictive interval, the two endpoints (L and U ) of the
Bayesian predictive interval can be obtained using the posterior predictive distribution
given in (29). A 100(1 − α)% Bayesian predictive interval (L, U ) can be obtained by
solving the following equations:∫ L

0 f (z |y) dz = α
2 and

∫∞
U f (z |y) dz = α

2 .
After substitution and simplification the above equations, the Bayesian predictive inter-
val (L, U ) can be written as:
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and
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8 Limiting Expression for Complete Data Set

When test termination time tends to infinity (i.e., t → ∞), uncensored observations
r tends to sample size n (i.e., r → n) and rl tends to unknownnl (i.e., rl → nl),
l = 1, 2, 3. Subsequently, all the observations which are slot in our statistical analysis
become uncensored and the information contained in the sample is increased. As a
result, the posterior risks of the Bayes estimators diminish and efficiency of the Bayes
estimators is increased because all the observations are incorporated in sample. The
limiting expressions for the Bayes estimators and their variances using the NIP (JP) and
the IP are showcased in Tables 1-2.

Table 1: Limiting expressions for the Bayes estimators and their variances as t → ∞
using the JP

Parameters Bayes Estimators Variances of Bayes Estimators

λ1 lim
t→∞

λ̂1|y = n1∑n1
k=1 y1k

lim
t→∞

V ar
(
λ̂1|y

)
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(
∑n1
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2
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Γ(n2− 1

2)

( 1
2

∑n2
k=1 y

2
2k)
−1/2
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(
λ̂2|y

)
=

( 1
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∑n2
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2
2k) 1
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−
{

Γ(n2−
1
2)

Γ(n2)

}2
−1

λ3 lim
t→∞

λ̂3|y = n3∑n3
k=1 ln(y3k+1)
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(
λ̂3|y

)
= n3
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k=1 ln(y3k+1)}2

p1 lim
t→∞

p̂1|y = n1+1
n+3 lim

t→∞
V ar (p̂1|y) = (n1+1)(n2+n3+2)

(n+3)2(n+4)

p2 lim
t→∞

p̂2|y = n2+1
n+3 lim

t→∞
V ar (p̂2|y) = (n2+1)(n1+n3+2)

(n+3)2(n+4)

9 Simulation Study

We resort to a simulation study since the Bayes estimators (under different priors and
loss functions) cannot be compared analytically. Monte Carlo simulation study is done
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Table 2: Limiting expressions for the Bayes estimators and their variances as t → ∞
using the IP

Parameters Bayes Estimators Variances of Bayes Estimators

λ1 lim
t→∞

λ̂1|y = n1+a1∑n1
k=1

y1k+b1
lim
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2

∑n2
k=1

y2
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to investigate the performance of the Bayes estimators and check the impact of vari-
ous parametric values, different sample sizes and test termination times under different
priors. For each of the five parameters λ1, λ2, λ3, p1 and p2 of a 3-component mix-
ture of exponential, Rayleigh and Burr Type-XII distributions, we simulated the Bayes
estimates and variances through a Monte Carlo simulation using the following steps.

1. A sample of size n from the mixtures may be generated using Mathematica software
as follows:

2. Generate p1n observations randomly from 1st component density function f1 (y) =
λ1 exp (−λ1y).

3. Generate p2n observations randomly from 2nd component density function f2 (y) =
y
λ2

2
exp

(
− y2

2λ2
2

)
.

4. Generate remaining (1− p1 − p2)n observations randomly from 3rd component

density function f3 (y) = λ3 (y + 1)−(λ3+1).

5. Select a sample censored at a fixed test termination time t. Take observations
which are greater than a fixed test termination time t as censored ones.

6. Calculate the Bayes estimate ξ̂i and variance V ar
(
ξ̂i

)
of a parameter say ξ using

the censored sample in solving (7)-(16).

7. Repeat steps 1-3, 1000 times.

8. Calculate the simulated Bayes estimate and its simulated posterior risk as ξ̂ =
1

1000

∑1000
i=1

(
ξ̂i

)
and V ar

(
ξ̂
)

= 1
1000

∑1000
i=1 V ar

(
ξ̂i

)
, respectively.
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The above steps 1-5 are used for each of the sample sizes n = 30, 50, 100, 200, each
choice of the vector of the parameters (λ1, λ2, λ3, p1, p2) ={(3, 0.4, 5, 0.4, 0.3), (2, 0.3,
4, 0.4, 0.3), (3, 0.4, 5, 0.35, 0.25)} taking test termination times t = 0.7 and 1. The
choice of the test termination time is made in such a way that the censoring rate in
resulting sample remains in between 10% to 25%. The simulated results, so obtained,
are arranged in Tables 3-11.

