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In this paper we consider Pareto-Rayleigh distribution as an example of a
Transformed-Transformer family of distributions defined by Alzaatreh et al.
(2013b). We construct confidence intervals (CIs) and tolerance intervals (TIs)
using generalized variable approach due to Weerahandi (1993) by using max-
imum likelihood estimator and modified maximum likelihood estimator of
the scale parameter. Performance of both the intervals is studied using sim-
ulation and compared with the existing ones to exhibit superiority of the
proposed intervals. Proposed confidence intervals and tolerance intervals are
illustrated through real life data.

keywords: Transformed-transformer (T-X) family, Pareto-Rayleigh distri-
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1 Introduction

Pareto distribution has been widely used in modeling heavy-tailed distributions, such
as income distribution. Many applications of the Pareto distribution in economics, bi-
ology and physics can be found in the literature. Schroeder et al. (2010) presented an
application of the Pareto distribution in modeling disk drive sector errors. Mahmoudi
(2011) discusses the beta generalized Pareto distribution with application to life time
data. The Pareto distribution has been recognized as a suitable model for many non-
negative socio-economic variables. Pareto distribution is useful in individual income,
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family income and income before taxes etc. In literature various generalizations of the
Pareto distribution have been derived such as Beta-Pareto distribution Akinsete et al.
(2008).

Raqab and Kundu (2005) introduced the Rayleigh distribution in connection with a
problem in the field of acoustics. An important characteristic of the Rayleigh distribu-
tion is that its hazard function is an increasing function of time. It means that when the
failure times are distributed according to the Rayleigh law, an intense aging of the item
takes place. Estimations, predictions and inferential issues for one parameter Rayleigh
distribution have been extensively studied by several authors. Rayleigh distributions
are useful in modeling and predicting tools in a wide variety of socio-economic contexts.
The Rayleigh distribution has a wide range of applications including life testing exper-
iments, reliability analysis, applied statistics and clinical studies. Potdar and Shirke
(2013) have provided reliability estimation for the distribution of a k-unit parallel sys-
tem with Rayleigh distribution as the component life distribution.

In many applied sciences such as medicine, engineering and finance amongst others,
modeling and analyzing lifetime data are crucial. Several life time distributions have
been used to model such kinds of data. The quality of the procedures used in a statisti-
cal analysis depends heavily on the assumed probability model or distributions. Because
of this, considerable effort has been expended in the development of large classes of
standard probability distributions along with relevant statistical methodologies. How-
ever there still remains many important problems, where the real data does not follow
any of the classical or standard probability models. Pareto-Rayleigh is an example
of Transformed-Transformer family (T-X family) of distributions, defined by Alzaatreh
et al. (2013b). Also Alzaatreh et al. (2012) and Alzaatreh et al. (2013a) derived Gamma-
Pareto distribution, Weibull-Pareto distribution and its applications.

In the present work, our focus is to provide confidence intervals and tolerance intervals
based on maximum likelihood estimator (MLE) and modified maximum likelihood esti-
mator (MMLE) of the parameter of Pareto-Rayleigh distribution. MLE in the present
case is not available in the closed form and is to be obtained by using a suitable iterative
method. Tiku (1967) obtained modified maximum likelihood (MML) equations which
have explicit solutions by replacing the intractable terms by their linear approximations.
Tiku and Suresh (1992) used the Taylor series expansion of the intractable terms in esti-
mating the location and scale parameters in a symmetric family of distributions, which
includes a number of well-known distributions such as normal, Students t etc. They
also showed that the MML estimators, thus derived are asymptotically fully efficient for
small samples. One may refer to Vaughan (1992), Suresh (1997) and Tiku (1967, 1968)
for more details. In this article we use MLE and MML estimator to construct CIs and
TIs.

A (β,1-γ) TI based on a sample is constructed so that it would include at least a pro-
portion β of the sampled population with confidence 1-γ. Such a TI is usually referred
to as β-content-(1-γ) coverage TI or simply (β, 1-γ) TI. A (β, 1-γ) upper tolerance
limit (TL) is simply an (1-γ)th upper confidence limit for the (100γ)th percentile of
the population and a (β, 1-γ) lower TL is an (1-γ)th lower confidence limit for the
(100(1-γ))th percentile of the population. In this article, we are mainly concerned with
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one-sided TI using large sample (LS) approach and generalized variable (GV) approach
for Pareto-Rayleigh distribution. Kumbhar and Shirke (2004) described TIs for lifetime
distribution of k-unit parallel system, when component lifetime distribution is exponen-
tial. Liao et al. (2005) have proposed a method for constructing TIs in one-way random
model based on the GV approach due to Weerahandi (1993).

