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Associated kernels have been introduced to improve the classical (sym-
metric) continuous kernels for smoothing any functional on several kinds of
supports such as bounded continuous and discrete sets. In this paper, an
associated kernel for discriminant analysis with multivariate mixed variables
is proposed. These variables are of three types: continuous, categorical and
count. The method consists of using a product of adapted univariate asso-
ciated kernels and an estimate of the misclassification rate. A new profile
version cross-validation procedure of bandwidth matrices selection is intro-
duced for multivariate mixed data, while a classical cross-validation is used
for homogeneous data sets having the same reference measures. Simula-
tions and validation results show the relevance of the proposed method. The
method has been validated on real coronary heart disease data in comparison
to the classical kernel discriminant analysis.

keywords: Bandwidth matrix, non-classical kernel, profile cross-validation.

1 Introduction

Discriminant analysis is a classical method in many scientific domains, such as bankruptcy
prediction, face recognition, marketing and medicine. The dataset can be a mix of dis-
crete (categorical, count) and continuous (rates, positive) data, such as the biomedical
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study in Rousseauw et al. (1983). Henceforth, the set Td (⊆ Rd) denotes the support of
the d-variate mixed data

Td = T[1]
k1
× · · · × T[L]

kL
with

L∑
`=1

k` = d (1)

and ν = ν1 × . . . × νL represents the reference measure on Td, where ν` (1 ≤ ` ≤ L) is

the measure related to the corresponding support T[`]
k`

with fixed k`-dimension (that has
a given correlation structure).

In a discriminant analysis problem, a decision rule is used to classify a d-dimensionnal
observation x belonging to Td in one of the J classes. Specifically, the optimal Bayes
rule assigns an observation to the class with the largest posterior probability. It can be
described as follows

Allocate x to group j0 where j0 = arg max
j∈{1,...,J}

πjfj(x), (2)

where πj is the prior probability and fj(x) is the probability density function (pdf) of
the jth class. These pdfs are usually unknown in practice, and can be estimated from
the training data set using either parametric or nonparametric approaches. In para-
metric approaches, the underlying populations distributions are assumed to be known
except for some unknown parameters such as mean vector and dispersion matrix; see,
e.g., Nath et al. (1992) and Simonoff (1996). The linear and quadratic discriminant
techniques are the most used classic parametric approaches. However, they suffer from
the restrictive assumption of normality. In nonparametric approaches, this assumption
is relaxed and therefore more complex cases can be investigated. Kernel density estima-
tion is a well-known method for constructing nonparametric estimations of population
densities, namely in discriminant analysis; see for instance Duong (2007) and Ghosh
and Chaudhury (2004). Other methods have also been performed for nonparametric
density estimation such as splines in Wahba (1990), Gu (1993) and Koo et al. (2009)
and wavelets in Antoniadis (1997) and Shi et al. (2006).

More precisely, let Xj = {Xj1, . . . ,Xjnj} be a d-dimensional observations drawn from
an unknown density function fj , for j = 1, . . . , J , where the sample sizes nj are known
and non-random. Moreover, the observations Xj1, . . . ,Xjnj are independent and identi-
cally distributed (iid) and are they belong to the jth population on the support Td(⊆ Rd).
The classical kernel estimator f̂j of fj in (2) which uses continuous symmetric kernels is
of the form:

f̂j(x;K,Hj) =
1

nj det Hj

nj∑
i=1

K
{

H−1j (x−Xji)
}

= f̂j(x; Hj), ∀x ∈ Td := Rd, (3)

where Hj is the jth symmetric and positive definite bandwidth matrix of dimension d×d
and the function K(·) is the multivariate kernel assumed to be a spherically symmetric
pdf. Since the choice of the kernel K does not change the result in classical case, a
common notation will be used f̂j(x; Hj) for the jth density estimation with classical
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kernel. Thus, the Kernel Discriminant Rule (KDR) is obtained from the Bayes rule, in
equation (2), by replacing fj by f̂j and πj is usually replaced by the sample proportion

π̂j = nj/n with
∑J

j=1 nj = n; that is

KDR: Allocate x to group ĵ0 where ĵ0 = arg max
j∈{1,...,J}

π̂j f̂j(x; Hj). (4)

