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Kernel estimation is one of the most important data analytical tool, if we
consider the non parametric approach in the estimation of the probability
density function. In parallel, it is used to estimate the hazard rate function,
which is one of the most important ways for representing the life time distri-
bution in the survival analysis. As the support of the hazard rate function is
in the non negative part of the real line [0, 00), its will be under the boundary
effect near zero when the estimation is done using symmetric kernels such
as the Gaussian kernel. Two kernel estimators for the hazard rate function
were proposed using asymmetric kernels are the Reciprocal Inverse Gaussian
and Inverse Gaussian kernel estimators to avoid the high bias near zero. In
this paper, we conduct a theoretical comparison between those estimators by
looking at their asymptotic bias, variance and the mean squared error. Also,
a comparison of the practical performance of the three estimators based on
simulated and real data will be present.

keywords: Inverse Gaussian kernel, reciprocal inverse Gaussian kernel,
asymptotic bias, asymptotic variance, mean squared error.

1 Introduction

The hazard rate function is the instantaneous failure rate or (a force of morality), its
represent the probability of failure between time x and z 4+ A, given that there were
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no failures up to time z. For more details see Cox and Oakes (1984). The hazard rate
function is defined as follows:

Definition 1.1. The hazard rate function or age-specific failure rate, defined by:

. Ple<X <o+ Alr <X)
r(x):AhmO A
—

(1.1)
and by the definition of the conditional probability, we have

f(z)
r(z) = 1= F2) (1.2)

where f(x) is the pdf of the distribution and F(x) is the cdf.

Let X1, Xo, -+, X,, arandom sample from a distribution with an unknown probability
density function f satisfying the following assumptions:

(A;) The unknown density function f(z) has a continuous second derivative f()(z).

(A2) The bandwidth h = h,, is a sequence of positive numbers and satisfies h — 0 and
nh — 00 as n — 00 .

(A3) The kernel K is a bounded probability density function of order 2 and symmetric
about the zero.

Watson and Leadbetter (1964) has proposed the following kernel estimator for the hazard
rate function.

Definition 1.2. The kernel estimator for the hazard rate function with bandwidth h is
given by:
Ay = D (1.3)
1— F(x)
where,

f(z) = LS K (‘rfhxi>, F(z) = LS K (xfTXZ> and K is bounded symmetric
kernel function with [;° K (u)du = 1.

Definition 1.3. The Gaussian kernel estimator for the hazard rate function 7g(x) is
defined by:

o) = fetz)

S6(x)

(1.4)

where, fG(fU) and SG(J}) are defined as follows:
fa(z) = 55 X Ka (%): Sa(x)=1-Fglx)=1- 23", [V Kg <u7LXi) du,

22
where Kg(x) is given by Kg(x) = ﬁeiT,Vaz e R
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Note that the support of the hazard rate function is in the non-negative part of the
real line [0, 00), so when the estimation is based on symmetric kernels it will be under
the boundary effect (called a boundary bias problem) near the zero. its causes that
the estimator of the hazard rate function will take values outside the support.

To solve this problem, Chen (2000) has replaced the symmetric kernels by asymmetric
Gamma kernel, which never assigns weight outside the support. Scaillet (2004) used
this idea and proposed two new classes of density estimators, rely on the use of inverse
Gaussian (IG) and the reciprocal inverse Gaussian (RIG) kernels in the place of the
Gamma kernel. In Salha (2012), the estimation of the hazard rate function using the IG
kernel has been considered. In Salha (2013), the estimation of the hazard rate function
using the RIG kernel has been considered.

Now, we state the following conditions under which, Scaillet (2004) has proposed the IG
and RIG kernel estimators of the pdf.

Conditions

(C1) Let X1, X9, ,X, be a random sample from a distribution with an unknown
probability density function f defined on [0, 00), such that f is twice continuously
differentiable, and [ (23 f"(z))*dx < oc.

(Cq) h is a smoothing parameter satisfying h + ﬁ — 0, and nhs — 0, as n — o0.

Scaillet (2004) has proposed the following IG kernel function as follows:
Definition 1.4. The IG kernel function is defined by :

1 1 U x
KIG(;L«,%)(U) = \/ﬁeiﬁp (—th (; -2+ u)) u >0 (1.5)

whereh+#—>0asn—>oo.