Concept of GV has recently become popular in small sample inferences for complex
problems such as Behrens-Fisher problem. These techniques have been shown to be
efficient in specific distributions by using MLEs. The GV method was motivated by
the fact that the small sample optimal CIs in statistical problems involving nuisance
parameters may not be available. The method of generalized confidence interval (GCI)
based on GV is used whenever standard pivotal quantities either do not exist or are
difficult to obtain. Weerahandi (1993) introduced the concept of GCI. As described
in the cited papers, GCI is based on the so-called generalized pivotal quantity (GPQ).
For some problems, where the classical procedures are not optimal, GCI performs well.
Krishnamoorthy and Mathew (2003) developed exact CI and tests for single lognormal
mean using ideas of generalized p-values and GCIs. Guo and Krishnamoorthy (2005)
explained a problem of interval estimation and testing for the difference between the
quantiles of two populations using GV approach. Krishnamoorthy et al. (2006) explained
generalized p-values and CIs with a novel approach for analyzing lognormal distributed
exposure data. Krishnamoorthy et al. (2007) explained a problem of hypothesis testing
and interval estimation of the reliability parameter in a stress-strength model involving
two-parameter exponential distribution using GV approach. Verrill and Johnson (2007)
considered confidence bounds and hypothesis tests for coefficient of variation of normal
distribution. Kurian et al. (2008) have provided GCI for process capability indices in
one-way random model. Krishnamoorthy and Lian (2012) derived generalized TIs for
some general linear models based on GV approach. The literature survey reveals that
during last ten years number of researchers have reported inference for the well known
models using GV approach, which motivated us to consider the problem of generalized
CI and generalized TI for Pareto-Rayleigh distribution. Rest of the paper is organized
as follows.

In Section 2, the Pareto-Rayleigh distribution is considered and MLE and MMLE
of the scale parameter are obtained. Section 3, provides CIs based on MLE and MMLE
using LS procedure and GV approach. Section 4, provides TIs using LS procedure and
GV approach. In section 5, the performance of the CIs and TIs using LS and GV ap-
proaches based on MLE and MMLE for small samples is investigated using simulations.
Results of the simulation study have been reported in same section. In section 6, a real
data set has been analyzed as an illustration.

2 Model and estimation of the scale parameter

Let F(.) be the cumulative distribution function (cdf) of any random variable X de-
fined on [0,∞) and f (.) be the probability density function (pdf) of a random variable



32 Godase, Shirke, Kashid

T, defined on [0,∞). The cdf of the T-X family of distributions defined by Alzaatreh
et al. (2013b) is given by

G(x) =

∫ −log(1−F (x))

0
f(t)dt (1)

Alzaatreh et al. (2013b) named this family of distributions the Transformed-Transformer
family (or T-X family) of distributions. If a random variable T follows the Pareto
distribution type IV with parameter α then pdf of T is given by,

f(t) = α(1 + t)−(α+1) t > 0, α > 1 (2)

If a random variable X follows the Rayleigh distribution with parameter σ then cdf of
X is given by,

F (x) = 1− exp(−x2/2σ2) σ > 0, x > 0 (3)

Using (1), (2) and (3), the cdf of Pareto-Rayleigh distribution (as a member of T-X
family) is given by,

G(x) =

∫ x2/2σ2

0
α(1 + t)(−α+1)dt = 1−

(
1 +

x2

2σ2

)−α
x > 0, α > 1, σ > 0 (4)

The pdf of Pareto-Rayleigh distribution is given by,

g(x) =
α

σ2
x

(
1 +

x2

2σ2

)(−α−1)
x > 0, α > 1, σ > 0, (5)

where α is the known shape parameter and σ is the unknown scale parameter. In this
article, we are mainly concerned with CIs and TIs of Pareto-Rayleigh distribution using
MLE and MMLE of the scale parameter σ .

2.1 Maximum Likelihood Estimation

The pdf of the Pareto-Rayleigh distribution with scale parameter σ and shape param-
eter α is given by (5).
Let X1, X2, ..., Xn be a random sample of size n obtained from Pareto-Rayleigh distribu-
tion. By taking the derivative of log likelihood equation, the MLE of the scale parameter
σ is the solution of the following equation.

∂lnL

∂σ
= 0 = −2n+

α+ 1

σ2

n∑
i=1

x2i

(1 +
x2i
2σ2 )

= 0.

This equation shows that maximum likelihood estimator of σ(σ̂n) is an iterative solution
which can be obtained by suitable iterative method like bisection method. Then Fisher
information about σ is given by

I = −nE
[
∂2lnf(x, α, σ)

∂σ2

]
=

2n(3α+ 2)

σ2(α+ 2)
− 2n

σ2
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2.2 Modified Maximum Likelihood Estimation

We have seen that MLE of scale parameter σ is not in the closed form as the likelihood
equation is intractable. To overcome this difficulty, we use MML method of estimation
(Tiku and Suresh (1992)) to find the estimate of scale parameter σ. This can be done by
first expressing the maximum likelihood equation in terms of order statistics and then
replacing the intractable terms by their linear approximation.
Maximum likelihood equation can be written as

∂lnL

∂σ
= 0 = −2n+ (α+ 1)

n∑
i=1

z2i

1 +
z2i
2

= 0 (6)

where
zi =

xi
σ
.

The maximum likelihood equation (6) does not have explicit solution for scale parameter
σ. This is due to the fact that the term

g(zi) =
z2i

1 +
z2i
2

is intractable. To formulate MML equation, which has explicit solution, we express this
equation in terms of order statistics that is

∂lnL

∂σ
= 0 = −2n+ (α+ 1)

n∑
i=1

z2(i)

1 +
z2
(i)

2

= 0 (7)

where z(i) is the order statistic of the sample observations xi,(i=1,2,...,n). The second
step is to linearize equation (7) by using Taylor series expansion around the quantile
point of G. The linearization is done in such a way that the derived MMLE retains all
the desirable asymptotic properties of the MLEs. Thus we have,

g(z(i)) =
z2(i)

1 +
z2
(i)

2

= ai + biz(i) (8)

The third step is to obtain the modified maximum likelihood equation by incorporating
(8) in (7), that is

∂lnL

∂σ
= 0 =

∂lnL∗

∂σ
= −2n+ (α+ 1)

∑
(ai + biz(i)) (9)

The solution to equation (9) is the MMLE, which is given by

σ̂ =

∑
bix(i)

n
α+1 −

∑
ai

(10)

where
bi = g

′
(z(i)), ai = g(z(i))− biz(i)
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One may refer to Tiku and Suresh (1992) and Suresh (2004) for more details.
In the following, we shall see two methods of finding confidence intervals for scale pa-
rameter σ using MLE and MMLE.
Lemma 2.1: Distribution of ( σ̂nσ ) and ( σ̂σ ) , both are free from σ where σ̂n is MLE and
σ̂ is MMLE of σ.
Proof: The proof is similar to the one given by Gulati and Mi (2006). This lemma can
be used to find GPQ.