This now raises the question of the choice of the most appropriate multivariate kernel
according to the mix of discrete and continuous variables. In fact, because of symmetry,
the multivariate classical kernel (e.g. Gaussian) suits only for estimating the densities
fj with unbounded supports (i.e. Rd); see Scott (1992), Duong (2004) and Zougab et al.
(2014). Moreover, the multivariate Gaussian kernel is well-known in discriminant anal-
ysis. In order to estimate different functionals, Racine and Li (2007) proposed multiple
kernels composed of univariate Gaussian kernels for continuous variables and Aitchison
and Aitken (1976) kernels for categorical variables. Some implementations of the multi-
ple kernels using the R software (R Development Core Team, 2015) have been performed
in Hayfield and Racine (2007). Besides, it should be noted that the application of Gaus-
sian kernels (i.e. symmetric) gives weights outside variables with bounded or discrete
supports. Also, the resulting bias increases with the dimension d and will affect the accu-
racy of the KDR in (4), especially in the purpose of classifying points at the boundary of
the classes. In the univariate continuous case, Chen (1999, 2000) is one of the pioneers
who has proposed asymmetric kernels, as beta and gamma, whose supports coincide
with those of the unknown functions to be estimated. Zhang (2010) and Zhang and
Karunamuni (2010) studied the performance of these beta and gamma kernel estimators
at the boundaries in comparison with those of the classical kernels; see also Malec and
Schienle (2014) and Igarashi and Kakizawa (2015). Libengué (2013) investigated several
families of these univariate continuous kernels that he called univariate associated ker-
nels; see also Kokonendji et al. (2007), Kokonendji and Senga Kiessé (2011), Zougab et
al. (2012) for univariate discrete situations. As for the multivariate case, Bouerzmarni
and Rombouts (2009) proposed a product of univariate gamma and beta kernels. An-
other multivariate version with correlation structure of these associated kernels has been
studied in Kokonendji and Somé (2015) for continuous density functions and in Somé
and Kokonendji (2016) for multiple regression; see Sarmanov (1966) for construction of
multivariate densities with some correlation structure from independent components.

In this work, a new application of multivariate associated kernels for the discrim-
inant analysis is proposed. The associated kernels are appropriated for both mixed
training data Xj1, . . . ,Xjnj for j = 1, . . . , J and test data Y1, . . . ,Ym drawn from

f =
∑J

j=1 πjfj . In order to estimate the densities fj in (2), we propose multiple (or
product of) associated kernels composed by univariate discrete (e.g. binomial) and
continuous (e.g. beta, gamma) associated kernels. The bandwidth matrices selection
remains crucial to minimize the misclassification rate. A new profile cross-validation
will be introduced for mixed variables, whereas a classic cross-validation will be used for
homogeneous data sets. It should be noted that these associated kernels are adapted for
this situation of mixing axis, since they fully respect the support of each explanatory
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variable. Some appropriated type of associated kernels, denoted by κ, will be used for
discriminant analysis by mean of simulations and validations.

The rest of the paper is organized as follows. Section 2 represents a general definition of
multivariate associated kernels including both of the continuous classical symmetric and
the multiple composed by univariate discrete and continuous. Then, the corresponding
KDR appropriated for both continuous and discrete explanatory variables is given. Also,
we present the profile cross-validation suitable for bandwidth matrices selection in the
case of mixed variables. In Section 3, we investigate only the appropriated associate
kernels according to the support of the variables through simulations studies and real
data analysis. Finally, concluding remarks are drawn in Section 4.