Using this kernel, Scaillet (2004) proposed the following IG kernel estimators of the
pdf and cdf as follows:

Definition 1.5. The IG kernel estimator of the pdf is defined by :

R 1 &
fra(z) = EZKIG(L%)(XZ') (1.6)
=1

Definition 1.6. The IG kernel estimator of the cdf is defined by :

Fro(z) = /Ox Fre(u)du = 7112/01 Kre(u, %)(Xi)du. (1.7)
i=1

Using definitions 1.5 and 1.6, we propose the IG kernel estimator for the hazard rate
function as follows:

Definition 1.7. The IG kernel estimator for the hazard rate function is given by :

Fro(s) = fra(x)

" hee (1.8)
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Under the same conditions, Scaillet (2004) has proposed the following RIG kernel
function.

Definition 1.8. The RIG kernel function is defined by :

1 z—h U z—h

whereh+#—>0asn—>oo.

Using this kernel, Scaillet (2004) proposed the following RIG kernel estimators of the
pdf and cdf as follows:

Definition 1.9. The RIG kernel estimator of the pdf is defined by :

fRIG ZKRIG Ly ) (110)

h

Definition 1.10. The RIG kernel estimator of the cdf is defined by :

Fric(x /fRIG /KRIG — h)(X)dU- (1.11)

Using definitions 1.9 and 1.10, we propose the RIG kernel estimator for the hazard
rate function as follows:

Definition 1.11. The RIG kernel estimator for the hazard rate function is given by:

fRIG(UC)
1— FRjg(.%‘) .

Salha (2012) and Salha (2013) studied the asymptotic properties for the estimators
in Equations 1.8 and 1.12 such as the asymptotic normality, the strong consistency and
investigated the optimal bandwidth that minimizes the mean squared error (M SE) and
the asymptotic mean squared error (AMSFE). In Section 2, we present a theoretical
comparison between the three estimators from equations 1.4, 1.8 and 1.12. Also, a
practical comparison between the three estimators to test their performance is given in
Section 3. Finally, our conclusions will be given in Section 4.

Trig(z) = (1.12)

2 A theoretical comparison

In this section, we make a brief theoretical comparison of the 7¢(x), 7rig(z) and 77g(x)
estimators by looking at their asymptotic bias, variance and the MSEs under the as-
sumptions Ay, As and Ajz for the Gaussian and under the conditions C and Cs for both
RIG and IG. Table 1 summarizes the results for the bias, variance and the MSEs for
both 7rrg(x) and 71¢(z) are taken from Salha (2012) and Salha (2013).
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’ The Estimator ‘ The Bias

The Variance

R e 2 T

() bty +olh) | s + o)

A 23 f7(x —_3 r(x 1.1
riG(2) ssie o(h) | gy 25 +o(n M)
~ zf(x _Iy(x —1,.-1%
PriG(z) fstg +olh) | a2 gl +o(n"'h2)

Table 1: Summary for the Bias and Variance for the three estimators

2.1 The Bias

By looking to those expressions for the Bias in Table 1, we conclude the following re-
marks:

1. Since the expressions of the Bias(Frig(x)) and Bias(7g(x)) increases in xh and
h? respectively, and hence near the zero (x € (0, h)), we have xh < h?, which imply
that Bias(frig(x)) < Bias(fg(x)).

2. Bias(frig(r)) and Bias(71g(x)) increases in xh and 23h respectively, and hence
for any (z > 1) we have zh < x3h, which imply that Bias(fria(x)) < Bias(fig()).

3.If 0 < 2 < 1 we have 23 < 2 and hence z3h < xh < h? which imply that
Bias(t1q(z)) < Bias(frig(x)) < Bias(tg(x)).

2.2 The Variance

By looking to the expressions for the Variance in Table 1, we conclude the following
remarks:

1. The expressions of the Var(7frrg(x)) and Var(fq(z)) decreases in vah and h re-
spectively, and hence as z € (0, h) we have vVah < h, which imply that Var(frrg(x)) >
Var(fg(x)).

2. The expressions of the Var(frra(z)) and Var(7;g(x)) decreases in v xh and vV3h
respectively, and hence as 0 < x < 1 we have vxh > Vx3h, which imply that
Var(tric(x)) < Var(fg(x)).