3 Confidence Intervals

3.1 Large sample confidence interval

Theorem: As n→∞, √
n(σ̂ − σ) −→ N2(0, I

−1)

where I is the Fisher information given in section (2.1).
Proof: Proof follows from asymptotic properties of MLEs under regularity conditions.
Since σ is unknown, I is estimated by replcing σ by its MLE or MMLE and this can be
used to obtain the asymptotic CI of σ.
The approximate 100(1− τ)% asymptotic confidence interval (ACI) for σ is given by(

σ̂ ± z1−τ/2

√
I−1

n

)
(11)

where z1−τ/2 is the (1− τ/2)th quantile of the standard normal distribution.
According to Tiku and Suresh (1992) the derived MMLEs retain all the desirable

asymptotic properties of the MLEs. Hence simply by replacing MLEs with MMLEs we
can obtain confidence interval using large sample approach based on MMLE. We denote
this interval by I1.

3.2 Generalized variable approach

The concept of a generalized confidence interval is due to Weerahandi (1993). One may
also refer to Weerahandi (2013) for a detailed discussion along with numerous examples.
Consider a random variable X (scalar or vector) whose distribution g(x, σ, δ) depends
on a scalar parameter of interest σ and a nuisance parameter (parameter that is not
of direct inferential interest)δ, where δ could be a vector. Suppose we are interested
in computing a confidence interval for scale parameter σ. Let, x denotes the observed
value of X. To construct a GCI for σ, we first define a GPQ, T (X;x, σ, δ) which is a
function of random variable X, its observed data x, the parameters σ and δ. A quantity
T (X;x, σ, δ) is required to satisfy the following two conditions.
i) For a fixed x, the probability distribution of T (X;x, σ, δ) is free of unknown parameters
σ and δ;
ii) The observed value of T (X;x, σ, δ), namely T (x;x, σ, δ) is simply σ.
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The percentiles of T (X;x, σ, δ) can then be used to obtain confidence intervals for σ.
Such confidence intervals are referred to as generalized confidence intervals. For example,
if T1−τ denotes the 1001−τ th percentile of T (X;x, σ, δ), then T1−τ is a generalized upper
confidence limit for σ. Therefore 100(1 − τ)% two-sided GCI for parameter σ is given
by

(Tτ/2, T1−τ/2).

Define GPQ as

T1(X;x, σ) =
σ̂o
σ̂
σ

,

where σ̂o is the MLE obtained using observed data. We note the following:
i) Distribution of T1(X;x, σ) is free from σ, which follows from Lemma (2.1) and
ii) T1(X;x, σ) = σ, since for observed data, σ̂ = σ̂o. A GCI based on T1(X;x, σ) is
obtained by using the following algorithm. The GCI is denoted by I2.

I. Algorithm to obtain GCI for σ using GPQ

1. Input n, N, α, σ, τ .
2. Generate independently and identically distributed observations (U1, U2, ..., Un) from
U(0,1).
3. For the given value of the parameter σ , set

xi =
√

2σ2((1− Ui)−1/α − 1) for i = 1, 2, ..., n.

Then (x1, x2, ..., xn) is random sample of size n from Pareto-Rayleigh distribution with
parameter σ.
4. Based on observations in step 3, obtain MLE of σ (say σ̂o), using bisection method.
5. Generate random sample of size n from Pareto-Rayleigh distribution with parameter
σ=1.
6. Based on observations in step 5, obtain MLE of σ (say σ̂)using bisection method.
7. Compute GPQ, T1 = σ̂o

σ̂
8. Repeat steps (5) to (7) N times, so as to get T11, T12, ..., T1N .
9. Arrange T s1i in an ascending order. Denote them by T(11), T(12), ..., T(1N).
10. Compute a 100(1− τ)% GCI for σ as (T(1,([(τ2)N ]), T(1,([(1−τ2)N ]))).

Extending above algorithm one can estimate coverage probability of the proposed GCI.
In the above algorithm, we can replace MLE by MMLE and obtain GCI based on MMLE.
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4 Tolerance Intervals

4.1 Large Sample Tolerance Intervals

There are two types of tolerance intervals namely β-expectation tolerance interval (TI)
and β-content-(1-γ) coverage tolerance interval.