From Tables 3-8, it can be seen that the degree of under-estimation (or/and over-
estimation) of the component and proportion parameters (through Bayes estimators) is
lesser for larger sample size as compared to smaller sample size at a fixed test termi-
nation time. Similarly, the degree of over-estimation (or/and under-estimation) of the
component and proportion parameters is greater for smaller test termination time as
compared to larger test termination time at a fixed sample size. Also, it is observed
that difference of the Bayes estimates from assumed parameters reduce to zero with an
increase in sample size for different test termination times. The same observation can
be made with larger test termination time as compared to smaller test termination time
for varying sample sizes.

Also, it is observed that the variances of Bayes estimators using the NIP and the
IP reduce with an increase in sample size at a fixed test termination time. For larger
test termination time, the variances of Bayes estimators are lesser than the variances
for smaller test termination time irrespective of the prior and sample size. Also, the
variances of Bayes estimators of component parameters are smaller (larger) for smaller
(larger) component parametric values (with same proportion parametric values) for each
sample size and test termination time considered in the simulation study. Similarly, the
variances of Bayes estimators of first two component (third component) parameters
are larger (smaller) for smaller proportion parametric values (with same component
parametric values) for different sample sizes (test termination times) at a fixed test
termination time (sample size). Whereas, the variances of Bayes estimators of proportion
parameters are smaller for smaller proportion parametric values (with same component
parametric values) for varying test termination times (sample sizes) at a fixed sample
size (test termination time).

Moreover, it is to be noted that selection of best prior is made based on the variances
of Bayes estimators associated with it. The selection of best prior does not depend on
sample size and test termination time. As far as the problem of selecting a suitable prior
is concerned, it can be seen that the IP occurs as an efficient prior than that using the
NIP (JP) due to lesser variances.

The 90% Bayesian predictive intervals using the NIP (JP) and the IP are showcased in
Tables 9-11. It is concluded that the Bayesian predictive intervals become narrower with
an increase in sample size at a fixed test termination time. The same observation can
be made with larger test termination time as compared to smaller test termination time
at a fixed sample size. The Bayesian predictive intervals are narrower (wider) for larger
(smaller) component parametric values (but proportion parametric values are same) at
each sample size and test termination time considered in the simulation study. But, in
this study, the Bayesian predictive intervals are wider (narrower) for larger (smaller)
proportion parametric values (but component parametric values are same) at different
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Table 3: Bayes estimators (BE) and variances (Var) using the JP with λ1 = 3, λ2 =
0.4, λ3 = 5, p1 = 0.4, p2 = 0.3

t n BE/Var λ̂1 λ̂2 λ̂3 p̂1 p̂2

0.7 30 BE 3.602320 0.382781 5.920740 0.392154 0.290014

Var 2.200540 0.012979 6.693950 0.008102 0.007615

50 BE 3.326910 0.390128 5.591130 0.395441 0.291559

Var 1.185160 0.007060 3.658000 0.005293 0.005061

100 BE 3.278390 0.394767 5.292090 0.396697 0.294180

Var 0.626409 0.003601 1.809800 0.003017 0.002845

200 BE 3.127070 0.396888 5.090450 0.399077 0.294684

Var 0.313185 0.001909 0.940550 0.001624 0.001555

1.0 30 BE 3.448250 0.414545 5.794120 0.394755 0.304601

Var 1.373150 0.007707 5.301490 0.007236 0.006507

50 BE 3.273830 0.408364 5.321820 0.397129 0.303437

Var 0.768727 0.004395 2.771770 0.004618 0.004128

100 BE 3.207630 0.404035 5.143150 0.398862 0.301565

Var 0.379652 0.002157 1.290720 0.002423 0.002156

200 BE 3.107890 0.402331 5.104650 0.399522 0.300997

Var 0.181042 0.001085 0.654712 0.001251 0.001106

sample sizes time. Also, the Bayesian predictive intervals using the IP are narrow than
the predictive intervals using the NIP (JP).