3. The expressions of the Var(frig(x)) and Var(f;g(z)) decreases in vxh and
Va3h respectively, and hence as z > 1 we have vxh < Vx3h, which imply that
VCLT‘(’ijg(:E)) > Var(hg(m)).

2.3 The MSE

By Table 1, the squared bias for the RIG decreases if z € (0,h) and hence as h de-
creases we have squared bias for the RIG less than squared bias for Gaussian which
imply that MSE(fric(xz)) < MSE(fg(x)). A similar result hols for #;¢(z), we have
MSE(t1q(z)) < MSE(fg(x)).
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2.4 The Optimal AMSE

For any z € [0,00), the optimal AMSE (AMSE*) for the three estimators is the same
and it is given by

4 4 2
A : oy 3 (1@ (1)
AMSE* = AMSE"* = AMSE”* = - .
SE*(fric(a)) = AMSE"(6(o) = AMSE(rac(e) = 5 (172) ( s
The AMSE*(71¢(z)) was driven in Salha (2012) and following the same techniques,
we can derive the other two optimal AMSE. Now, we derive the AMSE*(7g(x)).
From Table 1, we have

+ o(h?) + o(i). (2.1)

F(@)h*\° f(x)
> * nh

MSE(ig(x)) = < 25(x) 2nhy/mS? ()

Then under the conditions on the bandwidth A in Cy and as n — oo, the AMSE is

given by
")\ 2 x

To find AMSE*(7g(x)), the value of the optimal bandwidth, that minimizes AM SE(7q(z)),
must be substituted in Equation (2.2).
Now, differentiate Equation (2.2) and equating it to zero, we obtain

@\ 5 f(z) 9 _
(567) (e 17 =0 (23)
Solve Equation (2.3) for h, we obtain the optimal bandwidth as follows:
_( f@) )
= (i) .

Now, substitute the value of the optimal bandwidth from Equation (2.4) into Equation
(2.2), we get

s~ (G2 i) ) (i)

Now, by simplifying Equation (2.5), the following holds

s =5 (1)’ (")
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3 Practical Comparison

In this section, we compare between the three estimators of the hazard rate function by
studying their performance using simulated and real data. The bandwidths has been
chosen according to the following rules.
First, for the Gaussian estimator, the following rule from Silverman (1986) has been
used to find the bandwidth )

h* =1.066n"5, (3.1)

where,
n

1
A2 )2
o _n—lg(% z).
and for the RIG and IG estimators, we used the bandwidth selection procedure that has
been proposed by Scaillet (2004). This procedure indicates that if [nX follows a normal
distribution with parameters 1 and o2, then the optimal bandwidths for the RIG and
1G estimators are given respectively by

2
e (160’561,’])(%(—170'2 + 20#))) o
h** = n

; (3.2)
5 .
12 + 402 + o ’
and )
160%exp(L (1702 — 20 5
h*** — g 6(13])(8( g 4:“’)) TL_%, (33)
12 4 6802 + 2250

where, the unknown parameters o and p are estimated as follows:
-1
Lz=2%"Inx;,
~2 1 —\2
2. 6% = =7 > (lnx; — 2)%.

We use the S-Plus program in the implementation of those applications.

3.1 Simulation Studies

In this subsection, the performance of the three estimators are tested using simulation
data from the exponential and normal distributions.

3.1.1 Simulation Study 1

A sample of size 200 from the exponential distribution with pdf f(z) = e™* is simulated.
After that the density function and the hazard rate functions were estimated using the
RIG, IG and the Gaussian estimators. The estimated values and the true functions are
plotted in Figure 1 and Figure 2, respectively. The two figures show that the performance
of the RIG and IG estimator is better than that of the Gaussian estimator at the
boundary near the zero. In the interior the behavior of the three estimators becomes
more similar as we get away from the zero. Also the M SFE for the hazard rate estimators
are listed in Table 2. Table 2 indicates that the RIG estimator has the smallest M SE.
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MSE for the Estimators
MSE(triq(z)) | MSE(t16(x)) | MSE(fa(x))
0.4588251 0.4686859 0.4812027

Table 2: M SFE of the hazard rate estimators for Simulation Study 1
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1T Gaussian Kernel
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L 1
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Figure 1: The RIG, IG and Gaussian kernel estimators of the density function for the
simulated data of the exponential distribution