4.1.1 β-expectation TI for the distribution function G (.; σ)

Let Xβ(σ) be the lower quantile of order β of the distribution function G (.; σ). Then,
we have

Xβ(σ) =
√

2σ2{(1− β)−1/α − 1}

Since σ is unknown, we replace it by its MLE. Hence maximum likelihood estimate of
Xβ(σ) is given by

Xβ(σ̂) =
√

2σ̂2{(1− β)−1/α − 1} (12)

having an approximate upper β-expectation TI for G (.; σ) as

J1(X) = (0, Xβ(σ̂)) (13)

We approximate E[G(Xβ(σ);σ)] using Atwood (1984) and is given as

E[G(Xβ(σ̂);σ)] ≈ β − 0.5F02V ar(σ̂) +
F01V ar(σ̂)F11

F10
(14)

where F10 = ∂G(x;σ)
∂x , F01 = ∂G(x;σ)

∂σ , F11 = ∂2G(x;σ)
∂x∂σ , F02 = ∂2G(x;σ)

∂σ2 with x = Xβ(σ)
and all the derivatives are evaluated at Xβ and σ. We can replace MLE by MMLE and
obtain β-expectation TI for G (.; σ) based on MMLE. Simulated and approximate values
of expected coverage of J1(X) using MLE and MMLE have been reported in section 5
for different values of n, β and α.

4.1.2 β-content-(1-γ) coverage Tolerance Interval

Let J2(X) = (0, Dσ̂) be an upper β-content-(1-γ) coverage TI for the distribution
having distribution function (4). The constant D(> 0) for βε(0, 1), γε(0, 1) is to be
determined such that

P{G(Dσ̂;σ) ≤ β} = 1− γ

That is

P

{
σ̂ ≤ σ

√
2{(1− β)−1/α − 1}

D

}
= 1− γ (15)

Using asymptotic normality of σ̂ equation (15) can be equivalently written as

P

{
Z ≤ (

σ

var(σ)
)

√
2{(1− β)−1/α − 1}

D
− 1

}
= 1− γ,
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where Z follows N(0,1). This gives

D =

√
2{(1− β)−1/α − 1}

1 + var(σ)
σ z1−γ

Hence, an upper tolerance limit of β-content-(1-γ) coverage tolerance interval (J2(X))
is given by

U(X) = σ̂

{√
2{(1− β)−1/α − 1}

1 + var(σ)
σ z1−γ

}
(16)

4.2 Generalized Tolerance Intervals

The problem of computing a one-sided tolerance limit reduces to that of computing a
one-sided confidence limit for the percentile of the relevant probability distribution. That
is a (β, (1− γ)) upper tolerance limit is simply an (1-γ)th upper confidence limit for the
(100β)th percentile of the population. It is easily seen that a (β, (1−γ)) upper tolerance
limit for G (.; σ) is simply a 100(1-γ)% upper confidence limit for

√
2σ2[(1− β)−1/α − 1].

We use the GV approach for obtaining the aforementioned upper confidence limit.
Let σ̂o is the MLE obtained using observed data. The GPQ for constructing a confidence
interval for σ is given by T1(X;x, σ) = σ̂o

σ̂i/σ
,i=1,2,...,N. The GPQ for

√
2σ2[(1− β)−1/α − 1]

is given by

T2 =
σ̂o
σ̂i/σ

√
2[(1− β)−1/α − 1], i = 1, 2, ..., N.

The (1 − γ)th quantile of T2 is a (1 − γ)th generalized upper confidence bound for√
2σ2[(1− β)−1/α − 1]. Hence (β, (1−γ)) upper tolerance limit for G(.;σ) is (0, T2,1−γ).

A generalized tolerance interval based on T2(X;x, σ)is obtained by using the following
algorithm.

II. Algorithm to obtain Generalized Tolerance Interval for G(.;σ) using GPQ

1. Input n, N, α, σ, β, γ.
2. Input random sample of size n from Pareto-Rayleigh distribution with an unknown
parameter σ.
3. Based on observations in step 2, obtain MLE of σ (say σ̂o), using bisection method.
4. Generate random sample of size n from Pareto-Rayleigh distribution with parameter
σ = 1.
5. Based on observations in step 4, obtain MLE of σ (say σ̂), using bisection method.
6. Compute GPQ,
T2 = σ̂o

σ̂i/σ

√
2[(1− β)−1/α − 1], i = 1, 2, ..., N.

7. Repeat steps (4) to (6) N times, so as to get T21, T22, ..., T2N .
8. Arrange T ′2is in an ascending order. Denote them by T21, T22, ..., T2N
9. Compute an upper tolerance limit of generalized TI J2(X) = (0, T2,1−γ).
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Extending above algorithm one can estimate coverage probability of the proposed gener-
alized TI. In the above algorithm, we can replace MLE by MMLE and obtain generalized
TI, based on MMLE.

5 Numerical and simulation study

We conduct extensive simulation experiments to evaluate performance of CIs (LS
approach and GV approach) based on MLE and MMLE. We choose different values of
σ, β, n and α. Results are tabulated in Tables 1-2. Figures in the 1st row are based on
MLE, while figures in the 2nd row are based on MMLE. From Tables 1-2, we observe that
simulated coverage of GCI does not differ significantly whether it can be computed from
MLE as well as MMLE. However, large sample approach underestimates the coverage
probabilities for most of the scenarios, especially when the sample size is small and (or)
the parameter σ is large. Also the performance of the proposed GCI does not depend on
σ. As the sample size is large, the two estimators (MLE, MMLE) are equally efficient.