10 Estimation under Real Life Data

Consider the mixture data x=(x11, x12, ..., x1r1 , x21, x22, ..., x2r2 , x31, x32, ..., x3r3),
studied by Davis (1952) on lifetimes (in thousand hours) of many components used in
aircraft sets. To explain the proposed methodology, we take the data on three different
components, namely, R105 Resistor used in PE218 Converter, Z303 Network used in
RF Unit and V7 Transmitter Tube. Davis (1952) showed that the mixture data (x)
can be modeled by a mixture of exponential distributions. For second component (Z303
Network used in RF Unit), the transformation y =

√
2x of exponential random data (x)

yields the Rayleigh random data (y). For third component (V7 Transmitter Tube), the
transformation y = exp(x)−1 of exponential random data (x) yields the Burr Type-XII
random data (y). These transformations support using the real life mixture data for
applying the suggested Bayesian analysis. It is unknown that which component fails



Electronic Journal of Applied Statistical Analysis 285

Table 4: Bayes estimators (BE) and variances (Var) using the IP with λ1 = 3, λ2 =
0.4, λ3 = 5, p1 = 0.4, p2 = 0.3

t n BE/Var λ̂1 λ̂2 λ̂3 p̂1 p̂2

0.7 30 BE 2.356480 0.487003 2.984300 0.386409 0.290600

Var 0.520248 0.012139 1.095070 0.007944 0.007259

50 BE 2.567170 0.449516 3.403030 0.388219 0.291903

Var 0.449817 0.006507 1.036850 0.005133 0.004757

100 BE 2.774100 0.426028 3.917060 0.392694 0.294621

Var 0.325301 0.003088 0.854078 0.002873 0.002614

200 BE 2.920040 0.413346 4.317160 0.396557 0.296583

Var 0.217843 0.001642 0.609271 0.001546 0.001436

1.0 30 BE 2.413620 0.477529 3.164020 0.386970 0.308796

Var 0.463332 0.007588 1.070340 0.007149 0.006441

50 BE 2.624400 0.456875 3.622840 0.391578 0.306765

Var 0.376156 0.004217 0.960790 0.004561 0.004086

100 BE 2.833610 0.413381 4.144930 0.393894 0.302609

Var 0.248801 0.002093 0.717335 0.002410 0.002130

200 BE 2.932280 0.402285 4.490690 0.397227 0.301344

Var 0.147921 0.001061 0.468342 0.001247 0.001098

until a failure occurs at or before the test termination time t = 1 hour. Thus, we have a
type-I right censored data at t = 1 hours on n = 582 radar sets. To evaluate the Bayes
estimates and variances, the summary of real mixture data is:

n = 582, n1 = 317, n2 = 77, n3 = 188, r1 = 252, r2 = 54, r3 = 175, r = 481, n− r = 101,

r1∑
k=1

y1k = 90.60,

r2∑
k=1

y2
2k = 46.40,

r3∑
k=1

ln (1 + y3k) = 46.125.

Since n − r = 101, we have almost 17.35 percent type-I right censored sample. The
Bayes estimates and variances are given in Table 12.

It is observed that results obtained through the real data, given in Table 12, are
compatible with simulated results.The performance of the Bayes estimators using the
IP is seen as superior than the NIP (JP) based on minimum amount of variances of the
Bayes estimators.

The 90% Bayesian predictive intervals (L, U ) using the JP and the IP are presented
in Table 13.



286 Tahir et al.

Table 5: Bayes estimators (BE) and variances (Var) using the JP with λ1 = 2, λ2 =
0.3, λ3 = 4, p1 = 0.4, p2 = 0.3

t n BE/Var λ̂1 λ̂2 λ̂3 p̂1 p̂2

0.7 30 BE 2.787750 0.334150 4.875380 0.367916 0.319747

Var 1.719440 0.007329 5.870150 0.008614 0.007592

50 BE 2.566530 0.320387 4.482780 0.374579 0.314790

Var 0.941188 0.004175 3.197340 0.005926 0.005054

100 BE 2.402150 0.313439 4.195270 0.379594 0.311137

Var 0.435550 0.002049 1.524200 0.003340 0.002671

200 BE 2.250090 0.310095 4.054360 0.385908 0.306865

Var 0.200057 0.001048 0.788644 0.001813 0.001368

1.0 30 BE 2.464890 0.318109 4.655310 0.382104 0.307851

Var 0.937699 0.004793 4.197770 0.007624 0.006499

50 BE 2.313290 0.313197 4.299610 0.386273 0.305298

Var 0.502155 0.002528 2.202300 0.004901 0.004047

100 BE 2.170090 0.306708 4.146010 0.391559 0.302624

Var 0.217825 0.001062 1.060830 0.002601 0.002066

200 BE 2.096940 0.303220 4.067390 0.395071 0.301295

Var 0.100875 0.000476 0.538922 0.001349 0.001044

From Table 13, it can be seen that the 90% Bayesian predictive intervals using the IP
are narroweras compared to the Bayesian predictive intervals using the NIP (JP).