<-4 Gaussian Kernel
————— RIG Kernel
—— 1G Kemel

- True Hazard

Hazard Rate Function

Figure 2: The RIG, IG and Gaussian kernel estimators of the hazard rate function for
the simulated data of the exponential distribution
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3.1.2 Simulation Study 2

22
Two samples of size 40 and 100 from the normal distribution with pdf f(z) = \/%6_7

are simulated. After that the density function and the hazard rate functions were esti-
mated using the RIG, IG and the Gaussian estimators. The estimated values and the
true functions for the sample of size 100 are plotted in Figure 3 and Figure 4, respec-
tively. The two figures show that the performance of the RIG estimator is better than
that of the Gaussian and /G estimators at the boundary near the zero. In the interior
the behavior of the three estimators becomes more similar as we get away from the zero.
Also the M SE for the hazard rate estimators for the two samples are listed in Table 3.
Table 3 indicates that the RIG estimator has the smallest M SE. From the results in
Table 3, we note the performance of the three estimators for large sample is better than
that for the small sample.

MSE for the Estimators
Sample size | MSE(frig(x)) | MSE(t1g(z)) | MSE(fg(z))
40 0.3432449 0.62093 0.6671531
100 0.0412683 0.2949743 0.1256913

Table 3: M SFE for the hazard rate estimators for Simulation Study 2
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Figure 3: The RIG, IG and Gaussian kernel estimators of the density function for the
simulated data of the normal distribution
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——————— Gaussian Kernel
True Hazard
IG Kernel

——— RIG Kernel

Hazard Rate Function
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Figure 4: The RIG, IG and Gaussian kernel estimators of the hazard rate function for
the simulated data of the normal distribution

3.2 Real Data

We use the survival time of the lung cancer patients given in data from a study of lung
cancer patients conducted by the North Central Cancer Treatment Group, see Loprinzi
et al. (1994), to exhibit and compare the practical performances of the Gaussian, RIG
and RIG estimators. We exclude the censored data (means some individuals may not
observed for the full time to failure which for example stay alive at the end of the study
or may leave the study before they die ), so here we assume that the applications done
using a complete study (without censoring). The data gives the lengths of the treatment
spells (in days) of control patients were hospitalized. The objective is to estimate the
hazard rate function which in this case represents the instant potential per unit of time
that an individual die within the time interval (z,x + A) given that it was known to be
alive up to time x.

Figure 5 and Figure 6 show the estimators of the probability density and hazard rate
function, respectively. Although the suggested values of the density and hazard rate
functions from the estimators are different, they suggest a similar structure for the esti-
mated functions. As we see, the divergence of the estimators gets large at the boundary
near the zero and becomes smaller in the interior especially from approximately = > 200.
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Figure 5: The RIG, IG and Gaussian kernel estimators of the density function for the
survival time of the lung cancer patients
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Figure 6: The RIG,IG and Gaussian kernel estimators of the hazard rate function for
the survival time of the lung cancer patients
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4 Conclusion

In this paper, we compared between three kernel estimators for the hazard rate function,
the RIG, IG and the Gaussian estimators. A theoretical comparison between those
estimators based on comparing the asymptotic biases, variances and mean squared error
indicated that the two asymmetric kernel estimators (77 and 7rjg) are better than
the Gaussian at the boundary near the zero. This result leads to deduce that the mean
squared errors for both (77¢ and 7#ry) are less than that of the Gaussian kernel estimator
() because its based on symmetric kernel. Also, the practical comparison between the
three estimators using simulation studies and real data indicated that the performance
of the asymmetric kernel estimators (77¢ and 7gr¢)is better than that of 7, especially
near the zero, confirming the previous theoretical discussion.

In this paper, we presented three estimators of the hazard rate function and compared
between them theoretically and practically. The main idea was to replace the symmetric
kernel function by asymmetric kernel functions to avoid the boundary bias problem
near the zero, when estimating the hazard rate function. To increase the accuracy of
these estimators, we suggest to use a variable bandwidth that depends on the points
where we estimate the hazard rate function. This variable bandwidth together with the
asymmetric kernel will increase the performs of the kernel estimators of the hazard rate
function.
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