We investigate coverage (numerical and simulation) of β-expectation TI for Pareto-
Rayleigh distribution with α = 3 and β= 0.90, 0.95,0.99 by using MLE and MMLE.
Figures in the 1st row are based on MLE, while figures in the 2nd row are based on
MMLE. An upper β-expectation tolerance limit is given in equation (12). Results of the
simulation study for the β-expectation tolerance interval, which is tabulated in Table 3,
indicate that, the estimated expectation and simulation mean for small sample size are
marginally lower than the nominal value. As the sample size increases, the performance
of tolerance intervals improves. We observe the following from Table 3.
The estimated expectation of the coverage of the approximate β-expectation tolerance
intervals shows satisfactory result for large n. Estimated expectation and simulated
mean of the coverage increase as sample size n increase. Estimated expectation and
simulated mean of the coverage remains same as shape parameter increases. Simulated
mean of the coverage for small sample size is below nominal level.
A simulation study of an upper β-content- (1- γ) coverage TI, having an upper limit (16)
is also conducted, for σ=1, 2 and for known values of n, β, α and γ. In this simulation
study 5000 samples from G (.; σ) were generated and for each of the samples U(X)
was computed, for different combinations of β, σ , γ. The proportion of samples for
which

√
2σ2[(1− β)−1/α − 1] exceeded U(X) was computed 100 times and the mean of

these 100 proportions is taken as simulated value of γ. The simulation study for the
generalized TI was carried out as algorithm (II). Tables 5-6 give the simulated values of
confidence level γ when σ=1, 2 respectively. The proposed confidence interval performs
satisfactory for small to moderate sample sizes. These intervals are superior to the
asymptotic confidence intervals.
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Table 1: Mean coverage of Confidence Intervals (using MLE and MMLE) for trans-
formed transformer (Pareto-Rayleigh) distribution I1) Large Sample procedure
I2) Generalized variable approach when σ=1.0, α=2.0

coverage 0.90 0.95 0.99

n I1 I2 I1 I2 I1 I2

0.8604 0.9012 0.8962 0.9445 0.931 0.9887
2

0.8652 0.9004 0.8932 0.9434 0.9291 0.9894

0.8723 0.9024 0.8931 0.9552 0.9458 0.9947
3

0.8651 0.8994 0.9162 0.9558 0.9454 0.9990

0.8741 0.9025 0.9041 0.9537 0.9548 0.9889
4

0.8735 0.9036 0.9217 0.9534 0.9634 0.9910

0.8811 0.9028 0.9147 0.9502 0.9615 0.9963
5

0.8879 0.9047 0.9181 0.9532 0.9664 0.9924

0.8805 0.9022 0.9251 0.9534 0.9538 0.9917
6

0.8898 0.9019 0.9352 0.9564 0.9644 0.9934

0.8841 0.9047 0.9284 0.9521 0.9665 0.9937
7

0.8897 0.9024 0.9294 0.9588 0.9724 0.9918

0.8889 0.9068 0.9281 0.9588 0.9735 0.9919
8

0.8962 0.9088 0.9462 0.9531 0.9654 0.9934

0.8771 0.9021 0.9354 0.9529 0.9814 0.9935
9

0.8981 0.9011 0.9381 0.9574 0.9684 0.9928

0.8910 0.9024 0.9474 0.9534 0.9715 0.9915
10

0.8907 0.9024 0.9474 0.9538 0.9764 0.9966

0.8888 0.9008 0.9364 0.9536 0.9775 0.9919
15

0.8946 0.9064 0.9464 0.9587 0.9814 0.9921

0.8947 0.9055 0.9484 0.9537 0.9865 0.9926
30

0.9014 0.9027 0.9562 0.9564 0.984 0.9987

0.8932 0.9064 0.9314 0.9528 0.9845 0.9928
50

0.9016 0.9033 0.9414 0.9508 0.9894 0.9980
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Table 2: Mean coverage of Confidence Intervals (using MLE and MMLE) for trans-
formed transformer (Pareto-Rayleigh) distribution I1) Large Sample procedure
I2) Generalized variable approach when σ=2.0, α=2.0

coverage 0.90 0.95 0.99

n I1 I2 I1 I2 I1 I2

0.8605 0.8992 0.8894 0.9487 0.9312 0.9887
2

0.8625 0.8988 0.8905 0.9425 0.9219 0.9805

0.8736 0.8989 0.9008 0.9432 0.9448 0.9928
3

0.8715 0.9080 0.9020 0.9485 0.9321 0.9865

0.8781 0.9030 0.9172 0.9506 0.9504 0.9889
4

0.8724 0.9053 0.9251 0.9538 0.9603 0.9932

0.8921 0.9021 0.9204 0.9524 0.9614 0.9962
5

0.8829 0.9026 0.9148 0.9519 0.9668 0.9937

0.8938 0.9062 0.9224 0.9522 0.9534 0.9932
6

0.8905 0.9028 0.9321 0.9537 0.9617 0.9919

0.8908 0.9081 0.9318 0.9540 0.9624 0.9984
7

0.8842 0.9024 0.9304 0.9531 0.9724 0.9941

0.8921 0.9061 0.9326 0.9565 0.9735 0.9958
8

0.8955 0.9008 0.9428 0.9528 0.9625 0.9935

0.8881 0.9073 0.9306 0.9535 0.9814 0.9931
9

0.8918 0.9026 0.9325 0.9522 0.9757 0.9984

0.8962 0.9083 0.9341 0.9557 0.9795 0.9922
10

0.8925 0.9034 0.9487 0.9565 0.9743 0.9957

0.8994 0.9043 0.9412 0.9548 0.9724 0.9943
15

0.8997 0.9050 0.9427 0.9566 0.9817 0.9980

0.8934 0.9018 0.9474 0.9541 0.9887 0.9957
30

0.8906 0.9024 0.9438 0.9564 0.9814 0.9972

0.8956 0.9028 0.9518 0.9561 0.9822 0.9964
50

0.8941 0.9084 0.958 0.9534 0.9878 0.9955
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Table 3: Simulated mean and estimated expectation of the coverage of approximate β-
expectation TI using MLE and MMLE for transformed transformer (Pareto-
Rayleigh) distribution.