2 Associated kernels for discriminant analysis

With the assumptions of equation (1), the associated kernel Kx,H(·) which replaces the
classical kernel K(·) of (3) is a pdf according to some measure ν. This kernel Kx,H(·)
can be defined as follows:

Definition 2.1 Let Td
(
⊆ Rd

)
be the support of the densities fj, to be estimated, x ∈ Td

a target vector and H a bandwidth matrix. A parametrized pdf Kx,H(·) of support
Sx,H

(
⊆ Rd

)
is called “multivariate (or general) associated kernel” if the following con-

ditions are satisfied:

x ∈ Sx,H, (5)

E (Zx,H) = x + a(x,H), (6)

Cov (Zx,H) = B(x,H), (7)

where Zx,H denotes the random vector with pdf Kx,H and both

a(x,H) = (a1(x,H), . . . , ad(x,H))>

and

B(x,H) = (bij(x,H))i,j=1,...,d

tend, respectively, to the null vector 0 and the null matrix 0d as H goes to 0d.
From this definition and in comparison with (3), the jth associated kernel estimator

f̃j of fj is

f̃j(x) =
1

nj

nj∑
i=1

Kx,Hj (Xji) = f̃j(x;κ,Hj), (8)

where Hj ≡ Hjnj is the bandwidth matrix such that Hjnj → 0 as nj → ∞, and κ
represents the type of the associated kernel Kx,Hj , parametrized by x and Hj . Without

loss of generality, and hereafter f̃j(x;κ,Hj) ≡ f̃j(x;κ) will be used in order to point out
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the effect of κ, since the bandwidth matrix is here investigated only by cross-validation.
Therefore, the classical KDR of (4) becomes the associated KDR (AKDR) using (8)

AKDR: Allocate x to group j̃0 where j̃0 = arg max
j∈{1,...,J}

π̂j f̃j(x;κ). (9)

The following two examples provide the well-known multivariate associated kernel es-
timators and they represent particular cases that can be used in (1). The first can be seen
as an interpretation of classical associated kernels through continuous symmetric kernels.
The second deals on non-classical associated kernels without correlation structure.

Given a target vector x ∈ Rd =: Td and a bandwidth matrix H, it follows that
the classical kernel in (3) with null mean vector and covariance matrix Σ induces the
so-called (multivariate) classical associated kernel:

(i) Kx,H(·) =
1

det H
K
{
H−1(x− ·)

}
(10)

on Sx,H = x−HSd with E (Zx,H) = x (i.e. a(x,H) = 0) and Cov (Zx,H) = HΣH;

(ii) Kx,H(·) =
1

(det H)1/2
K
{

H−1/2(x− ·)
}

on Sx,H = x − H1/2Sd with E (Zx,H) = x (i.e. a(x,H) = 0) and Cov (Zx,H) =
H1/2ΣH1/2.

A second particular case of Definition 2.1, appropriated for a mix of both continuous
and count explanatory variables without correlation structure, is presented as follows.

Let x = (x1, . . . , xd)
> ∈ ×d`=1T

[`]
1 =: Td with k` = 1 of (1) and H = Diag(h11, . . . , hdd)

with h`` > 0. Let K
[`]
x`,h``

be a (discrete or continuous) univariate associated kernel (see

Definition 2.1 for d = 1) with its corresponding random variable Z [`]
x`,h``

on Sx`,h``(⊆ R)
for all ` = 1, . . . , d. Then, the multiple associated kernel is also a multivariate associated
kernel:

Kx,H(·) =

d∏
`=1

K
[`]
x`,h``

(·) (11)

on Sx,H = ×d`=1Sx`,h`` with E (Zx,H) = (x1 + a1(x1, h11), . . . , xd + ad(xd, hdd))
> and

Cov (Zx,H) = Diag (b``(x`, h``))`=1,...,d. In other words, the random variables Z [`]
x`,h``

are
independent components of the random vector Zx,H.

In the following two subsections, some examples of associated kernels are illustrated
and then criteria of discriminant analysis are presented.

2.1 Some associated kernels

In order to point out the importance of associated kernel in discriminant analysis, below
some kernels that will be used in numerical studies are motivated. These concern four
basic univariate associated kernels for which two of them are discrete and the two last
are continuous.
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• The binomial kernel is defined on the support Sx = {0, 1, . . . , x+1} with x ∈ T1 :=
N = {0, 1, . . .} and then h ∈ (0, 1]:

Bx,h(u) =
(x+ 1)!

u!(x+ 1− u)!