11 Conclusions

Monte Carlo simulation study has revealed some important and fascinating properties
of the Bayes estimators. The application and importance of mixture models in real life
phenomena is un-deniable. A 3-component mixture of exponential, Rayleigh and Burr
Type-XII distributions is developed to model lifetime data. Type-I right censoring sam-
pling scheme is considered. Assuming the availability of the NIP and the IP, expressions
of the Bayes estimators and their variances are derived. As the cut off test termination
time tends to infinity, the limiting expressions (for complete sample) of the Bayes esti-
mators and their variances are greatly simplified. To judge the relative performance of
the Bayes estimators and also to deal with the problems of selecting the priors at differ-
ent sample sizes and test termination times, a comprehensive Monte Carlo simulation
has been conducted. From numerical results, it is observed that an increase in sample



Electronic Journal of Applied Statistical Analysis 287

Table 6: Bayes estimators (BE) and variances (Var) using the IP with λ1 = 2, λ2 =
0.3, λ3 = 4, p1 = 0.4, p2 = 0.3

t n BE/Var λ̂1 λ̂2 λ̂3 p̂1 p̂2

0.7 30 BE 2.254210 0.435999 2.730550 0.350452 0.337713

Var 0.446858 0.007242 0.969025 0.007973 0.007317

50 BE 2.174170 0.397820 2.985750 0.356202 0.332550

Var 0.377069 0.004038 0.870470 0.005312 0.005025

100 BE 2.142280 0.357479 3.337420 0.364385 0.323096

Var 0.257236 0.002031 0.699058 0.003019 0.002619

200 BE 2.115150 0.334042 3.574800 0.375050 0.314347

Var 0.152578 0.001023 0.500818 0.001702 0.001348

1.0 30 BE 1.875660 0.417382 2.742400 0.372176 0.319168

Var 0.355903 0.004611 0.887095 0.007341 0.006327

50 BE 2.098340 0.377392 3.004290 0.375420 0.313072

Var 0.274356 0.002379 0.773419 0.004805 0.004015

100 BE 2.081290 0.339673 3.350050 0.383946 0.306685

Var 0.165103 0.001008 0.571601 0.002566 0.002024

200 BE 2.063400 0.319568 3.596570 0.390302 0.303144

Var 0.090325 0.000441 0.384827 0.001347 0.001040

size (test termination time) at a fixed test termination time (sample size) provides im-
proved Bayes estimators. The degree of over-estimation (or/and under-estimation) of
the Bayes estimators is quite larger (smaller) for relatively smaller (larger) sample sizes
(test termination times) at a fixed test termination time (sample size). Also, as sample
size (test termination time) increases (decreases), the variances of Bayes estimators de-
crease (increase) for a fixed test termination time (sample size). However, the variances
of Bayes estimators are smaller (larger) when component (proportion) parameters are
relatively smaller (larger) and vice versa. Moreover, the Bayesian predictive intervals
become narrower with an increase in sample size (test termination time) at a fixed test
termination time (sample size). The Bayesian predictive intervals are narrower (wider)
for larger component (proportion) parametric values as compared to smaller compo-
nent (proportion) parametric values. The Bayesian predictive intervals using the IP
are narrow than the predictive intervals using the NIP. The results obtained through
real life mixture data coincide with the simulated results. Finally, we conclude that
the IP is more efficient and suitable prior for estimating the component and proportion
parameters.
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Table 7: Bayes estimators (BE) and variances (Var) using the JP with λ1 = 3, λ2 =
0.4, λ3 = 5, p1 = 0.35, p2 = 0.25

t n BE/Var λ̂1 λ̂2 λ̂3 p̂1 p̂2

0.7 30 BE 3.611530 0.414533 5.747880 0.326807 0.273771

Var 2.707290 0.015264 4.722200 0.007419 0.007123

50 BE 3.460130 0.390867 5.552320 0.336729 0.260259

Var 1.405980 0.009375 2.623870 0.005117 0.004430

100 BE 3.257810 0.393032 5.267710 0.348103 0.258355

Var 0.711027 0.004478 1.333090 0.002765 0.002555

200 BE 3.140540 0.396598 5.135370 0.349029 0.255785

Var 0.358139 0.002377 0.686220 0.001509 0.001382

1.0 30 BE 3.532100 0.411617 5.654520 0.331077 0.264611

Var 1.811260 0.009368 3.585270 0.006712 0.006138

50 BE 3.279370 0.408845 5.412040 0.346548 0.257306

Var 0.857538 0.005857 1.998300 0.004432 0.003644

100 BE 3.189190 0.405310 5.211860 0.348336 0.254082

Var 0.433161 0.002726 0.955591 0.002306 0.001944

200 BE 3.117970 0.402108 5.084050 0.349617 0.251756

Var 0.212387 0.001330 0.467076 0.001180 0.000990
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Table 8: Bayes estimators (BE) and variances (Var) using the IP with λ1 = 3, λ2 =
0.4, λ3 = 5, p1 = 0.35, p2 = 0.25

