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In this paper, we have proposed two nonparametric tests for testing the
equality of location parameters of two multivariate distributions based on
the notion of data depth. The proposed tests are extensions of the M -
based test due to Li and Liu (2004). The performance of proposed tests has
been assessed for symmetric as well as skewed multivariate distributions by
simulation experiments. The tests have better performance in terms of power
as compared to the M -based test and some of their competitors. The use of
tests is illustrated with real life data.
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1 Introduction

In several situations comparison between two data sets is required for number of reasons.
The comparison can be based on the locations of these data sets. If multivariate data
follow multivariate normal distribution then the task is easy as well known tests are avail-
able in the literature. However, if data do not follow multivariate normal distribution
or we have no information about underlying distribution, nonparametric multivariate
statistical methods are used to analyze data. One of the multivariate nonparametric
statistical methods is based on the notion of the statistical data depth function, which
was first introduced by Tukey (1975).

∗Corresponding author: chavanatul2190@gmail.com

c©Università del Salento
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A data depth is a device for finding the location of multivariate data point with respect
to a given data cloud. Larger depths are associated with more central points. Data
depth gives a natural center-outward ranking to a multivariate data points with respect
to data cloud. With the help of such rankings, Li and Liu (2004) proposed two depth-
based nonparametric tests for multivariate location difference viz. T -based test and
M -based test. These tests are developed using the Depth Depth (DD) plot (Liu et al.,
1999). Dovoedo and Chakraborti (2015) have reported an extensive simulation study to
evaluate the performance of these two tests for well known family of multivariate skewed
distributions as well as multivariate symmetric distributions and compared performance
of these tests for four popular affine-invariant depth functions, namely Mahalanobis
depth, Spatial depth, Halfspace depth and Simplicial depth. We briefly discuss few of
these in this article.

Several nonparametric tests have been proposed to deal with the multivariate two
sample location problems as well as multi-sample location problems based on the concept
of data depth. See Rousson (2002), Li et al. (2011), Chenouri and Small (2012) among
others. Many of these methods are use permutation test to calculate the p-value.

In this paper we have proposed two nonparametric tests for testing equality of location
parameters of two multivariate distributions based on the data depth, which are purely
nonparametric. These tests are extensions of the M -based test introduced by Li and
Liu (2004). Li and Liu (2004) use the most deepest point of two data clouds. We
instead, consider some pre-specified number of most deepest points of the data clouds
under comparison and construct tests based on these points. The performance of the
proposed tests has been assessed by simulation experiments. The proposed tests give
better performance in terms of power as compared to the M -based test and T -based test
for symmetric as well as skewed multivariate distributions.

The rest of the paper is organized as follows. In section 2, we briefly discuss the notion
of data depth, various data depth functions with their properties and DD plot. In section
3, we review the existing T -based and M -based tests of multivariate locations proposed
by Li and Liu (2004). We describe the two new proposed nonparametric tests for testing
the equality of locations using data depth in section 4. In section 5, we report simulation
studies to compare performance of proposed tests with existing tests. In section 6, we
apply the proposed tests to real life data. Section 7 contains some concluding remarks.

2 Statistical Data Depth Functions, Its Properties and DD
Plot

2.1 Data Depth

Let (X1, X2, ..., Xm) be a data set (cloud), where each Xi ∈ Rp is assumed to follow a
continuous distribution with cumulative distribution function (CDF) F (.), i = 1, 2, ...,m.
Let D(x, F ) be the depth of a point x with respect to F . A data depth is a function
defined from Rp to [0,∞). Notion of data depth can be used to obtain the location of
a given data points with respect to a data cloud. It measures the centrality of a given
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data point with respect to a given data cloud. The deepest point using notion of data
depth has the largest depth. Data depth gives a natural center-outward ranking to a
data points with respect to data cloud. Such rankings were used for testing difference
in location or scale parameters of two or more multivariate distributions, constructing
nonparametric control charts, outlier detection and classification problem etc.