(
x+ h

x+ 1

)u(1− h
x+ 1

)x+1−u
1{u ∈ Sx},

where 1{A} denotes the indicator function of any given event A. Note that Bx,h
is the probability mass function (pmf) of the binomial distribution B(x + 1; (x +
h)/(x + 1)) with its number of trials x + 1 and its success probability in each
trial (x + h)/(x + 1). It is appropriated for count data with small or moderate
sample sizes and, also, it does not satisfy equation (7); see Kokonendji and Senga
Kiessé (2011) and also Zougab et al. (2012) for a bandwidth selection by Bayesian
method.

• From Aitchison and Aitken (1976), Kokonendji and Senga Kiessé (2011) deduced
the following discrete kernel which is here labelled DiracDU as “Dirac Discrete
Uniform”. For fixed c ∈ {2, 3, . . .} the number of categories, one has Sc =
{0, 1, . . . , c− 1} and

DUx,h;c(u) = (1− h)1−1{u∈Sc\{x}}
(

h

c− 1

)1{u∈Sc\{x}}
,

where h ∈ (0, 1] and x ∈ T1. This DiracDU kernel is symmetric around the target,
satisfying Definition 2.1 and appropriated for categorical set T1.

• The gamma kernel is defined on Sx,h = [0,∞) = T1 with x ∈ T1 and h > 0:

GAx,h(u) =
ux/h

Γ (1 + x/h)h1+x/h
exp

(
−u
h

)
1{u ∈ [0,∞)},

where Γ(·) is the classical gamma function. It is the pdf of the gamma distribution
Ga(1 + x/h, h) with scale parameter 1 + x/h and shape parameter h. It satisfies
Definition 2.1 and it is appropriated for non-negative real set T1; see Chen (2000).

• Finally, the beta kernel is defined on Sx,h = [0, 1] = T1 with x ∈ T1 and h > 0:

BEx,h(u) =
ux/h(1− u)(1−x)/h

B (1 + x/h, 1 + (1− x)/h)
1{u ∈ [0, 1]},

where B(r, s) =
∫ 1
0 t

r−1(1−t)s−1dt is the usual beta function with r > 0 and s > 0.
It is the pdf of the beta distribution Be(1 +x/h, (1−x)/h) with shape parameters
1 + x/h and (1 − x)/h. This pdf satisfies Definition 2.1 and is appropriated for
rates, proportions and percentages dataset T1; see Chen (1999).

Figure 1 shows some forms of the above-mentioned univariate associated kernels.
These kernels are completed by the Gaussian in its associated form constructed with
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Figure 1: Shapes of univariate (discrete and continuous) associated kernels: (a)
DiracDU, discrete triangular a = 3 and binomial with same target x = 3
and bandwidth h = 0.13; (b) Beta, Gaussian and gamma with same x = 0.8
and h = 0.2.

equation (10), and the discrete triangular of Kokonendji et al. (2007); see also Koko-
nendji and Zocchi (2010) for an asymmetric version. The plots highlight the importance
of the target point and around it in discrete (a) and continuous (b) cases. Further-
more, for a fixed bandwidth h, the Gaussian keeps its same shape along the support;
however, they change according to the target for other non-classical associated kernels.
This explains the inappropriateness of the Gaussian kernel for density estimation in any
bounded interval; see Part (b) of Figure 1. This argument remains valid for discrete
triangular kernel for any bounded count support; see Part (a) of Figure 1.

2.2 Misclassification rate and bandwidth matrix selection

The performance of the AKDR method is investigated by the misclassification rate
denoted by MR. This error rate is the proportion of the points that are assigned to an
incorrect group based on the discriminant rule in (9). Then, we have

1−MR = P(Y is correctly classified)

= EY(1{Y is correctly classified}),

where EY is the expectation with respect to Y or
∑J

j=1 πjfj . See also Hall and Wand
(1988) who proposed to find optimal bandwidth that directly optimises this MR for a

two-class problem. In practice, an estimate of MR is used, denoted M̂R, for test data
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Y1, . . . ,Ym and also for training data:

M̂R = 1−m−1
m∑
k=1

1{Yk is correctly classified using AKDR}. (12)

The optimal bandwidth matrices that give the best M̂R are chosen by the least squared
cross-validation (LSCV) method. The multivariate cross-validation is a straightforward
generalization of the one dimensional case. For the jth group, the LSCV estimator is

LSCV(Hj) =

∫
Td

{
f̃j(x)