α = 3

β(σ = 1.0) β(σ=2.0)

n 0.90 0.95 0.97 0.99 0.90 0.95 0.97 0.99

2 0.8112 0.8595 0.9065 0.9515 0.8315 0.8712 0.9172 0.9521

(0.8251) (0.8459) (0.8902) (0.9625) (0.8451) (0.8652) (0.9251) (0.9534)

0.0.7921 0.8888 0.9127 0.9318 0.8298 0.8585 0.9275 0.9434

(0.7912) (0.8892) (0.9021) (0.9425) (0.8329) (0.8625) (0.9265) (0.9547)

3 0.8568 0.8996 0.9384 0.9592 0.8436 0.9118 0.9418 0.9637

(0.8495) (0.8825) (0.9365) (0.9469) (0.8492) (0.9028) (0.9356) (0.9645)

0.8465 0.9124 0.9386 0.9544 0.8494 0.8917 0.9374 0.9568

(0.8520) (0.9062) (0.9255) (0.9528) (0.8574) (0.9054) (0.9487) (0.9534)

4 0.8716 0.9142 0.9499 0.9756 0.8333 0.9014 0.9375 0.9725

(0.8724) (0.9028) (0.9589) (0.9728) (0.8365) (0.9124) (0.9425) (0.9824)

0.0.8588 0.8923 0.9491 0.9693 0.8514 0.9151 0.9438 0.9695

(0.8459) (0.8902) (0.9425) (0.9714) (0.8495) (0.9024) (0.9457) (0.9748)

5 0.8632 0.9151 0.9454 0.9737 0.8697 0.9222 0.9537 0.9786

(0.8794) (0.9215) (0.9316) (0.9722) (0.8724) (0.9365) (0.9633) (0.9748)

0.0.8610 0.9244 0.9558 0.9611 0.8712 0.9023 0.9449 0.9659

(0.8705) (0.9145) (0.9420) (0.9784) (0.8790) (0.9124) (0.9584) (0.9721)

6 0.8754 0.9359 0.9565 0.9859 0.8725 0.9179 0.9539 0.9791

(0.8715) (0.9302) (0.9536) (0.9850) (0.8837) (0.9274) (0.9521) (0.9701)

0.0.8665 0.9197 0.9523 0.9750 0.8774 0.9178 0.9494 0.9814

(0.8714) (0.9028) (0.9577) (0.9815) (0.8791) (0.9154) (0.9524) (0.9825)

7 0.8668 0.9417 0.9647 0.9847 0.8839 0.9346 0.9689 0.9817

(0.8628) (0.9459) (0.9619) (0.9824) (0.8829) (0.9435) (0.9752) (0.9932)

0.0.8577 0.9278 0.9569 0.9794 0.8746 0.9244 0.9516 0.9735

(0.8459) (0.9160) (0.9654) (0.9728) (0.8859) (0.9284) (0.9654) (0.9849)

8 0.8889 0.9296 0.9692 0.9859 0.8654 0.9328 0.9614 0.9872

(0.8749) (0.9239) (0.9628) (0.9822) (0.8735) (0.9475) (0.9672) (0.9824)

0.0.8945 0.9344 0.9674 0.9765 0.8747 0.9325 0.9577 0.9840

(0.8891) (0.9385) (0.9587) (0.9711) (0.8815) (0.9425) (0.9657) (0.9864)
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Table 4: Simulated mean and estimated expectation of the coverage of approximate β-
expectation TI using MLE and MMLE for transformed transformer (Pareto-
Rayleigh) distribution. Continued

α = 3

β(σ = 1.0) β(σ=2.0)

n 0.90 0.95 0.97 0.99 0.90 0.95 0.97 0.99

9 0.8787 0.9277 0.9616 0.9872 0.8781 0.9342 0.9645 0.9896

(0.8892) (0.9258) (0.9621) (0.9826) (0.8724) (0.9451) (0.9754) (0.9833)

0.0.8914 0.9389 0.9647 0.9813 0.8790 0.9294 0.9592 0.98140

(0.8928) (0.9225) (0.9618) (0.9837) (0.8739) (0.9321) (0.9625) (0.9802)

10 0.8856 0.9265 0.9588 0.9885 0.8838 0.9416 0.9671 0.9829

(0.8821) (0.9368) (0.9548) (0.9814) (0.8902) (0.9478) (0.9784) (0.9820)

0.0.8831 0.9314 0.9692 0.9848 0.8765 0.9333 0.9664 0.9817

(0.8834) (0.9425) (0.9664) (0.9834) (0.8834) (0.9401) (0.9725) (0.9849)

15 0.8919 0.9346 0.9631 0.9914 0.8769 0.9314 0.9657 0.9885

(0.8940) (0.9365) (0.9748) (0.9889) (0.8729) (0.9365) (0.9781) (0.9804)

0.0.8994 0.9475 0.9715 0.9886 0.8836 0.9379 0.9698 0.9851

(0.8921) (0.9428) (0.9708) (0.9948) (0.8924) (0.9425) (0.9748) (0.9834)

30 0.8837 0.9428 0.9779 0.9927 0.8993 0.9517 0.9685 0.9952

(0.9024) (0.9458) (0.9645) (0.9917) (0.9028) (0.9538) (0.9677) (0.9889)