Tukey (1975) has first invented the word depth for picturing data. In literature,
many different notions of data depth functions were proposed for capturing different
probabilistic properties of multivariate data. Among them, the most popular choices
of data depth functions are Mahalanobis depth (Mahalanobis, 1936), Simplicial depth
(Liu, 1990), majority depth (Singh, 1991), half-space depth (Tukey, 1975), projection
depth (Donoho and Gasko, 1992) etc. Some of these depth functions are reviewed in the
following.

• Mahalanobis Depth

The Mahalanobis depth of a point x ∈ Rp with respect to F on Rp is defined as,

MHD(x, F ) = 1
(x−µF )′Σ−1

F (x−µF )
,

where µF is a location parameter or center and ΣF is the variance covariance matrix
or dispersion matrix of F . The sample version of Mahalanobis depth can be obtained by
replacing µF by X̄ (sample mean) and ΣF by S (sample variance covariance matrix).

• Simplicial Depth

The simplicial depth of a point x ∈ Rp with respect to F on Rp is defined as,

SD(x, F ) = PrF (s[X1, X2, ..., Xp+1] 3 x),

where X1, X2, ..., Xp+1 are independent and identically distributed observations from F
and s[X1, X2, ..., Xp+1] is a closed simplex whose vertices are X1, X2, ..., Xp+1. The Sam-
ple version of simplicial depth can be obtained by replacing F by Fm in this expression.
That is,

SD(x, Fm) =
(
m
p+1

)−1∑
∗ I(xεs[Xi1, Xi2, ..., Xip+1]),

where (∗) runs over all possible subsets of X1, X2, ..., Xm of size (p + 1). Larger the
depth SD(x, Fm) indicates x is contained in more simplices generated from the sample.

• Tukey’s Halfspace Depth

Tukey’s halfspace depth of a point x ∈ Rp with respect to probability measure P on Rp
is defined as the minimum probability mass carried by any closed half space containing
x, that is,

HSD(x, F ) = infH{P (H) : H is a closed halfspace containing x },

The sample version of HSD(x, F ) is obtained by replacing F by Fm. If k = 1 then
HSD(x, F ) = min{F (x), 1− F (x−)}.
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2.2 Properties of Depth Function

A depth function D(x, F ) is a non-negative function lies between [0,∞). According to
Zuo and Serfling (2000), the depth function should satisfy the following four properties.

1. Affine-invariance: Suppose x ∈ Rp be a any given data point. Let A be any
invertible matrix and b ∈ Rp, then depth of a point Ax + b with respect to F is
equal to the depth of a point with respect to F . That is, D(Ax+ b, F ) = D(x, F ).

2. Maximality at a center: If F is centrally symmetric about x0 ∈ Rp, then depth
of x0 is the largest depth among all data points. That is,

D(x0, F ) ≥ D(x, F ) for any x ∈ Rp

3. Monotonicity relative to any deepest point: If D(x0, F ) ≥ D(x, F ) for any
x ∈ Rp, then D(x0 + λ(x − x0), F ) is monotone non-increasing over [0,∞) for
λ ∈ [0, 1].

4. Vanishing at infinity: If ||x|| −→ ∞ then D(x, F ) −→ 0, where ||x|| is the
Euclidean norm in Rp.

In the following section, we describe DD plot.

2.3 Depth-Depth Plot (DD Plot)

Let (X1, X2, ..., Xm) and (Y1, Y2, ..., Yn) be two random samples from two continuous
distributions F and G respectively, where Xi, Yj ∈ Rp, i = 1, 2, ...,m and j = 1, 2, ..., n.
Let D(x, F ) and D(x,G) be the depths of a point x ∈ Z with respect to F and G
respectively, where Z = X ∪ Y . Let

DD(F,G) = {(D(x, F ), D(x,G)), ∀x ∈ Z}.

The empirical version of DD(F,G) based on the above described random samples is
given by,

DD(Fm, Gn) = {(D(x, Fm), D(x,Gn)), ∀x ∈ Z}.