}2
ν(dx)− 2

nj

nj∑
i=1

f̃j,−i(Xji), (13)

where f̃j,−i (Xji) = (nj − 1)−1
nj∑
k 6=i

KXji,Hj (Xjk) is being computed as f̃j(Xji) excluding

the observation Xji. Practically, for homogeneous (continuous and discrete) data the first
term of (13) is calculated by successive sums or integrals according to the appropriated
measure ν (Lebesgue or count). In that case, the optimal bandwidth matrix H̃j obtained
by LSCV rule in (13) with multiple associated kernels in equation (11) is defined as
follows:

H̃j = arg min
Hj∈D

LSCV(Hj), (14)

where D is the set of all positive definite diagonal bandwidth matrices. Its algorithm is
described below and used for numerical studies in the following section.

A1. Algorithms of LSCV method in (14) for some type of associated
kernels and their corresponding bandwidth matrices

Multiple associated kernels (i.e. diagonal bandwidth matrices) for d ≥ 2.

1. Choose d intervals H11, . . ., Hdd related to h11, . . ., hdd, respectively.

2. For δ1 = 1, . . . , `(H11), . . ., δd = 1, . . . , `(Hdd),
Compose the diagonal bandwidth matrix Hj(δ1, . . . , δd) := Diag (H11(δ1), . . . ,Hdd(δd)).

3. Apply LSCV method on the set D of all diagonal bandwidth matrices Hj(δ1, . . . , δd).

However, for mixed case where the Fubini theorem is not applicable in (13), one uses
the so called profile cross-validation since there is no convergence of the classical cross-
validation algorithm below. The method is presented in bivariate case for any group
(j = 1, . . . , J). For instance, for T2 = [0, 1] × N and a multiple associated kernel (11)
beta×binomial, the smoothing parameter h11(j) of the beta kernel is fixed, followed by
a minimisation of the cross-validation function on h22(j) ∈ (0, 1] of the binomial kernel:

h̃22(j)[h11(j)] = arg min
h22(j)∈(0,1]

LSCVh11(j)(h22(j)),
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with LSCVh11(j)(h22(j)) = LSCV(h11(j), h22(j)) := LSCV(Hj). Furthermore, h11(j)

is unknown, hence for each h11(j) we can evaluate h̃22(j)[h11(j)] and estimate the cor-

responding misclassification rate M̂R(h11(j), h̃22(j)[h11(j)]). The jth optimal bandwidth

matrix using the profile cross-validation and denoted Ĥjp is

Ĥjp = arg min
h11(j),h̃22[h11(j)]

M̂R(h11(j), h̃22[h11(j)]). (15)

This example of profile cross-validation in (15) and the classical one in (13) are imple-
mented below. It should be noted that, other bandwidth matrix selection by Bayesian
methods is possible; see, e.g., Ziane et al. (2015) for the adaptive case using asymmetric
kernel.

3 Numerical studies

Before presenting some simulations results and real data analysis, let us start by the
algorithm of the associated kernel discriminant analysis.

A2. Algorithm for associated kernel discriminant analysis

1. For each training sample Xj = {Xj1, . . . ,Xjnj}, j = 1, 2, . . . , J , compute a kernel
density estimate with (8) using the optimal bandwidth matrix obtained by cross-
validation in (14).

2. Use the prior probabilities once they are known. Otherwise, estimate them using
the training sample proportions π̂j = nj/n.

3. (a) Allocate test data points Y1, . . . ,Ym according to AKDR of (9).

(b) Allocate all points x from the sample space according to AKDR of (9).

4. (a) If we have test data then the estimate of the misclassification rate is M̂R of
(12).

(b) If the test data are not available, the cross-validation estimate of misclassifi-
cation rate is

M̂Rcv = 1− n−1
J∑
j=1

nj∑
i=1

1{Xji is correctly classified using AKDRji} (16)

where AKDRji is similar to AKDR except that π̂j and f̃j(x;κ) are replaced
by their leave-one-out estimates by removing Xji i.e. π̂j,−i = (nj − 1)/n and

f̃j,−i(x;κ) =
1

nj − 1

nj∑
r 6=i

Kx,Hj,−i (Xjr) .