0.0.9016 0.9492 0.9737 0.9879 0.8865 0.9495 0.9769 0.9826

(0.9099) (0.9359) (0.9721) (0.9950) (0.8949) (0.9584) (0.9780) (0.9887)

50 0.9028 0.9492 0.9695 0.9987 0.9014 0.9532 0.9746 0.9949

(0.9082) (0.9584) (0.9635) (0.9980) (0.9147) (0.9502) (0.9722) (0.9924)

0.0.9092 0.9514 0.9753 0.9914 0.8916 0.9534 0.9753 0.99140

(0.9158) (0.9506) (0.9748) (0.9940) (0.9025) (0.9524) (0.9824) (0.9914)
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Table 5: Coverage probabilities of Tolerance Intervals for Pareto-Rayleigh distribution
I1) Large sample procedure I2) Generalized variable approach σ=1.0, α=2.0

γ=0.90 γ=0.95

coverage β=0.90 β=0.95 β=0.90 β=0.95

n I1 I2 I1 I2 I1 I2 I1 I2

0.6672 0.9021 0.6432 0.8924 0.5549 0.9448 0.5521 0.9449
2

0.6451 0.9028 0.6544 0.8920 0.5441 0.9459 0.5549 0.9428

0.7984 0.8992 0.7971 0.8935 0.7231 0.9432 0.7461 0.9452
3

0.7846 0.9021 0.7869 0.8922 0.7266 0.9458 0.7361 0.9488

0.8156 0.9034 0.8194 0.9031 0.8224 0.9538 0.8564 0.9468
4

0.8356 0.9038 0.8347 0.8977 0.8319 0.9458 0.8479 0.9585

0.8448 0.9049 0.8435 0.9028 0.8815 0.9562 0.8714 0.9562
5

0.8544 0.9028 0.8539 0.9024 0.8819 0.9564 0.8854 0.9534

0.8639 0.9125 0.8556 0.9034 0.8901 0.9537 0.9032 0.9538
6

0.8634 0.9037 0.8619 0.9021 0.9034 0.9538 0.9035 0.9566

0.8644 0.9028 0.8598 0.9055 0.8974 0.9539 0.9074 0.9533
7

0.8664 0.8997 0.8686 0.9029 0.9096 0.9532 0.9083 0.9580

0.8492 0.9064 0.8429 0.9064 0.9087 0.9654 0.9097 0.9582
8

0.8706 0.9035 0.8695 0.9068 0.9144 0.9538 0.9157 0.9534

0.8493 0.9038 0.8239 0.9031 0.9124 0.9587 0.9015 0.9524
9

0.8716 0.9028 0.8714 0.9024 0.9188 0.9458 0.9183 0.9531

0.8614 0.9034 0.8497 0.9124 0.9235 0.9482 0.9032 0.9654
10

0.8744 0.9046 0.8724 0.8992 0.9203 0.533 0.9240 0.9587

0.8718 0.9029 0.8544 0.8997 0.9114 0.9588 0.9225 0.9528
15

0.8798 0.9029 0.8792 0.9034 0.9272 0.9526 0.9284 0.9575

0.8790 0.9184 0.8831 0.9024 0.9278 0.9537 0.9315 0.9521
30

0.8890 0.9088 0.8872 0.9098 0.9352 0.9538 0.9361 0.9648

0.9031 0.9028 0.8951 0.9089 0.9445 0.9526 0.9294 0.9588
50

0.8924 0.9090 0.8905 0.9044 0.9449 0.9524 0.9482 0.9584
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Table 6: Coverage probabilities of Tolerance Intervals for Pareto-Rayleigh distribution
I1) Large sample procedure I2) Generalized variable approach σ=2.0, α=2.0