DD plot is a two-dimensional graph, which is the plot of points in the set DD(Fm, Gn).
The DD plot can be used as a convenient diagnostic tool for graphical comparison of
two multivariate samples. Difference in locations or scales or skewness or kurtosis are
associated with different patterns observed on the DD plots. If F = G then the points
on the empirical DD Plot should fall on a 450 line segment. This is illustrated in
Figure 1(a), which is the DD plot of two multivariate samples drawn from the biariate
normal distribution with mean vector µ = 0

¯
and dispersion matrix I2, where I2 is the

identity matrix of order two. That is N2(0
¯
, I2). The departure of F from G will indicate

departure of points from 450 line segment and Figure 1(b), Figure 2(a), Figure 2(b) and
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Figure 3 reveal different patterns of DD plot that indicate the location differences, large
location differences, scale differences and skewness differences (both location and scale
differences) respectively. From Figure 1(b), the DD plot has a leaf-shaped figure with
the cusp lying on the diagonal line towards the upper right corner and the leaf steam
at the lower left corner point (0,0) when there is a shift in location parameters of two
multivariate samples. In each of these Figures, we plot DD plot of DG against DF where
F and G are chosen appropriately, where DF and DG are the depth of the points with
respect to F and G respectively. We use Simplicial depth as a depth function to plot
the DD plot in figure 1, 2 and 3. The study reported here is based on Simplicial depth
function. The DD plots have been plotted using ’depth’ package available in R (R Core
Team, 2016).

(a) (b)

Figure 1: DD plots of (a) F = G = N2(0, I2) and (b) F = N2(0, I2) and G = N2(0.5, I2).

(a) (b)

Figure 2: DD plots of (a) F = N2(0, I2) and G = N2(1.5, I2) and (b) F = N2(0, I2) and
G = N2(0, 0.5I2).
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Figure 3: DD plot of F = N2(0, I2) and G = N2(1, 0.1I2).

In the following section, we describe T -based and M -based tests due to Li and Liu
(2004).

3 T -based and M-based Tests

Li and Liu (2004) have proposed the T -based and the M -based tests for testing the
equality of location parameters of two multivariate distributions by observing the DD
plot introduced by Li and Liu (2004). These tests are completely nonparametric in
nature.

Let X = (X1, X2, ..., Xm) and Y = (Y1, Y2, ..., Yn), Xi ∈ Rp, Yj ∈ Rp, i = 1, 2, ...,m,
j = 1, 2, ..., n, be two data vectors observed from the distributions with CDF F and
G respectively. Moreover, we assume that F and G are identical except for a possible
location shift.

Let µ1 and µ2 be the location parameters of F and G respectively. The problem under
consideration is to test

H0 : µ1 = µ2 Vs H1 : µ1 6= µ2.

It is equivalent to test

H0 : θ = 0 Vs H1 : θ 6= 0,

where θ = µ1 − µ2. That is θ is the shift in location parameters of two multivariate
distributions.

3.1 The T -based Test

In the presence of location shift in two distribution, the DD plot has a leaf shaped figure
(Figure 1(b), Figure 2(a)) with the leaf stem anchoring at the lower left corner point
(0, 0) and the cusp lying on the diagonal line pointing towards the upper right corner.
On the basis of this observation, Li and Liu (2004) constructed the test statistic which
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is the distance between the origin (0,0) and the cusp point. Li and Liu (2004) suggested
the following procedure to calculate the distance between the cusp point and the origin
(0,0).
For (a1, b1) and (a2, b2) in ∈ R2, define

(a1, b1) ≥ (a2, b2) if a1 ≥ a2 and b1 ≥ b2,
(a1, b1) < (a2, b2) otherwise.

Define the set Q as
Q = {z ∈ X ∪ Y : there does not existw ∈ X ∪ Y s. t.