That is, we repeat step 3 to classify all Xji using AKDRji.
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3.1 Simulation studies

In this section, the results of a simulation study that was conducted for evaluating the
performance of the algorithm of AKDR is presented. Computations have been performed
on the supercomputer facilities of the “Mésocentre de calcul de Franche-Comté” using
the R software; see R Development Core Team (2015). This simulation study has two
objectives. First, we investigate the ability of multiple associated kernels in (13) which
can scrupulously respect any bounded, count and mixed support Td of dataset, and more
give good estimate M̂R of (12). We, therefore, use only appropriate multiple associated
kernels for these simulations studies. Second, we evaluate the sensitivity of the proposed
method in relation to the sample size n.

Three scenarios denoted A, B and C are considered in dimension d = 2. With Scenario
A data are generated using a mixture of two bivariates Dirichlet density

fA(x1, x2) =
3Γ(α1 + α2 + α3)

7Γ(α1)Γ(α2)Γ(α3)
xα1−1
1 xα2−1

2 (1− x1 − x2)α3−11{x1, x2≥0, x1+x2≤1}(x1, x2)

+
4Γ(β1 + β2 + β3)

7Γ(β1)Γ(β2)Γ(β3)
xβ1−11 xβ2−12 (1− x1 − x2)β3−11{x1, x2≥0, x1+x2≤1}(x1, x2),

where Γ(·) is the classical gamma function, with parameter values α1 = α2 = 5, α3 = 6,
β1 = β2 = 2 and β3 = 10. With Scenario B data are generated using a mixture of two
bivariates Poisson with a correlation structure

fB(x1, x2) =
2e−(θ1+θ2+θ12)

5

min(x1,x2)∑
i=0

θx1+i1 θx2+i2 θi12
(x1 + i)!(x2 + i)!i!

1N×N(x1, x2)

+
3e−(θa+θb+θab)

5

min(x1,x2)∑
i=0

θx1+ia θx2+ib θiab
(x1 + i)!(x2 + i)!i!

1N×N(x1, x2),

with parameter values θ1 = 2, θ2 = 3, θ12 = 4, θa = 3, θb = 4 and θab = 5. Finally, with
Scenario C is a bivariate beta without correlation

fC(x1, x2) =

(
3e−22x1

7x1!
+

4e−33x2

7x2!

)
× xp1−12 (1− x2)q1−1

B(p1, q1)
1N(x1)1[0,1](x2),

with (p1, q1) = (2, 7). The use of these bivariate distributions is motivated by the aim
of investigating unbounded continuous, count and mixed situations and, if possible,
correlation structure in the data. For each scenario we generate Nsim = 100 dataset of
different sizes.

The choice of the multiple beta kernel is motivated by the cumbersome procedures
of the bivariate beta kernel with correlation structure; see Kokonendji and Somé (2015)
for further details. Also, the authors show that the so-called beta-Sarmanov kernel
with correlation structure gives similar result to the multiple beta without correlation
structure. Thus, we here focus on the bivariate case. The test data size is m = 200
for each replication. We consider sample size n = 250 and 500 in continuous case and
the multiple beta kernel which is the more suitable for bivariate rates data. Table 2
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reports the average M̂R which we denote M̂R. We can observe low values that prove the
appropriateness of the discriminant analysis algorithm mentioned above in this section.
Furthermore, the errors become smaller when the sample size increases.

Table 1: Some expected values of M̂R and their standard errors in parentheses with
Nsim = 100 of the multiple beta kernel with test data size m = 200.

m n Beta×Beta

A 200
250 0.0421(0.0146)

500 0.0329(0.0097)

Since the binomial kernel is the most interesting of discrete (count) associated kernels
for small sample sizes, the samples sizes n = 50, 100 and 200 are considered; see Somé
and Kokonendji (2016) for comparisons with the discrete (symmetric) triangular kernel.
In fact, unlike the binomial kernel, the discrete triangular kernel induces a bias on any
partially or totally bounded count support. Of course, this boundary bias problem might
have an effect on discriminant analysis at the boundaries of two classes.