t n BE/Var λ̂1 λ̂2 λ̂3 p̂1 p̂2

0.7 30 BE 2.241380 0.500469 3.358090 0.328551 0.271304

Var 0.534126 0.014324 1.075610 0.007340 0.006807

50 BE 2.543370 0.469055 3.808280 0.353795 0.243770

Var 0.473649 0.008778 0.975438 0.004946 0.004215

100 BE 2.782700 0.426731 4.236040 0.347462 0.248103

Var 0.365105 0.003840 0.722560 0.002669 0.002348

200 BE 2.867130 0.410906 4.625040 0.349617 0.247450

Var 0.239168 0.002084 0.499935 0.001459 0.001299

1.0 30 BE 2.297910 0.489884 3.516950 0.328416 0.280639

Var 0.486431 0.009151 1.036440 0.006658 0.006104

50 BE 2.584720 0.466145 3.900530 0.354268 0.251251

Var 0.400124 0.005604 0.854358 0.004397 0.003636

100 BE 2.787110 0.429940 4.407530 0.347120 0.254995

Var 0.272956 0.002632 0.600692 0.002287 0.001921

200 BE 2.881770 0.414218 4.642020 0.348033 0.252642

Var 0.162571 0.001299 0.362229 0.001172 0.000984
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Table 9: Bayesian predictive intervals using the JP and the IP with λ1 = 3, λ2 =
0.4, λ3 = 5, p1 = 0.4, p2 = 0.3

JP IP

t n L U L U

0.7 30 0.018178 1.306350 0.021257 1.190290

50 0.018405 1.163890 0.020206 1.080560

100 0.018803 1.070330 0.019618 1.005070

200 0.019059 1.017940 0.019412 0.960766

1.0 30 0.018116 1.170270 0.021067 1.108610

50 0.018319 1.070900 0.020118 1.031960

100 0.018754 1.019800 0.019645 0.980107

200 0.018948 0.990470 0.019387 0.955550

Table 10: Bayesian predictive interval using the JP and the IP with λ1 = 2, λ2 =
0.3, λ3 = 4, p1 = 0.4, p2 = 0.3

JP IP

t n L U L U

0.7 30 0.023290 1.635070 0.026500 1.223850

50 0.024010 1.430670 0.025794 1.132410

100 0.024707 1.317630 0.025458 1.066920

200 0.024990 1.243350 0.025340 1.044110

1.0 30 0.024237 1.563580 0.027261 1.167440

50 0.024683 1.394570 0.026519 1.086590

100 0.025155 1.261590 0.026164 1.038770

200 0.025398 1.230510 0.025945 1.018970
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Table 11: Bayesian predictive interval using the JP and the IP with λ1 = 3, λ2 =
0.4, λ3 = 5, p1 = 0.35, p2 = 0.25

JP IP

t n L U L U

0.7 30 0.016661 1.287230 0.019179 1.179950

50 0.016188 1.146600 0.017530 1.074140

100 0.016792 1.059630 0.017369 0.984689

200 0.016874 1.007210 0.017114 0.937043

1.0 30 0.016523 1.163370 0.018904 1.103730

50 0.016308 1.069690 0.017610 1.030570

100 0.016661 1.012260 0.017317 0.967683

200 0.016837 0.980143 0.017142 0.926550

Table 12: Bayes estimators (BE) and variances (Var) using the JP and the IP with real
life mixture data

Prior Estimators λ̂1 λ̂2 λ̂3 p̂1 p̂2

JP BE 1.767531 0.769615 3.302097 0.523493 0.163490

Var 0.040668 0.009974 0.110522 0.000956 0.000779

IP BE 1.756090 0.773745 3.307278 0.523122 0.164274

Var 0.036648 0.009053 0.107516 0.000907 0.000729

Table 13: Bayesian predictive interval (L, U ) using the NIP (JP) and the IP with real
life mixture data

JP IP

L U L U

0.026608 1.768050 0.027085 1.637290
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