(D(w,Fm), D(w,Gn)) ≥ (D(z, Fm), D(z,Gn))}.
Then the cusp point is the point (D(zc, Fm), D(zc, Gn)) that satisfies zc ∈ Q and
|D(zc, Fm) − D(zc, Gn)| ≤ |D(z, Fm) − D(z,Gn)| for all z ∈ Q. Let T = (D(zc, Fm) +
D(zc, Gn))/2. The distance between the origin (0,0) and the cusp point is approximately√

2T . Li and Liu (2004) used T as a test statistic instead of using
√

2T and smaller the
value of T indicates the larger shift in location. The p-value of the test is obtained by
using the Fisher’s permutation test. Let

P TB =

∑B
i=1 I(T∗i ≤Tobs)

B ,

where I(.) is the indicator function, Tobs is the observed value of test statistic T calculated
from the original combined sample, B is the number of times the combined sample
X ∪ Y is permuted and T ∗

i is the value of test statistic T corresponding to ith permuted
combined sample, i = 1, 2, ..., B.

3.2 The M-based Test

Li and Liu (2004) developed another test for testing the equality of location parameters
of two multivariate distributions based on the deepest point. In the theory of data
depth, the location parameter is the point having maximum depth. Therefore if the two
distributions F and G are identical then they should have the same deepest point. If
there is a shift in location then the deepest point corresponding to the distribution F
would not be the deepest point corresponding to the distribution G. In fact, the deepest
point of F will have a smaller depth value with respect to G. M -based test statistic due
to Li and Liu (2004) is given by,

M = min{D(v1, Fm), D(u1, Gn)},

where v1 is the deepest point of X ∪ Y corresponding to Gn, and u1 is the deepest
point of X ∪ Y corresponding to Fm. Here larger the location difference, smaller the
value of M . The p-value of the test is obtained by using the Fisher’s permutation test.
Let

PMB =

∑B
i=1 I(M∗i ≤Mobs)

B ,

where I(.) is the indicator function, Mobs is the observed value of test statistic M calcu-
lated from the original combined sample, B is the number of times the combined sample
X∪Y is permuted and M∗

i is the value of test statistic M corresponding to ith permuted
combined sample, i = 1, 2, ..., B.
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4 Proposed Tests

In the M -based test, Li and Liu (2004) consider only single deepest point for constructing
the M -based test statistic. The test based on single deepest point considers a single data
point. There is scope for improving the performance of this test by incorporating few
more data points while constructing the test. This can be achieved by considering more
than one deepest point. We propose the following two test statistic which are based on
k (k ≥ 2) deepest points for above hypothesis testing problem which can be considered
as extensions of the previously discussed M -based test.

Suppose the set U consists of the k deepest points in X ∪ Y with respect to Fm and
the set V consists of the k deepest points in X ∪ Y with respect to Gn. Then we define
two test statistic as follows,

• M1-based test statistic

M1 = min{ 1
k

k∑
i=1

D(ui, Gn), 1
k

k∑
i=1

D(vi, Fm)},

• M2-based test statistic

M2 = 1
k

k∑
i=1

(mini(D(ui, Gn), D(vi, Fm))),

where ui is the ith point of the set U and vi is the ith point of the set V . Here for both
of these two test statistic, larger the location difference, smaller the value of M1 as well
as of M2. Therefore we propose two tests based on the above defined two statistic. Each
test rejects H0 for smaller value of the corresponding statistic.

The p-value of the proposed tests are obtained by using the Fisher’s permutation test.
Let

PM1
B =

∑B
i=1 I(M∗1i≤M1obs)

B ,

where I(.) and B are defined as earlier, M1obs is the observed value of test statistic
M1 calculated from the original combined sample and M∗

1i is the value of test statistic
M1 corresponding to ith permuted combined sample, i = 1, 2, ..., B. Similarly, we can
calculate the p-value for test statistic M2.