In each replication, the test data size is m = 100. Table 2 reports the values of M̂R

for this appropriate multiple binomial kernel. Once again, we observe low values of M̂R
which has a tendency to become better when the sample size increases. For scenario C

Table 2: Some expected values of M̂R and their standard errors in parentheses with
Nsim = 100 of the multiple binomial kernel with test data size m = 100.

m n Binomial×Binomial

B 100

50 0.0747(0.0334)

100 0.0677(0.0255)

200 0.0581(0.0221)

of mixed case, we have to take into account the effects of the continuous and discrete
sample size. Thus, we consider sample sizes n = 80, 250 and 500 and test data size

m = 150. The values of M̂R in Table 3 show the effectiveness of the profile cross-
validation method in equation (15). Also, the errors rate is getting improved when the
sample size increases.

For now, it is not possible to make simulations studies with more than two variables
mainly due to the time consuming of the cross-validation methods.
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Table 3: Some expected values of M̂R and their standard errors in parentheses with
Nsim = 100 of the beta×binomial kernel with test data size m = 150.

m n Beta×Binomial

C 150

80 0.0182(0.0116)

250 0.0171(0.0080)

500 0.0152(0.0042)

3.2 Real data analysis

The algorithm A2 of AKDR in Section 3 is applied using multiple associated kernels in
equation (11). The dataset represents a retrospective sample of males in a heart-disease
high-risk region of the Western Cape, South Africa. These data are taken from a larger
dataset, described in Rousseauw et al. (1983) and available in Hastie et al. (2009); see
also the R package ElemStatLearn of Halvorsen (2015). It has 462 observations on 10
variables composed of five continuous (positive) variables, three count variables, one
categorical variable and the classification variable Coronary Heart Disease (CHD). This
CHD variable has two groups: the “group 1” of patients with CHD and the “group 2” of
those without CHD. The used multiple associated kernel is composed by gamma kernels
for continuous (positive) variables, binomial kernels for count variables and DiracDU
kernel for the categorical one. We must here use the cross-validation estimate MRcv of
(16) since we do not have test data. Also, the profile cross-validation is appropriate for
this mixed dataset. This method is already computationally intense for two variables,
and thus is not recommended for this dataset of ten mixed variables. Two diagonal
bandwidth matrices Hgroup1 = Diag (0.01, 0.02, 0.03, 0.015, 0.004, 0.02, 0.03, 0.02, 0.02)
and Hgroup2 = Diag (0.87, 0.3, 0.2, 0.15, 0.4, 0.2, 0.4, 0.2, 0.56, 0.6) are chosen for both
groups of CHD and the cross-validation estimate of the misclassification rate MRcv is
30.090%. Also, we use the LSCV selector with full bandwidth matrices and multivariate
Gaussian kernel of Duong (2007), and the misclassification rate is equal to 30.952%.
Thus, the associated kernel discriminant analysis with chosen bandwidth matrices is
slightly better than the classical one of Duong (2007).

4 Concluding remarks

We have presented associated kernels for discriminant analysis and in presence of a mix-
ture of discrete and continuous explanatory variables. Two particular cases including
the continuous classical and the multiple (or product of) associated kernels are high-
lighted. Also, four univariate associated kernels are presented. These kernels, namely
binomial, DiracDU, beta and gamma are used for simulations studies and real data anal-
ysis. The bandwidth selection is obtained by classical cross-validation for homogeneous



Electronic Journal of Applied Statistical Analysis 397

(continuous or discrete) data while a profile version is provided for mixed data.
Simulation experiments and analysis of a real dataset provide insight into the appro-

priateness of associated kernel for small and moderate sample sizes and also for homo-
geneous or mixed data. Table 1 and equation (2) show the efficiency of the discriminant
analysis with appropriate kernels while Table 3 gives an effective bandwidth selection
using profile cross-validation. The method needs some improvements, particularly in
terms of computation time, to be applicable to real mixed datasets with more than two
variables. Further research can be done on bandwidth matrix selection, especially to
speed it up for example by parallelism processing or also by Bayesian methods (Zougab
et al., 2014). Also, regarding to symmetric kernels such as Gaussian or discrete triangu-
lar, comparisons can be done to measure the potential impacts of boundary bias on the
accuracy of discriminant analysis.
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