γ=0.90 γ=0.95

coverage β=0.90 β=0.95 β=0.90 β=0.95

n I1 I2 I1 I2 I1 I2 I1 I2

0.6431 0.8925 0.6831 0.8902 0.5621 0.9485 0.5331 0.9487
2

0.6401 0.8959 0.6598 0.8988 0.5741 0.9458 0.5521 0.9415

0.7811 0.8933 0.8032 0.8953 0.7378 0.9428 0.7394 0.9458
3

0.7822 0.8954 0.7852 0.8954 0.7451 0.9462 0.7421 0.9402

0.8180 0.9024 0.8394 0.8934 0.8584 0.9521 0.8441 0.9567
4

0.8370 0.9024 0.8350 0.9028 0.8566 0.9532 0.8504 0.9435

0.8334 0.9028 0.8532 0.9028 0.8893 0.9439 0.9012 0.9548
5

0.8537 0.9058 0.8569 0.8937 0.8920 0.9531 0.9135 0.9520

0.8521 0.9024 0.8421 0.9054 0.9132 0.9511 0.9035 0.9448
6

0.8629 0.9034 0.8694 0.9024 0.9230 0.9489 0.9127 0.9537

0.8592 0.9022 0.8584 0.9027 0.8894 0.9560 0.9136 0.9580
7

0.8645 0.9031 0.8651 0.9037 0.8904 0.9518 0.9198 0.9582

0.8754 0.9065 0.8725 0.9013 0.9052 0.9538 0.9158 0.9502
8

0.8779 0.9157 0.8633 0.9026 0.9124 0.9588 0.9230 0.9531

0.8531 0.9021 0.8649 0.9157 0.9012 0.9528 0.8869 0.9531
9

0.8732 0.9055 0.8724 0.9027 0.9124 0.9575 0.8920 0.9565

0.8421 0.9128 0.8564 0.9024 0.8954 0.9582 0.9117 0.9521
10

0.8724 0.9071 0.8734 0.9147 0.9280 0.9548 0.9228 0.9533

0.8621 0.9034 0.8697 0.8948 0.9235 0.9489 0.9174 0.9587
15

0.8799 0.9028 0.8788 0.9088 0.9284 0.9521 0.9257 0.9502

0.8674 0.9089 0.8587 0.9028 0.9151 0.9568 0.9239 0.9654
30

0.8854 0.9021 0.8876 0.9056 0.9329 0.9588 0.9360 0.9536

0.8981 0.9080 0.8879 0.9027 0.9294 0.9586 0.9487 0.9537
50

0.8952 0.9072 0.8991 0.9076 0.9428 0.9548 0.9510 0.9531
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6 Real life Data Analysis

In this section we present a data analysis of the strength data reported by Bader and
Priest (1982). It is already observed by Durham and Padgett (1997) that Weibull model
does not work well in this case. Surles and Padgett (1998), Surles and Padgett (2001)
and Raqab and Kundu (2005) observed that generalized Rayleigh works quite well for
this strength data. Also Raqab and Kundu (2005) observed goodness of fit of the three-
parameter generalized exponential distribution to this data set based on modified MLEs.

For illustrative purpose we also consider the same transformed data set as considered
by Raqab and Kundu (2005), the single fibers of 10 mm in gauge length with sample
size 63. Data set is presented below:
0.101,0.332,0.403,0.428,0.457,0.550,0.561,0.596,0.597,0.645,0.654,0.674,0.718,0.722,
0.725,0.732,0.775,0.814,0.816,0.818,0.824,0.859,0.875,0.938,0.940,1.056,1.117,1.128,
1.137,1.137,1.177,1.196,1.230,1.325,1.339,1.345,1.420,1.423,1.435,1.443,1.464,1.472,
1.494,1.532,1.546,1.577,1.608,1.635,1.693,1.701,1.737,1.754,1.762,1.828,2.052,2.071,
2.086,2.171,2.224,2.227,2.425,2.295,3.220.

First we would like to compute the MLEs of the unknown parameters. The MLE
of σ is obtained as 2.036426 and the MLE of α becomes 5.036467 with the associated
log-likelihood value as -57.67675. We plot the empirical survival function and the fitted
survival function. We used the Kolmogorov-Smirnov (K-S) test for this data set. K-
S distance between the fitted Pareto-Rayleigh and empirical cumulative distribution
function is 0.094377 and the associated p-value is 0.8431. Therefore, it indicates that
the Pareto-Rayleigh model provides reasonable fit to this data set.
Based on the estimates of α and σ, the confidence intervals (using LS and GV approach)
are given in the Table 7.
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Table 7: Confidence intervals (using LS and GV approach) for strength data.

Coverage Using Estimator Using LS approach(ACI) Using GV approach(GCI)

(1.787754,2.285098) (1.914382,2.197766)
90% MLE

Length=0.4973437 Length=0.283384

(1.786463,2.283543) (1.402121,1.805491)
MMLE

Length=0.4970807 Length=0.4033698

(1.711940,2.360913) (1.893224,2.246205)
95% MLE

Length=0.6489728 Length=0.3496253

(1.737967,2.332039) (1.366712,1.836193)
MMLE

Length=0.594072 Length=0.4694808

(1.645223,2.427629) (1.852753,2.313607)
99% MLE

Length=0.7824065 Length=0.4608534

(1.644007,2.425999) (1.884905,2.698532)
MMLE

Length=0.7819927 Length=0.713627
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Therefore, in this case it is clear that the GV approach provides confidence interval
having shortest length than the LS approach.
We also evaluated (0.90, 0.90) and (0.95, 0.95) upper tolerance limits for this data set
using LS and GV approach. They are 2.921123 (2.875510) and 3.694097(3.56269) re-
spectively. Bracketed tolerance limit is using GV approach.

Table 8: The maximum likelihood estimates and Kolmogorov-Smirnov statistics and p-
values for strength data.

The model MLEs of the parameters Log-likelihood K-S statistic p-value

Generalized Rayleigh β̂=1.4216,λ̂=0.8598 −50.22 0.12 0.2845

Three parameter GE β̂=4.3586,λ̂=1.8303,α̂=6.5469 −110.01 0.0933 0.643

Pareto- Rayleigh α̂=5.036467,σ̂=2.036426 −57.67675 0.094377 0.8431

It is clear from the Table 8 that based on the K-S statistic, the proposed Pareto-
Rayleigh model provides a better fit than generalized Rayleigh and three parameter
generalized Exponential models to this specific data set. Although, it is not guaranteed
that the proposed model always provides a better fit than the other models.

7 Conclusions

In this paper we have considered interval estimation (confidence interval and tolerance
interval) using maximum likelihood estimator and modified maximum likelihood estima-
tor in Pareto-Rayleigh distribution (Transformed-Transformer family) based on general-
ized variable approach. We have compared these generalized intervals with asymptotic
intervals. The proposed confidence intervals perform satisfactory for small to moderate
sample sizes. These intervals are superior to the asymptotic intervals. The performance
of the interval estimation using modified maximum likelihood estimators are also quite
satisfactory. One real data analysis has been performed and it is observed that the pro-
posed model provides a better fit than some of the existing models.
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