5 Performance of Tests

We have carried out extensive simulation study to assess the performance of two proposed
tests, T-based, M-based and Hotelling T 2 tests for a bivariate data. The performance of
proposed tests has been evaluated in terms of power for two Bivariate symmetric distribu-
tions (Bivariate normal, Bivariate Cauchy) as well as two Bivariate skewed distributions
with pattern 1 and pattern 2 (Bivariate skew normal; Azzalini, 2005), bivariate skew-t
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distribution (Azzalini and Capitanio, 2003). In the simulation study, the number of ob-
servations generated from each distribution F and G are taken to be m=n=100 and the
original sample is permuted B=500 times. The power of T -based, M -based, Hotelling
T 2, M1-based and M2-based tests are obtained by the proportion of the simulated p-
values less than equal to the level of significance α = 0.05. Here 1000 simulations are
used for reporting the power and also results are reported for various values of k=2,3,4,5.
Distributions used in the simulation study are listed in Table-1.

Table 1: Distributions used in the simulation study

Distribution Parameters

Symmetric normal N2(ξ,Ω = I)

Symmetric cauchy Cauchy(ξ,Ω = I)

Skew-normal Pattern 1 SN2(ξ,Ω = I, a = (10, 4)T )

Skew-normal Pattern 2 SN2(ξ,Ω = I, a = (4, 10)T )

Skew-t Pattern 1 ST2(ξ,Ω = I, a = (10, 4)T , v = 1)

Skew-t Pattern 2 ST2(ξ,Ω = I, a = (10, 4)T , v = 3)

The parameter ξ denotes the location parameter, Ω denotes the dispersion parameter,
a denotes the shape parameter (or skewness parameter) and v denotes the degrees of
freedom. From all these distributions, the first random sample of size 100 is generated
with parameter ξ = (0, 0)T and dispersion parameter Ω is an identity matrix of order
2 and second random sample of size 100 is generated with parameter ξ = (µ, µ)T and
dispersion parameter Ω is an identity matrix of order 2. Details regarding shape param-
eter a and degrees of freedom v are provided in Table-1. We provide powers of all these
discussed tests for different values of µ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. R-software is used for
simulation studies.

Table-8 provides powers for T -based, M -based, Hotelling T 2 and proposed tests when
F is bivariate Cauchy distribution with parameters ((0, 0), I2) and G is bivariate normal
distribution with parameters ((µ1, µ2), I2) with sample sizes m=n=100 and Table-9 pro-
vides powers for T -based, M -based, Hotelling T 2 and proposed tests when F is trivariate
Cauchy distribution with parameters ((0, 0, 0), I3) and G is trivariate normal distribution
with parameters ((µ1, µ2, µ3), I3) with sample sizes m=n=50.
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Table 2: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate normal with sample sizes m = n = 100 for
simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.046 0.094 0.267 0.505 0.773 0.950

M -based 0.046 0.106 0.282 0.547 0.810 0.954

Hotelling T 2 0.059 0.142 0.413 0.769 0.957 0.995

k=2
M1-based 0.051 0.099 0.310 0.567 0.846 0.972

M2-based 0.052 0.091 0.317 0.584 0.847 0.966

k=3
M1-based 0.048 0.108 0.324 0.598 0.857 0.973

M2-based 0.055 0.108 0.334 0.613 0.864 0.974

k=4
M1-based 0.046 0.110 0.317 0.609 0.851 0.976

M2-based 0.048 0.107 0.324 0.633 0.864 0.979

k=5
M1-based 0.045 0.113 0.337 0.614 0.859 0.984

M2-based 0.045 0.110 0.337 0.628 0.867 0.983

Table 3: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate cauchy with sample sizes m = n = 100 for
simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.050 0.094 0.171 0.351 0.561 0.793

M -based 0.058 0.090 0.169 0.366 0.568 0.801

Hotelling T 2 0.019 0.023 0.026 0.033 0.038 0.045

k=2
M1-based 0.057 0.093 0.189 0.396 0.587 0.818

M2-based 0.064 0.101 0.183 0.386 0.601 0.822

k=3
M1-based 0.059 0.092 0.175 0.382 0.595 0.821

M2-based 0.061 0.093 0.185 0.378 0.609 0.819

k=4
M1-based 0.057 0.097 0.185 0.393 0.601 0.816

M2-based 0.059 0.098 0.191 0.389 0.611 0.817

k=5
M1-based 0.062 0.086 0.170 0.391 0.601 0.828

M2-based 0.059 0.091 0.181 0.385 0.608 0.823
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Table 4: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-normal distribution, pattern 1 with
sample sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.051 0.156 0.517 0.905 0.995 1.000

M -based 0.051 0.176 0.587 0.914 0.992 0.999

Hotelling T 2 0.047 0.262 0.783 0.995 1.000 1.000

k=2
M1-based 0.052 0.181 0.641 0.946 0.998 1.000

M2-based 0.049 0.189 0.659 0.952 0.998 1.000

k=3
M1-based 0.049 0.189 0.644 0.959 1.000 1.000

M2-based 0.055 0.200 0.671 0.964 1.000 1.000

k=4
M1-based 0.046 0.190 0.656 0.967 1.000 1.000

M2-based 0.048 0.201 0.684 0.972 1.000 1.000

k=5
M1-based 0.044 0.202 0.667 0.962 0.999 1.000

M2-based 0.049 0.216 0.686 0.973 1.000 1.000

Table 5: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-normal distribution, pattern 2 with
sample sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.047 0.162 0.535 0.898 0.997 1.000

M -based 0.053 0.202 0.603 0.935 0.995 1.000

Hotelling T 2 0.054 0.262 0.791 0.989 1.000 1.000

k=2
M1-based 0.044 0.220 0.654 0.951 0.998 1.000

M2-based 0.044 0.231 0.670 0.954 0.998 1.000

k=3
M1-based 0.042 0.220 0.671 0.955 1.000 1.000

M2-based 0.047 0.224 0.688 0.962 1.000 1.000

k=4
M1-based 0.042 0.218 0.668 0.957 1.000 1.000

M2-based 0.044 0.237 0.685 .968 1.000 1.000

k=5
M1-based 0.049 0.214 0.673 0.957 1.000 1.000

M2-based 0.054 0.219 0.699 0.963 1.000 1.000
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Table 6: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-t distribution, pattern 1 with sample
sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.040 0.119 0.353 0.740 0.938 0.991

M -based 0.049 0.147 0.451 0.811 0.961 0.999

Hotelling T 2 0.040 0.128 0.281 0.561 0.801 0.928

k=2
M1-based 0.052 0.137 0.483 0.847 0.976 1.000

M2-based 0.050 0.158 0.499 0.854 0.976 1.000

k=3
M1-based 0.060 0.170 0.513 0.867 0.982 0.999

M2-based 0.052 0.177 0.527 0.882 0.985 0.999

k=4
M1-based 0.055 0.162 0.528 0.882 0.981 1.000

M2-based 0.053 0.168 0.536 0.889 0.986 1.000

k=5
M1-based 0.055 0.155 0.520 0.903 0.988 1.000

M2-based 0.051 0.170 0.548 0.905 0.989 1.000

Table 7: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-t distribution, pattern 2 with sample
sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.053 0.080 0.194 0.371 0.603 0.799

M -based 0.046 0.082 0.251 0.482 0.748 0.911

Hotelling T 2 0.016 0.017 0.023 0.031 0.036 0.048

k=2
M1-based 0.054 0.097 0.272 0.541 0.804 0.940

M2-based 0.052 0.092 0.274 0.537 0.805 0.944

k=3
M1-based 0.055 0.096 0.284 0.575 0.819 0.948

M2-based 0.060 0.093 0.295 0.589 0.822 0.950

k=4
M1-based 0.051 0.095 0.308 0.584 0.841 0.952

M2-based 0.055 0.085 0.300 0.593 0.840 0.955

k=5
M1-based 0.047 0.111 0.314 0.604 0.846 0.960

M2-based 0.051 0.103 0.306 0.611 0.852 0.960
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Table 8: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
F : Cauchy((0, 0), I2) and G : N2((µ1, µ2), I2) with sample sizes m = n = 100
for simplicial depth function.

(µ1, µ2) (0.1,0) (0,0.2) (0.1,0.2) (0.3,0.3)

T -based 0.057 0.078 0.074 0.160

M -based 0.087 0.107 0.135 0.277

Hotelling T 2 0.019 0.028 0.032 0.049

k=2
M1-based 0.101 0.145 0.166 0.346

M2-based 0.092 0.151 0.171 0.360

k=3
M1-based 0.115 0.151 0.185 0.402

M2-based 0.102 0.153 0.185 0.410

k=4
M1-based 0.126 0.177 0.206 0.438

M2-based 0.114 0.167 0.195 0.441

k=5
M1-based 0.129 0.190 0.221 0.469

M2-based 0.113 0.177 0.196 0.457

Table 9: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
F : Cauchy((0, 0, 0), I3) and G : N3((µ1, µ2, µ3), I3) with sample sizes m = n =
50 for simplicial depth function.

(µ1, µ2, µ3) (0.0, 0.0, 0.1) (0.0, 0.2, 0.0) (0.0, 0.1, 0.2) (0.1, 0.2, 0.3)

T -based 0.062 0.064 0.078 0.103

M -based 0.096 0.096 0.138 0.173

Hotelling T 2 0.026 0.029 0.031 0.051

k=2
M1-based 0.107 0.143 0.151 0.221

M2-based 0.084 0.124 0.134 0.218

k=3
M1-based 0.097 0.134 0.151 0.215

M2-based 0.088 0.116 0.135 0.214

k=4
M1-based 0.107 0.120 0.148 0.197

M2-based 0.095 0.098 0.143 0.198

k=5
M1-based 0.096 0.110 0.134 0.192

M2-based 0.087 0.106 0.123 0.187

It is clear from the power comparison Table-2 to Table-9 that the proposed M1-based
and M2-based tests give better performance in terms of power as compared to the T -
based, M -based and Hotelling T 2 tests for skewed multivariate distributions as well as
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multivariate cauchy distribution with a simplicial depth function. Proposed tests also
give comparable results to Hotelling T 2, when the underlying distribution is bivariate
normal. As such there is no criterion defined to choose an optimal value of k. However
k = 5 appears to be reasonably good choice for majority of distributions. Between M1-
based and M2-based tests, we recommend M2-based test, as it has more power than
M1-based test for most of the distributions.

6 Application to Real Life Data

We consider Iris dataset (Fisher, 1936), which contains 150 observations each 50 for
setosa, versicolor and virginica with four variables sepal length, sepal width, petal length
and petal width. These are three populations corresponding to setosa, versicolor and
virginica respectively. We select only two populations namely setosa and versicolor for
illustration. The location parameters consists of values of sepal length, sepal width,
petal length and petal width in the respective populations.

We are interested in testing equality of location parameters of these two populations.
Multivariate normality test for setosa and versicolor data based on Shapiro test gives p-
value 0.07906 and 0.00574 respectively. Therefore, sepal length, sepal width, petal length
and petal width corresponding to versicolor population do not follow four variate normal
distribution and Hotelling T 2 test is not appropriate in this case. Therefore, we use
proposed tests to evaluate whether there is shift in location parameters of distribution of
setosa and versicolor. The p-values for the proposed tests based onB = 500 permutations
are reported in the following Table.

Table 10: T -based, M -based, M1-based and M2-based p-values for the Iris dataset based
on B = 500 permutations using simplicial depth function

Test p-value

T -based 0.000

M -based 0.148

k=2
M1-based 0.034

M2-based 0.036

k=3
M1-based 0.014

M2-based 0.018

k=4
M1-based 0.006

M2-based 0.008

k=5
M1-based 0.002

M2-based 0.004
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It is clear from the Table-10 that all the p-values of the proposed and T -based tests
indicates that setosa and versicolor populations do not have same location but M -based
test fails to conclude that setosa and versicolor populations do not have same location.

7 Conclusion

In this paper, we use data depth approach for comparing location parameters of two
multivariate distributions. The proposed tests are purely nonparametric tests. They
have a better performance in terms of power as compared to the existing M -Based and
T -based test for symmetric as well as skewed multivariate distributions. Notion of data
depth is useful for testing location and/or scale of two multivariate distributions.
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